

About This eBook

ePUB is an open, industry-standard format for eBooks. However,
support of ePUB and its many features varies across reading devices and
applications. Use your device or app settings to customize the presentation to
your liking. Settings that you can customize often include font, font size,
single or double column, landscape or portrait mode, and figures that you can
click or tap to enlarge. For additional information about the settings and
features on your reading device or app, visit the device manufacturer’s Web
site.

Many titles include programming code or configuration examples. To
optimize the presentation of these elements, view the eBook in single-
column, landscape mode and adjust the font size to the smallest setting. In
addition to presenting code and configurations in the reflowable text format,
we have included images of the code that mimic the presentation found in the
print book; therefore, where the reflowable format may compromise the
presentation of the code listing, you will see a “Click here to view code
image” link. Click the link to view the print-fidelity code image. To return to
the previous page viewed, click the Back button on your device or app.

In this eBook, the limitations of the ePUB format have caused us to
render some equations as text and others as images, depending on the
complexity of the equation. This can result in an odd juxtaposition in cases
where the same variables appear as part of both a text presentation and an
image presentation. However, the author’s intent is clear and in both cases
the equations are legible.

THE ART OF COMPUTER
PROGRAMMING

Volume 2 / Seminumerical Algorithms

THIRD EDITION

DONALD E. KNUTH Stanford University

 ADDISON–WESLEY
Upper Saddle River, NJ • Boston • Indianapolis • San Francisco

New York • Toronto • Montréal • London • Munich • Paris • Madrid
Capetown • Sydney • Tokyo • Singapore • Mexico City

TeX is a trademark of the American Mathematical Society
METAFONT is a trademark of Addison–Wesley
The quotation on page 61 is reprinted by permission of Grove Press, Inc.
The author and publisher have taken care in the preparation of this book, but
make no expressed or implied warranty of any kind and assume no
responsibility for errors or omissions. No liability is assumed for incidental
or consequential damages in connection with or arising out of the use of the
information or programs contained herein.
The publisher offers excellent discounts on this book when ordered in
quantity for bulk purposes or special sales, which may include electronic
versions and/or custom covers and content particular to your business,
training goals, marketing focus, and branding interests. For more information,
please contact:
 U.S. Corporate and Government Sales (800) 382–3419
 corpsales@pearsontechgroup.com
For sales outside the U.S., please contact:
 International Sales international@pearsoned.com
Visit us on the Web: informit.com/aw
Library of Congress Cataloging-in-Publication Data
Knuth, Donald Ervin, 1938-
 The art of computer programming / Donald Ervin Knuth.
 xiv,764 p. 24 cm.
 Includes bibliographical references and index.
 Contents: v. 1. Fundamental algorithms. -- v. 2. Seminumerical
algorithms. -- v. 3. Sorting and searching. -- v. 4a. Combinatorial
algorithms, part 1.
 Contents: v. 2. Seminumerical algorithms. -- 3rd ed.
 ISBN 978-0-201-89683-1 (v. 1, 3rd ed.)
 ISBN 978-0-201-89684-8 (v. 2, 3rd ed.)
 ISBN 978-0-201-89685-5 (v. 3, 2nd ed.)
 ISBN 978-0-201-03804-0 (v. 4a)
 1. Electronic digital computers--Programming. 2. Computer
algorithms. I. Title.
QA76.6.K64 1997
005.1--DC21 97-2147

Internet page http://www-cs-
faculty.stanford.edu/~knuth/taocp.html contains current
information about this book and related books.

mailto:corpsales@pearsontechgroup.com
mailto:international@pearsoned.com
http://informit.com/aw
http://www-cs-faculty.stanford.edu/~knuth/taocp.html

Electronic version by Mathematical Sciences Publishers (MSP),
http://msp.org
Copyright © 1998 by Addison–Wesley
All rights reserved. Printed in the United States of America. This publication
is protected by copyright, and permission must be obtained from the
publisher prior to any prohibited reproduction, storage in a retrieval system,
or transmission in any form or by any means, electronic, mechanical,
photocopying, recording, or likewise. For information regarding
permissions, write to:
 Pearson Education, Inc.
 Rights and Contracts Department
 501 Boylston Street, Suite 900
 Boston, MA 02116 Fax: (617) 671-3447
ISBN-13 978-0-201-89684-8
ISBN-10 0-201-89684-2
First digital release, March 2014

http://msp.org/

Preface

O dear Ophelia!
I am ill at these numbers:

I have not art to reckon my groans.
— HAMLET (Act II, Scene 2, Line 120)

The algorithms discussed in this book deal directly with numbers; yet I
believe they are properly called seminumerical, because they lie on the
borderline between numeric and symbolic calculation. Each algorithm not
only computes the desired answers to a numerical problem, it also is
intended to blend well with the internal operations of a digital computer. In
many cases people are not able to appreciate the full beauty of such an
algorithm unless they also have some knowledge of a computer’s machine
language; the efficiency of the corresponding machine program is a vital
factor that cannot be divorced from the algorithm itself. The problem is to
find the best ways to make computers deal with numbers, and this involves
tactical as well as numerical considerations. Therefore the subject matter of
this book is unmistakably a part of computer science, as well as of numerical
mathematics.

Some people working in “higher levels” of numerical analysis will
regard the topics treated here as the domain of system programmers. Other
people working in “higher levels” of system programming will regard the
topics treated here as the domain of numerical analysts. But I hope that there
are a few people left who will want to look carefully at these basic methods.
Although the methods reside perhaps on a low level, they underlie all of the
more grandiose applications of computers to numerical problems, so it is
important to know them well. We are concerned here with the interface
between numerical mathematics and computer programming, and it is the
mating of both types of skills that makes the subject so interesting.

There is a noticeably higher percentage of mathematical material in this
book than in other volumes of this series, because of the nature of the
subjects treated. In most cases the necessary mathematical topics are
developed here starting almost from scratch (or from results proved in

Volume 1), but in several easily recognizable sections a knowledge of
calculus has been assumed.

This volume comprises Chapters 3 and 4 of the complete series. Chapter
3 is concerned with “random numbers”: It is not only a study of various ways
to generate random sequences, it also investigates statistical tests for
randomness, as well as the transformation of uniform random numbers into
other types of random quantities; the latter subject illustrates how random
numbers are used in practice. I have also included a section about the nature
of randomness itself. Chapter 4 is my attempt to tell the fascinating story of
what people have discovered about the processes of arithmetic, after
centuries of progress. It discusses various systems for representing numbers,
and how to convert between them; and it treats arithmetic on floating point
numbers, high-precision integers, rational fractions, polynomials, and power
series, including the questions of factoring and finding greatest common
divisors.

Each of Chapters 3 and 4 can be used as the basis of a one-semester
college course at the junior to graduate level. Although courses on “Random
Numbers” and on “Arithmetic” are not presently a part of many college
curricula, I believe the reader will find that the subject matter of these
chapters lends itself nicely to a unified treatment of material that has real
educational value. My own experience has been that these courses are a good
means of introducing elementary probability theory and number theory to
college students. Nearly all of the topics usually treated in such introductory
courses arise naturally in connection with applications, and the presence of
these applications can be an important motivation that helps the student to
learn and to appreciate the theory. Furthermore, each chapter gives a few
hints of more advanced topics that will whet the appetite of many students for
further mathematical study.

For the most part this book is self-contained, except for occasional
discussions relating to the MIX computer explained in Volume 1. Appendix B
contains a summary of the mathematical notations used, some of which are a
little different from those found in traditional mathematics books.

Preface to the Third Edition
When the second edition of this book was completed in 1980, it represented
the first major test case for prototype systems of electronic publishing called
TeX and METAFONT. I am now pleased to celebrate the full development of
those systems by returning to the book that inspired and shaped them. At last I
am able to have all volumes of The Art of Computer Programming in a
consistent format that will make them readily adaptable to future changes in
printing and display technology. The new setup has allowed me to make
many thousands of improvements that I have been wanting to incorporate for
a long time.

In this new edition I have gone over every word of the text, trying to
retain the youthful exuberance of my original sentences while perhaps adding
some more mature judgment. Dozens of new exercises have been added;
dozens of old exercises have been given new and improved answers.
Changes appear everywhere, but most significantly in Sections 3.5 (about
theoretical guarantees of randomness), 3.6 (about portable random-number
generators), 4.5.2 (about the binary gcd algorithm), and 4.7 (about
composition and iteration of power series).

 The Art of Computer Programming is, however, still a work in

progress. Research on seminumerical algorithms continues to grow at a
phenomenal rate. Therefore some parts of this book are headed by an “under
construction” icon, to apologize for the fact that the material is not up-to-
date. My files are bursting with important material that I plan to include in
the final, glorious, fourth edition of Volume 2, perhaps 16 years from now;
but I must finish Volumes 4 and 5 first, and I do not want to delay their
publication any more than absolutely necessary.

I am enormously grateful to the many hundreds of people who have
helped me to gather and refine this material during the past 35 years. Most of
the hard work of preparing the new edition was accomplished by Silvio
Levy, who expertly edited the electronic text, and by Jeffrey Oldham, who
converted nearly all of the original illustrations to METAPOST format. I have
corrected every error that alert readers detected in the second edition (as
well as some mistakes that, alas, nobody noticed); and I have tried to avoid
introducing new errors in the new material. However, I suppose some
defects still remain, and I want to fix them as soon as possible. Therefore I

will cheerfully award $2.56 to the first finder of each technical,
typographical, or historical error. The webpage cited on page iv contains a
current listing of all corrections that have been reported to me.
Stanford, California
July 1997

D. E. K.

When a book has been eight years in the making, there are too many
colleagues, typists, students, teachers, and friends to thank.

Besides, I have no intention of giving such people the usual exoneration
from responsibility for errors which remain.

They should have corrected me! And sometimes they are even responsible
for ideas which may turn out in the long run to be wrong.

Anyway, to such fellow explorers, my thanks.
— EDWARD F. CAMPBELL, JR. (1975)

‘Defendit numerus,’ [there is safety in numbers] is the maxim of the foolish;
‘Deperdit numerus,’ [there is ruin in numbers] of the wise.

— C. C. COLTON (1820)

Notes on the Exercises

The exercises in this set of books have been designed for self-study as well
as for classroom study. It is difficult, if not impossible, for anyone to learn a
subject purely by reading about it, without applying the information to
specific problems and thereby being encouraged to think about what has been
read. Furthermore, we all learn best the things that we have discovered for
ourselves. Therefore the exercises form a major part of this work; a definite
attempt has been made to keep them as informative as possible and to select
problems that are enjoyable as well as instructive.

In many books, easy exercises are found mixed randomly among
extremely difficult ones. A motley mixture is, however, often unfortunate
because readers like to know in advance how long a problem ought to take—
otherwise they may just skip over all the problems. A classic example of
such a situation is the book Dynamic Programming by Richard Bellman; this
is an important, pioneering work in which a group of problems is collected
together at the end of some chapters under the heading “Exercises and
Research Problems,” with extremely trivial questions appearing in the midst
of deep, unsolved problems. It is rumored that someone once asked Dr.
Bellman how to tell the exercises apart from the research problems, and he
replied, “If you can solve it, it is an exercise; otherwise it’s a research
problem.”

Good arguments can be made for including both research problems and
very easy exercises in a book of this kind; therefore, to save the reader from
the possible dilemma of determining which are which, rating numbers have
been provided to indicate the level of difficulty. These numbers have the
following general significance:

By interpolation in this “logarithmic” scale, the significance of other
rating numbers becomes clear. For example, a rating of 17 would indicate an
exercise that is a bit simpler than average. Problems with a rating of 50 that
are subsequently solved by some reader may appear with a 40 rating in later
editions of the book, and in the errata posted on the Internet (see page iv).

The remainder of the rating number divided by 5 indicates the amount of
detailed work required. Thus, an exercise rated 24 may take longer to solve
than an exercise that is rated 25, but the latter will require more creativity.
All exercises with ratings of 46 or more are open problems for future
research, rated according to the number of different attacks that they’ve
resisted so far.

The author has tried earnestly to assign accurate rating numbers, but it is
difficult for the person who makes up a problem to know just how
formidable it will be for someone else to find a solution; and everyone has

more aptitude for certain types of problems than for others. It is hoped that
the rating numbers represent a good guess at the level of difficulty, but they
should be taken as general guidelines, not as absolute indicators.

This book has been written for readers with varying degrees of
mathematical training and sophistication; as a result, some of the exercises
are intended only for the use of more mathematically inclined readers. The
rating is preceded by an M if the exercise involves mathematical concepts or
motivation to a greater extent than necessary for someone who is primarily
interested only in programming the algorithms themselves. An exercise is
marked with the letters “HM” if its solution necessarily involves a
knowledge of calculus or other higher mathematics not developed in this
book. An “HM” designation does not necessarily imply difficulty.

Some exercises are preceded by an arrowhead, “▸”; this designates
problems that are especially instructive and especially recommended. Of
course, no reader/student is expected to work all of the exercises, so those
that seem to be the most valuable have been singled out. (This distinction is
not meant to detract from the other exercises!) Each reader should at least
make an attempt to solve all of the problems whose rating is 10 or less; and
the arrows may help to indicate which of the problems with a higher rating
should be given priority.

Solutions to most of the exercises appear in the answer section. Please
use them wisely; do not turn to the answer until you have made a genuine
effort to solve the problem by yourself, or unless you absolutely do not have
time to work this particular problem. After getting your own solution or
giving the problem a decent try, you may find the answer instructive and
helpful. The solution given will often be quite short, and it will sketch the
details under the assumption that you have earnestly tried to solve it by your
own means first. Sometimes the solution gives less information than was
asked; often it gives more. It is quite possible that you may have a better
answer than the one published here, or you may have found an error in the
published solution; in such a case, the author will be pleased to know the
details. Later printings of this book will give the improved solutions together
with the solver’s name where appropriate.

When working an exercise you may generally use the answers to
previous exercises, unless specifically forbidden from doing so. The rating
numbers have been assigned with this in mind; thus it is possible for exercise

n + 1 to have a lower rating than exercise n, even though it includes the result
of exercise n as a special case.

Exercises

 1. [00] What does the rating “M20” mean?
2. [10] Of what value can the exercises in a textbook be to the reader?
3. [M34] Leonhard Euler conjectured in 1772 that the equation w4 + x4 +

y4 = z4 has no solution in positive integers, but Noam Elkies proved in 1987
that infinitely many solutions exist [see Math. Comp. 51 (1988), 825–835].
Find all integer solutions such that 0 ≤ w ≤ x ≤ y < z < 106.

4. [M50] Prove that when n is an integer, n > 4, the equation wn + xn + yn

= zn has no solution in positive integers w, x, y, z.

Exercise is the beste instrument in learnyng.
— ROBERT RECORDE, The Whetstone of Witte (1557)

Contents

Chapter 3 — Random Numbers
3.1. Introduction
3.2. Generating Uniform Random Numbers

3.2.1. The Linear Congruential Method
3.2.1.1. Choice of modulus
3.2.1.2. Choice of multiplier
3.2.1.3. Potency

3.2.2. Other Methods
3.3. Statistical Tests

3.3.1. General Test Procedures for Studying Random Data
3.3.2. Empirical Tests
*3.3.3. Theoretical Tests
3.3.4. The Spectral Test

3.4. Other Types of Random Quantities
3.4.1. Numerical Distributions
3.4.2. Random Sampling and Shuffling

*3.5. What Is a Random Sequence?
3.6. Summary

Chapter 4 — Arithmetic
4.1. Positional Number Systems
4.2. Floating Point Arithmetic

4.2.1. Single-Precision Calculations
4.2.2. Accuracy of Floating Point Arithmetic
*4.2.3. Double-Precision Calculations
4.2.4. Distribution of Floating Point Numbers

4.3. Multiple-Precision Arithmetic
4.3.1. The Classical Algorithms

*4.3.2. Modular Arithmetic
*4.3.3. How Fast Can We Multiply?

4.4. Radix Conversion
4.5. Rational Arithmetic

4.5.1. Fractions
4.5.2. The Greatest Common Divisor
*4.5.3. Analysis of Euclid’s Algorithm
4.5.4. Factoring into Primes

4.6. Polynomial Arithmetic
4.6.1. Division of Polynomials
*4.6.2. Factorization of Polynomials
4.6.3. Evaluation of Powers
4.6.4. Evaluation of Polynomials

*4.7. Manipulation of Power Series

Answers to Exercises

Appendix A — Tables of Numerical Quantities
1. Fundamental Constants (decimal)
2. Fundamental Constants (octal)
3. Harmonic Numbers, Bernoulli Numbers, Fibonacci Numbers

Appendix B — Index to Notations

Appendix C — Index to Algorithms and Theorems

Index and Glossary

Chapter Three. Random Numbers

Any one who considers arithmetical methods of producing
random digits is, of course, in a state of sin.

— JOHN VON NEUMANN (1951)

Lest men suspect your tale untrue, Keep probability in view.
— JOHN GAY (1727)

There wanted not some beams of light to guide men in the
exercise of their Stocastick faculty.

— JOHN OWEN (1662)

3.1. Introduction
Numbers that are “chosen at random” are useful in many different kinds of
applications. For example:

a) Simulation. When a computer is being used to simulate natural
phenomena, random numbers are required to make things realistic.
Simulation covers many fields, from the study of nuclear physics
(where particles are subject to random collisions) to operations
research (where people come into, say, an airport at random intervals).

b) Sampling. It is often impractical to examine all possible cases, but a
random sample will provide insight into what constitutes “typical”
behavior.

c) Numerical analysis. Ingenious techniques for solving complicated
numerical problems have been devised using random numbers. Several
books have been written on this subject.

d) Computer programming. Random values make a good source of data
for testing the effectiveness of computer algorithms. More importantly,
they are crucial to the operation of randomized algorithms, which are
often far superior to their deterministic counterparts. This use of
random numbers is the primary application of interest to us in this

series of books; it accounts for the fact that random numbers are
already being considered here in Chapter 3, before most of the other
computer algorithms have appeared.

e) Decision making. There are reports that many executives make their
decisions by flipping a coin or by throwing darts, etc. It is also
rumored that some college professors prepare their grades on such a
basis. Sometimes it is important to make a completely “unbiased”
decision. Randomness is also an essential part of optimal strategies in
the theory of matrix games.

f) Cryptography. A source of unbiased bits is crucial for many types of
secure communications, when data needs to be concealed.

g) Aesthetics. A little bit of randomness makes computer-generated
graphics and music seem more lively. For example, a pattern like

in certain contexts. [See D. E. Knuth, Bull. Amer. Math. Soc. 1 (1979), 369.]
h) Recreation. Rolling dice, shuffling decks of cards, spinning roulette

wheels, etc., are fascinating pastimes for just about everybody. These
traditional uses of random numbers have suggested the name “Monte
Carlo method,” a general term used to describe any algorithm that
employs random numbers.

People who think about this topic almost invariably get into
philosophical discussions about what the word “random” means. In a sense,
there is no such thing as a random number; for example, is 2 a random
number? Rather, we speak of a sequence of independent random numbers
with a specified distribution, and this means loosely that each number was
obtained merely by chance, having nothing to do with other numbers of the
sequence, and that each number has a specified probability of falling in any
given range of values.

A uniform distribution on a finite set of numbers is one in which each
possible number is equally probable. A distribution is generally understood
to be uniform unless some other distribution is specifically mentioned.

Each of the ten digits 0 through 9 will occur about of the time in a
(uniform) sequence of random digits. Each pair of two successive digits

should occur about of the time, and so on. Yet if we take a truly random
sequence of a million digits, it will not always have exactly 100,000 zeros,
100,000 ones, etc. In fact, chances of this are quite slim; a sequence of such
sequences will have this character on the average.

Any specified sequence of a million digits is as probable as any other.
Thus, if we are choosing a million digits at random and if the first 999,999 of
them happen to come out to be zero, the chance that the final digit is zero is
still exactly , in a truly random situation. These statements seem
paradoxical to many people, yet no contradiction is really involved.

There are several ways to formulate decent abstract definitions of
randomness, and we will return to this interesting subject in Section 3.5; but
for the moment, let us content ourselves with an intuitive understanding of the
concept.

Many years ago, people who needed random numbers in their scientific
work would draw balls out of a “well-stirred urn,” or they would roll dice
or deal out cards. A table of over 40,000 random digits, “taken at random
from census reports,” was published in 1927 by L. H. C. Tippett. Since then,
a number of devices have been built to generate random numbers
mechanically. The first such machine was used in 1939 by M. G. Kendall and
B. Babington-Smith to produce a table of 100,000 random digits. The
Ferranti Mark I computer, first installed in 1951, had a built-in instruction
that put 20 random bits into the accumulator using a resistance noise
generator; this feature had been recommended by A. M. Turing. In 1955, the
RAND Corporation published a widely used table of a million random digits
obtained with the help of another special device. A famous random-number
machine called ERNIE has been used for many years to pick the winning
numbers in the British Premium Savings Bonds lottery. [F. N. David
describes the early history in Games, Gods, and Gambling (1962). See also
Kendall and Babington-Smith, J. Royal Stat. Soc. A101 (1938), 147–166;
B6 (1939), 51–61; S. H. Lavington’s discussion of the Mark I in CACM 21
(1978), 4–12; the review of the RAND table in Math. Comp. 10 (1956), 39–
43; and the discussion of ERNIE by W. E. Thomson, J. Royal Stat. Soc.
A122 (1959), 301–333.]

Shortly after computers were introduced, people began to search for
efficient ways to obtain random numbers within computer programs. A table
could be used, but this method is of limited utility because of the memory

space and input time requirement, because the table may be too short, and
because it is a bit of a nuisance to prepare and maintain the table. A machine
such as ERNIE might be attached to the computer, as in the Ferranti Mark I,
but this has proved to be unsatisfactory since it is impossible to reproduce
calculations exactly a second time when checking out a program; moreover,
such machines have tended to suffer from malfunctions that are extremely
difficult to detect. Advances in technology made tables useful again during
the 1990s, because a billion well-tested random bytes could easily be made
accessible. George Marsaglia helped resuscitate random tables in 1995 by
preparing a demonstration disk that contained 650 random megabytes,
generated by combining the output of a noise-diode circuit with
deterministically scrambled rap music. (He called it “white and black
noise.”)

The inadequacy of mechanical methods in the early days led to an
interest in the production of random numbers using a computer’s ordinary
arithmetic operations. John von Neumann first suggested this approach in
about 1946; his idea was to take the square of the previous random number
and to extract the middle digits. For example, if we are generating 10-digit
numbers and the previous value was 5772156649, we square it to get

the next number is therefore 7923805949.
There is a fairly obvious objection to this technique: How can a

sequence generated in such a way be random, since each number is
completely determined by its predecessor? (See von Neumann’s comment at
the beginning of this chapter.) The answer is that the sequence isn’t random,
but it appears to be. In typical applications the actual relationship between
one number and its successor has no physical significance; hence the
nonrandom character is not really undesirable. Intuitively, the middle square
seems to be a fairly good scrambling of the previous number.

Sequences generated in a deterministic way such as this are often called
pseudorandom or quasirandom sequences in the highbrow technical
literature, but in most places of this book we shall simply call them random
sequences, with the understanding that they only appear to be random. Being
“apparently random” is perhaps all that can be said about any random
sequence anyway. Random numbers generated deterministically on
computers have worked quite well in nearly every application, provided that

a suitable method has been carefully selected. Of course, deterministic
sequences aren’t always the answer; they certainly shouldn’t replace ERNIE
for the lotteries.

Von Neumann’s original “middle-square method” has actually proved to
be a comparatively poor source of random numbers. The danger is that the
sequence tends to get into a rut, a short cycle of repeating elements. For
example, if zero ever appears as a number of the sequence, it will continually
perpetuate itself.

Several people experimented with the middle-square method in the early
1950s. Working with numbers that have four digits instead of ten, G. E.
Forsythe tried 16 different starting values and found that 12 of them led to
sequences ending with the cycle 6100, 2100, 4100, 8100, 6100, . . . , while
two of them degenerated to zero. More extensive tests were carried out by N.
Metropolis, mostly in the binary number system. He showed that when 20-bit
numbers are being used, there are 13 different cycles into which the middle-
square sequence might degenerate, the longest of which has a period of length
142.

It is fairly easy to restart the middle-square method on a new value when
zero has been detected, but long cycles are somewhat harder to avoid.
Exercises 6 and 7 discuss some interesting ways to determine the cycles of
periodic sequences, using very little memory space.

A theoretical disadvantage of the middle-square method is given in
exercises 9 and 10. On the other hand, working with 38-bit numbers,
Metropolis obtained a sequence of about 750,000 numbers before
degeneracy occurred, and the resulting 750,000 × 38 bits satisfactorily
passed statistical tests for randomness. [Symp. on Monte Carlo Methods
(Wiley, 1956), 29–36.] This experience showed that the middle-square
method can give usable results, but it is rather dangerous to put much faith in
it until after elaborate computations have been performed.

Many random number generators in use when this chapter was first
written were not very good. People have traditionally tended to avoid
learning about such subroutines; old methods that were comparatively
unsatisfactory have been passed down blindly from one programmer to
another, until the users have no understanding of the original limitations. We
shall see in this chapter that the most important facts about random number

generators are not difficult to learn, although prudence is necessary to avoid
common pitfalls.

It is not easy to invent a foolproof source of random numbers. This fact
was convincingly impressed upon the author in 1959, when he attempted to
create a fantastically good generator using the following peculiar approach:
Algorithm K (“Super-random” number generator). Given a 10-digit
decimal number X, this algorithm may be used to change X to the number that
should come next in a supposedly random sequence. Although the algorithm
might be expected to yield quite a random sequence, reasons given below
show that it is not, in fact, very good at all. (The reader need not study this
algorithm in great detail except to observe how complicated it is; note, in
particular, steps K1 and K2.)

K1. [Choose number of iterations.] Set Y ← ⌊X/109⌋, the most significant
digit of X. (We will execute steps K2 through K13 exactly Y + 1 times;
that is, we will apply randomizing transformations a random number of
times.)

K2. [Choose random step.] Set Z ← ⌊X/108⌋ mod 10, the second most
significant digit of X. Go to step K(3 + Z). (That is, we now jump to a
random step in the program.)

K3. [Ensure ≥ 5 × 109.] If X < 5000000000, set X ← X + 5000000000.
K4. [Middle square.] Replace X by ⌊X2/105⌋ mod 1010, that is, by the

middle of the square of X.
K5. [Multiply.] Replace X by (1001001001 X) mod 1010.
K6. [Pseudo-complement.] If X < 100000000, then set X ← X +

9814055677; otherwise set X ← 1010 – X.
K7. [Interchange halves.] Interchange the low-order five digits of X with

the high-order five digits; that is, set X ← 105(X mod 105) + ⌊X/105⌋,
the middle 10 digits of (1010 + 1)X.

K8. [Multiply.] Same as step K5.
K9. [Decrease digits.] Decrease each nonzero digit of the decimal

representation of X by one.
K10. [99999 modify.] If X < 105, set X ← X2 + 99999; otherwise set X ← X

– 99999.

K11. [Normalize.] (At this point X cannot be zero.) If X < 109, set X ← 10X
and repeat this step.

K12. [Modified middle square.] Replace X by ⌊X(X − 1)/105⌋ mod 1010, that
is, by the middle 10 digits of X(X − 1).

K13. [Repeat?] If Y > 0, decrease Y by 1 and return to step K2. If Y = 0, the
algorithm terminates with X as the desired “random” value.

(The machine-language program corresponding to this algorithm was
intended to be so complicated that a person reading a listing of it without
explanatory comments wouldn’t know what the program was doing.)

Considering all the contortions of Algorithm K, doesn’t it seem plausible
that it should produce almost an infinite supply of unbelievably random
numbers? No! In fact, when this algorithm was first put onto a computer, it
almost immediately converged to the 10-digit value 6065038420, which—by
extraordinary coincidence—is transformed into itself by the algorithm (see
Table 1). With another starting number, the sequence began to repeat after
7401 values, in a cyclic period of length 3178.

Table 1 A Colossal Coincidence: The Number 6065038420 is
Transformed Into Itself by Algorithm K.

The moral of this story is that random numbers should not be generated
with a method chosen at random. Some theory should be used.

In the following sections we shall consider random number generators
that are superior to the middle-square method and to Algorithm K. The
corresponding sequences are guaranteed to have certain desirable random
properties, and no degeneracy will occur. We shall explore the reasons for
this random-like behavior in some detail, and we shall also consider
techniques for manipulating random numbers. For example, one of our
investigations will be the shuffling of a simulated deck of cards within a
computer program.

Section 3.6 summarizes this chapter and lists several bibliographic
sources.

Exercises

 1. [20] Suppose that you wish to obtain a decimal digit at random, not
using a computer. Which of the following methods would be suitable?

a) Open a telephone directory to a random place by sticking your finger
in it somewhere, and use the units digit of the first number found on the
selected page.

b) Same as (a), but use the units digit of the page number.
c) Roll a die that is in the shape of a regular icosahedron, whose twenty

faces have been labeled with the digits 0, 0, 1, 1, . . . , 9, 9. Use the
digit that appears on top, when the die comes to rest. (A felt-covered
table with a hard surface is recommended for rolling dice.)

d) Expose a geiger counter to a source of radioactivity for one minute
(shielding yourself) and use the units digit of the resulting count.
Assume that the geiger counter displays the number of counts in
decimal notation, and that the count is initially zero.

e) Glance at your wristwatch; and if the position of the second-hand is
between 6n and 6(n + 1) seconds, choose the digit n.

f) Ask a friend to think of a random digit, and use the digit he names.
g) Ask an enemy to think of a random digit, and use the digit he names.
h) Assume that 10 horses are entered in a race and that you know nothing

whatever about their qualifications. Assign to these horses the digits 0
to 9, in arbitrary fashion, and after the race use the winner’s digit.

2. [M22] In a random sequence of a million decimal digits, what is the
probability that there are exactly 100,000 of each possible digit?

3. [10] What number follows 1010101010 in the middle-square method?
4. [20] (a) Why can’t the value of X be zero when step K11 of Algorithm

K is performed? What would be wrong with the algorithm if X could be
zero? (b) Use Table 1 to deduce what happens when Algorithm K is applied
repeatedly with the starting value X = 3830951656.

5. [15] Explain why, in any case, Algorithm K should not be expected to
provide infinitely many random numbers, in the sense that (even if the
coincidence given in Table 1 had not occurred) one knows in advance that
any sequence generated by Algorithm K will eventually be periodic.

 6. [M21] Suppose that we want to generate a sequence of integers X0, X1,
X2, . . . , in the range 0 ≤ Xn < m. Let f(x) be any function such that 0 ≤ x < m
implies 0 ≤ f(x) < m. Consider a sequence formed by the rule Xn+1 = f(Xn).
(Examples are the middle-square method and Algorithm K.)

a) Show that the sequence is ultimately periodic, in the sense that there
exist numbers λ and μ for which the values

are distinct, but Xn+λ = Xn when n ≥ μ. Find the maximum and minimum
possible values of μ and λ.

b) (R. W. Floyd.) Show that there exists an n > 0 such that Xn = X2n; and
the smallest such value of n lies in the range μ ≤ n ≤ μ + λ. Furthermore
the value of Xn is unique in the sense that if Xn = X2n and Xr = X2r, then
Xr = Xn.

c) Use the idea of part (b) to design an algorithm that calculates μ and λ
for any given function f and any given X0, using only O(μ + λ) steps and
only a bounded number of memory locations.

 7. [M21] (R. P. Brent, 1977.) Let ℓ(n) be the greatest power of 2 that is
less than or equal to n; thus, for example, ℓ(15) = 8 and ℓ(ℓ(n)) = ℓ(n).

a) Show that, in terms of the notation in exercise 6, there exists an n > 0
such that Xn = Xℓ(n)–1. Find a formula that expresses the least such n in
terms of the periodicity numbers μ and λ.

b) Apply this result to design an algorithm that can be used in conjunction
with any random number generator of the type Xn+1 = f(Xn), to prevent
it from cycling indefinitely. Your algorithm should calculate the period
length λ, and it should use only a small amount of memory space—you
must not simply store all of the computed sequence values!

8. [23] Make a complete examination of the middle-square method in the
case of two-digit decimal numbers.

a) We might start the process out with any of the 100 possible values 00,
01, . . . , 99. How many of these values lead ultimately to the repeating
cycle 00, 00, . . . ? [Example: Starting with 43, we obtain the sequence
43, 84, 05, 02, 00, 00, 00,]

b) How many possible final cycles are there? How long is the longest
cycle?

c) What starting value or values will give the largest number of distinct
elements before the sequence repeats?

9. [M14] Prove that the middle-square method using 2n-digit numbers to
the base b has the following disadvantage: If the sequence includes any
number whose most significant n digits are zero, the succeeding numbers
will get smaller and smaller until zero occurs repeatedly.

10. [M16] Under the assumptions of the preceding exercise, what can you
say about the sequence of numbers following X if the least significant n
digits of X are zero? What if the least significant n + 1 digits are zero?

 11. [M26] Consider sequences of random number generators having the
form described in exercise 6. If we choose f(x) and X0 at random—in other
words, if we assume that each of the mm possible functions f(x) is equally
probable and that each of the m possible values of X0 is equally probable
—what is the probability that the sequence will eventually degenerate into
a cycle of length λ = 1? [Note: The assumptions of this problem give a
natural way to think of a “random” random number generator of this type. A
method such as Algorithm K may be expected to behave somewhat like the
generator considered here; the answer to this problem gives a measure of
how colossal the coincidence of Table 1 really is.]

 12. [M31] Under the assumptions of the preceding exercise, what is the
average length of the final cycle? What is the average length of the
sequence before it begins to cycle? (In the notation of exercise 6, we wish
to examine the average values of λ and of μ + λ.)
13. [M42] If f(x) is chosen at random in the sense of exercise 11, what is
the average length of the longest cycle obtainable by varying the starting
value X0? [Note: We have already considered the analogous problem in the
case that f(x) is a random permutation; see exercise 1.3.3–23.]
14. [M38] If f(x) is chosen at random in the sense of exercise 11, what is
the average number of distinct final cycles obtainable by varying the
starting value? [See exercise 8(b).]
15. [M15] If f(x) is chosen at random in the sense of exercise 11, what is
the probability that none of the final cycles has length 1, regardless of the

choice of X0?
16. [15] A sequence generated as in exercise 6 must begin to repeat after at
most m values have been generated. Suppose we generalize the method so
that Xn+1 depends on Xn−1 as well as on Xn; formally, let f(x, y) be a
function such that 0 ≤ x, y < m implies 0 ≤ f(x, y) < m. The sequence is
constructed by selecting X0 and X1 arbitrarily, and then letting

What is the maximum period conceivably attainable in this case?
17. [10] Generalize the situation in the previous exercise so that Xn+1
depends on the preceding k values of the sequence.
18. [M20] Invent a method analogous to that of exercise 7 for finding
cycles in the general form of random number generator discussed in
exercise 17.
19. [HM47] Solve the problems of exercises 11 through 15 asymptotically
for the more general case that Xn+1 depends on the preceding k values of

the sequence; each of the mmk functions f(x1, . . . , xk) is to be considered
equally probable. [Note: The number of functions that yield the maximum
period is analyzed in exercise 2.3.4.2–23.]
20. [30] Find all nonnegative X < 1010 that lead ultimately via Algorithm K
to the self-reproducing number in Table 1.
21. [40] Prove or disprove: The mapping X ↦ f(X) defined by Algorithm K
has exactly five cycles, of lengths 3178, 1606, 1024, 943, and 1.
22. [21] (H. Rolletschek.) Would it be a good idea to generate random
numbers by using the sequence f(0), f(1), f(2), . . . , where f is a random
function, instead of using x0, f(x0), f(f(x0)), etc.?

 23. [M26] (D. Foata and A. Fuchs, 1970.) Show that each of the mm

functions f(x) considered in exercise 6 can be represented as a sequence
(x0, x1, . . . , xm−1) having the following properties:
i) (x0, x1, . . . , xm−1) is a permutation of (f(0), f(1), . . . , f(m − 1)).
ii) (f(0), . . . , f(m − 1)) can be uniquely reconstructed from (x0, x1, . . . ,

xm−1).

iii) The elements that appear in cycles of f are {x0, x1, . . . , xk−1}, where k
is the largest subscript such that these k elements are distinct.

iv) xj ∉ {x0, x1, . . . , xj−1} implies xj−1 = f(xj), unless xj is the smallest
element in a cycle of f.

v) (f(0), f(1), . . . , f(m − 1)) is a permutation of (0, 1, . . . , m − 1) if and
only if (x0, x1, . . . , xm−1) represents the inverse of that permutation by
the “unusual correspondence” of Section 1.3.3.

vi) x0 = x1 if and only if (x1, . . . , xm−1) represents an oriented tree by the
construction of exercise 2.3.4.4–18, with f(x) the parent of x.

3.2. Generating Uniform Random Numbers
In this section we shall consider methods for generating a sequence of
random fractions—random real numbers Un, uniformly distributed between
zero and one. Since a computer can represent a real number with only finite
accuracy, we shall actually be generating integers Xn between zero and some
number m; the fraction

will then lie between zero and one. Usually m is the word size of the
computer, so Xn may be regarded (conservatively) as the integer contents of a
computer word with the radix point assumed at the extreme right, and Un may
be regarded (liberally) as the contents of the same word with the radix point
assumed at the extreme left.

3.2.1. The Linear Congruential Method
By far the most popular random number generators in use today are special
cases of the following scheme, introduced by D. H. Lehmer in 1949. [See
Proc. 2nd Symp. on Large-Scale Digital Calculating Machinery
(Cambridge, Mass.: Harvard University Press, 1951), 141–146.] We choose
four magic integers:

The desired sequence of random numbers 〈Xn〉 is then obtained by setting

This is called a linear congruential sequence. Taking the remainder mod m
is somewhat like determining where a ball will land in a spinning roulette
wheel.

For example, the sequence obtained when m = 10 and X0 = a = c = 7 is

As this example shows, the sequence is not always “random” for all choices
of m, a, c, and X0; the principles of choosing the magic numbers
appropriately will be investigated carefully in later parts of this chapter.

Example (3) illustrates the fact that the congruential sequences always
get into a loop: There is ultimately a cycle of numbers that is repeated
endlessly. This property is common to all sequences having the general form
Xn+1 = f(Xn), when f transforms a finite set into itself; see exercise 3.1–6.
The repeating cycle is called the period; sequence (3) has a period of length
4. A useful sequence will of course have a relatively long period.

The special case c = 0 deserves explicit mention, since the number
generation process is a little faster when c = 0 than it is when c ≠ 0. We shall
see later that the restriction c = 0 cuts down the length of the period of the
sequence, but it is still possible to make the period reasonably long.
Lehmer’s original generation method had c = 0, although he mentioned c ≠ 0
as a possibility; the fact that c ≠ 0 can lead to longer periods is due to
Thomson [Comp. J. 1 (1958), 83, 86] and, independently, to Rotenberg
[JACM 7 (1960), 75–77]. The terms multiplicative congruential method and
mixed congruential method are used by many authors to denote linear
congruential sequences with c = 0 and c ≠ 0, respectively.

The letters m, a, c, and X0 will be used throughout this chapter in the
sense described above. Furthermore, we will find it useful to define

in order to simplify many of our formulas.
We can immediately reject the case a = 1, for this would mean that Xn =

(X0 + nc) mod m, and the sequence would certainly not behave as a random

sequence. The case a = 0 is even worse. Hence for practical purposes we
may assume that

Now we can prove a generalization of Eq. (2),

which expresses the (n+k)th term directly in terms of the nth term. (The
special case n = 0 in this equation is worthy of note.) It follows that the
subsequence consisting of every kth term of 〈Xn〉 is another linear
congruential sequence, having the multiplier ak mod m and the increment ((ak

− 1)c/b) mod m.
An important corollary of (6) is that the general sequence defined by m,

a, c, and X0 can be expressed very simply in terms of the special case where
c = 1 and X0 = 0. Let

According to Eq. (6) we will have Yk ≡ (ak − 1)/b (modulo m), hence the
general sequence defined in (2) satisfies

Exercises

1. [10] Example (3) shows a situation in which X4 = X0, so the sequence
begins again from the beginning. Give an example of a linear congruential
sequence with m = 10 for which X0 never appears again in the sequence.

 2. [M20] Show that if a and m are relatively prime, the number X0 will
always appear in the period.

3. [M10] If a and m are not relatively prime, explain why the sequence
will be somewhat handicapped and probably not very random; hence we
will generally want the multiplier a to be relatively prime to the modulus m.

4. [11] Prove Eq. (6).
5. [M20] Equation (6) holds for k ≥ 0. If possible, give a formula that

expresses Xn+k in terms of Xn for negative values of k.

3.2.1.1. Choice of modulus
Our current goal is to find good values for the parameters that define a linear
congruential sequence. Let us first consider the proper choice of the number
m. We want m to be rather large, since the period cannot have more than m
elements. (Even if we intend to generate only random zeros and ones, we
should not take m = 2, for then the sequence would at best have the form . . . ,
0, 1, 0, 1, 0, 1, . . . ! Methods for getting random zeros and ones from linear
congruential sequences are discussed in Section 3.4.)

Another factor that influences our choice of m is speed of generation: We
want to pick a value so that the computation of (aXn + c) mod m is fast.

Consider MIX as an example. We can compute y mod m by putting y in
registers A and X and dividing by m; assuming that y and m are positive, we
see that y mod m will then appear in register X. But division is a
comparatively slow operation, and it can be avoided if we take m to be a
value that is especially convenient, such as the word size of our computer.

Let w be the computer’s word size, namely 2e on an e-bit binary
computer or 10e on an e-digit decimal machine. (In this book we shall often
use the letter e to denote an arbitrary integer exponent, instead of the base of
natural logarithms, hoping that the context will make our notation
unambiguous. Physicists have a similar problem when they use e for the
charge on an electron.) The result of an addition operation is usually given
modulo w, except on ones’-complement machines; and multiplication mod w
is also quite simple, since the desired result is the lower half of the product.
Thus, the following program computes the quantity (aX + c) mod w
efficiently:

The result appears in register A. The overflow toggle might be on at the
conclusion of these instructions; if that is undesirable, the code should be
followed by, say, ‘JOV *+1’ to turn it off.

A clever technique that is less commonly known can be used to perform
computations modulo w + 1. For reasons to be explained later, we will

generally want c = 0 when m = w + 1, so we merely need to compute (aX)
mod (w + 1). The following program does this:

Register A now contains the value (aX) mod (w + 1). Of course, this value
might lie anywhere between 0 and w, inclusive, so the reader may
legitimately wonder how we can represent so many values in the A-register!
(The register obviously cannot hold a number larger than w − 1.) The answer
is that the result equals w if and only if program (2) turns overflow on,
assuming that overflow was initially off. We could represent w by 0, since
(2) will not normally be used when X = 0; but it is most convenient simply to
reject the value w if it appears in the congruential sequence modulo w + 1.
Then we can also avoid overflow, simply by changing lines 05 and 06 of (2)
to ‘JANN *+4; INCA 2; JAP *-5’.

To prove that code (2) actually does determine (aX) mod (w + 1), note
that in line 04 we are subtracting the lower half of the product from the upper
half. No overflow can occur at this step; and if aX = qw + r, with 0 ≤ r < w,
we will have the quantity r – q in register A after line 04. Now

and we have –w < r – q < w since q < w; hence (aX) mod (w + 1) equals
either r – q or r – q + (w + 1), depending on whether r – q ≥ 0 or r – q < 0.

A similar technique can be used to get the product of two numbers
modulo (w − 1); see exercise 8.

In later sections we shall require a knowledge of the prime factors of m
in order to choose the multiplier a correctly. Table 1 lists the complete
factorization of w ± 1 into primes for nearly every known computer word
size; the methods of Section 4.5.4 can be used to extend this table if desired.

The reader may well ask why we bother to consider using m = w ± 1,
when the choice m = w is so manifestly convenient. The reason is that when
m = w, the right-hand digits of Xn are much less random than the left-hand
digits. If d is a divisor of m, and if

we can easily show that

(For Xn+1 = aXn + c – qm for some integer q, and taking both sides mod d
causes the quantity qm to drop out when d is a factor of m.)

To illustrate the significance of Eq. (4), let us suppose, for example, that
we have a binary computer. If m = w = 2e, the low-order four bits of Xn are
the numbers Yn = Xn mod 24. The gist of Eq. (4) is that the low-order four
bits of 〈Xn〉 form a congruential sequence that has a period of length 16 or
less. Similarly, the low-order five bits are periodic with a period of at most
32; and the least significant bit of Xn is either constant or strictly alternating.

This situation does not occur when m = w ± 1; in such a case, the low-
order bits of Xn will behave just as randomly as the high-order bits do. If, for
example, w = 235 and m = 235 –1, the numbers of the sequence will not be
very random if we consider only their remainders mod 31, 71, 127, or
122921 (see Table 1); but the low-order bit, which represents the numbers of
the sequence taken mod 2, should be satisfactorily random.

Table 1 Prime Factorizations of w ± 1
Another alternative is to let m be the largest prime number less than w.

This prime may be found by using the techniques of Section 4.5.4, and a table
of suitably large primes appears in that section.

In most applications, the low-order bits are insignificant, and the choice
m = w is quite satisfactory—provided that the programmer using the random
numbers does so wisely.

Our discussion so far has been based on a “signed magnitude” computer
like MIX. Similar ideas apply to machines that use complement notations,
although there are some instructive variations. For example, a DECsystem 20
computer has 36 bits with two’s complement arithmetic; when it computes
the product of two nonnegative integers, the lower half contains the least
significant 35 bits with a plus sign. On this machine we should therefore take
w = 235, not 236. The 32-bit two’s complement arithmetic on IBM System/370
computers is different: The lower half of a product contains a full 32 bits.
Some programmers have felt that this is a disadvantage, since the lower half
can be negative when the operands are positive, and it is a nuisance to
correct this; but actually it is a distinct advantage from the standpoint of
random number generation, since we can take m = 232 instead of 231 (see
exercise 4).

Exercises

1. [M12] In exercise 3.2.1–3 we concluded that the best congruential
generators will have the multiplier a relatively prime to m. Show that when
m = w in this case it is possible to compute (aX + c) mod w in just three MIX
instructions, rather than the four in (1), with the result appearing in register
X.

2. [16] Write a MIX subroutine having the following characteristics:

(Thus a call on this subroutine will produce the next random number of a
linear congruential sequence.)

 3. [M25] Many computers do not provide the ability to divide a two-
word number by a one-word number; they provide only operations on
single-word numbers, such as himult(x, y) = ⌊xy/w⌋ and lomult(x, y) = xy
mod w, when x and y are nonnegative integers less than the word size w.
Explain how to evaluate ax mod m in terms of himult and lomult, assuming
that 0 ≤ a, x < m < w and that m ⊥ w. You may use precomputed constants
that depend on a, m, and w.
 4. [21] Discuss the calculation of linear congruential sequences with m =
232 on two’s-complement machines such as the System/370 series.

5. [20] Given that m is less than the word size, and that x and y are
nonnegative integers less than m, show that the difference (x – y) mod m may
be computed in just four MIX instructions, without requiring any division.
What is the best code for the sum (x + y) mod m?
 6. [20] The previous exercise suggests that subtraction mod m is easier to
perform than addition mod m. Discuss sequences generated by the rule

Are these sequences essentially different from linear congruential sequences
as defined in the text? Are they more suited to efficient computer calculation?

7. [M24] What patterns can you spot in Table 1?
 8. [20] Write a MIX program analogous to (2) that computes (aX) mod (w
− 1). The values 0 and w − 1 are to be treated as equivalent in the input and
output of your program.

 9. [M25] Most high-level programming languages do not provide a good
way to divide a two-word integer by a one-word integer, nor do they
provide the himult operation of exercise 3. The purpose of this exercise is
to find a reasonable way to cope with such limitations when we wish to
evaluate ax mod m for variable x and for constants 0 < a < m.

a) Prove that if q = ⌊m/a⌋, we have a(x – (x mod q)) = ⌊x/q⌋(m – (m mod
a)).

b) Use the identity of (a) to evaluate ax mod m without computing any
numbers that exceed m in absolute value, assuming that a2 ≤ m.

10. [M26] The solution to exercise 9(b) sometimes works also when a2 >
m. Exactly how many multipliers a are there for which the intermediate
results in that method never exceed m, for all x between 0 and m?
11. [M30] Continuing exercise 9, show that it is possible to evaluate ax
mod m using only the following basic operations:
i) u × v, where u ≥ 0, v ≥ 0, and uv < m;
ii) ⌊u/v⌋, where 0 < v ≤ u < m;
iii) (u – v) mod m, where 0 ≤ u, v < m.
In fact, it is always possible to do this with at most 12 operations of
types (i) and (ii), and with a bounded number of operations of type (iii),
not counting the precomputation of constants that depend on a and m. For
example, explain how to proceed when a is 62089911 and m is 231 – 1.
(These constants appear in Table 3.3.4–1.)

 12. [M28] Consider computations by pencil and paper or an abacus.
a) What’s a good way to multiply a given 10-digit number by 10, modulo

9999998999?
b) Same question, but multiply instead by 999999900 (modulo

9999998999).
c) Explain how to compute the powers 999999900n mod 9999998999,

for n = 1, 2, 3,
d) Relate such computations to the decimal expansion of 1/9999998999.
e) Show that these ideas make it possible to implement certain kinds of

linear congruential generators that have extremely large moduli, using
only a few operations per generated number.

13. [M24] Repeat the previous exercise, but with modulus 9999999001
and with multipliers 10 and 8999999101.
14. [M25] Generalize the ideas of the previous two exercises, obtaining a
large family of linear congruential generators with extremely large moduli.

3.2.1.2. Choice of multiplier
In this section we shall consider how to choose the multiplier a so as to
produce a period of maximum length. A long period is essential for any
sequence that is to be used as a source of random numbers; indeed, we would
hope that the period contains considerably more numbers than will ever be
used in a single application. Therefore we shall concern ourselves in this
section with the question of period length. The reader should keep in mind,
however, that a long period is only one desirable criterion for the
randomness of a linear congruential sequence. For example, when a = c = 1,
the sequence is simply Xn+1 = (Xn + 1) mod m, and this obviously has a
period of length m, yet it is anything but random. Other considerations
affecting the choice of a multiplier will be given later in this chapter.

Since only m different values are possible, the period surely cannot be
longer than m. Can we achieve the maximum length, m? The example above
shows that it is always possible, although the choice a = c = 1 does not yield
a desirable sequence. Let us investigate all possible choices of a, c, and X0
that give a period of length m. It turns out that all such values of the
parameters can be characterized very simply; when m is the product of
distinct primes, only a = 1 will produce the full period, but when m is
divisible by a high power of some prime there is considerable latitude in the
choice of a. The following theorem makes it easy to tell if the maximum
period is achieved.
Theorem A. The linear congruential sequence defined by m, a, c, and X0
has period length m if and only if

i) c is relatively prime to m;
ii) b = a − 1 is a multiple of p, for every prime p dividing m;
iii) b is a multiple of 4, if m is a multiple of 4.
The ideas used in the proof of this theorem go back at least a hundred

years. But the first proof of the theorem in this particular form was given by
M. Greenberger in the special case m = 2e [see JACM 8 (1961), 163–167],

and the sufficiency of conditions (i), (ii), and (iii) in the general case was
shown by Hull and Dobell [see SIAM Review 4 (1962), 230–254]. To prove
the theorem we will first consider some auxiliary number-theoretic results
that are of interest in themselves.
Lemma P. Let p be a prime number, and let e be a positive integer, where
pe > 2. If

then

Proof. We have x = 1 + qpe for some integer q that is not a multiple of p. By
the binomial formula

The quantity in parentheses is an integer, and, in fact, every term inside the
parentheses is a multiple of p except the first term. For if 1 < k < p, the
binomial coefficient is divisible by p (see exercise 1.2.6–10); hence

is divisible by p(k−1)e. And the last term is qp−1p(p−1)e−1, which is divisible
by p since (p − 1)e > 1 when pe > 2. So xp ≡ 1 + qpe+1 (modulo pe+2), and
this completes the proof. (Note: A generalization of this result appears in
exercise 3.2.2–11(a).)
Lemma Q. Let the decomposition of m into prime factors be

The length λ of the period of the linear congruential sequence determined
by (X0, a, c, m) is the least common multiple of the lengths λj of the periods
of the linear congruential sequences (

), 1 ≤ j ≤ t.
Proof. By induction on t, it suffices to prove that if m1 and m2 are relatively
prime, the length λ of the period of the linear congruential sequence

determined by the parameters (X0, a, c, m1m2) is the least common multiple
of the lengths λ1 and λ2 of the periods of the sequences determined by (X0
mod m1, a mod m1, c mod m1, m1) and (X0 mod m2, a mod m2, c mod m2, m2).
We observed in the previous section, Eq. (4), that if the elements of these
three sequences are respectively denoted by Xn, Yn, and Zn, we will have

Therefore, by Law D of Section 1.2.4, we find that

Let λ′ be the least common multiple of λ1 and λ2; we wish to prove that λ′
= λ. Since Xn = Xn+λ for all suitably large n, we have Yn = Yn+λ (hence λ is a
multiple of λ1) and Zn = Zn+λ (hence λ is a multiple of λ2), so we must have λ
≥ λ′. Furthermore, we know that Yn = Yn+λ′ and Zn = Zn+λ′ for all suitably
large n; therefore, by (4), Xn = Xn+λ′ . This proves λ ≤ λ′.

Now we are ready to prove Theorem A. Lemma Q tells us that it suffices
to prove the theorem when m is a power of a prime number, because

will be true if and only if for 1 ≤ j ≤ t.

Assume therefore that m = pe, where p is prime and e is a positive
integer. The theorem is obviously true when a = 1, so we may take a > 1. The
period can be of length m if and only if each possible integer 0 ≤ x < m
occurs in the period, since no value occurs in the period more than once.
Therefore the period is of length m if and only if the period of the sequence
with X0 = 0 is of length m, and we are justified in supposing that X0 = 0. By
formula 3.2.1–(6) we have

If c is not relatively prime to m, this value Xn could never be equal to 1, so
condition (i) of the theorem is necessary. The period has length m if and only
if the smallest positive value of n for which Xn = X0 = 0 is n = m. By (5) and
condition (i), our theorem now reduces to proving the following fact:
Lemma R. Assume that 1 < a < pe, where p is prime. If λ is the smallest
positive integer for which (aλ – 1)/(a − 1) ≡ 0 (modulo pe), then

Proof. Assume that λ = pe. If a ≢ 1 (modulo p), then (an − 1)/(a − 1) ≡ 0
(modulo pe) if and only if an − 1 ≡ 0 (modulo pe). The condition ape – 1 ≡ 0
(modulo pe) then implies that ape ≡ 1 (modulo p); but by Theorem 1.2.4F we
have ape ≡ a (modulo p), hence a ≢ 1 (modulo p) leads to a contradiction.
And if p = 2 and a ≡ 3 (modulo 4), we have

by exercise 8. These arguments show that it is necessary in general to have a
= 1 + qpf, where pf > 2 and q is not a multiple of p, whenever λ = pe.

It remains to be shown that this condition is sufficient to make λ = pe. By
repeated application of Lemma P, we find that

for all g ≥ 0, and therefore

In particular, (ape – 1)/(a − 1) ≡ 0 (modulo pe). Now the congruential
sequence (0, a, 1, pe) has Xn = (an−1)/(a−1) mod pe; therefore it has a period
of length λ, that is, Xn = 0 if and only if n is a multiple of λ. Hence pe is a
multiple of λ. This can happen only if λ = pg for some g, and the relations in
(6) imply that λ = pe, completing the proof.

The proof of Theorem A is now complete.
We will conclude this section by considering the special case of pure

multiplicative generators, when c = 0. Although the random number
generation process is slightly faster in this case, Theorem A shows us that the
maximum period length cannot be achieved. In fact, this is quite obvious,
since the sequence now satisfies the relation

and the value Xn = 0 should never appear, lest the sequence degenerate to
zero. In general, if d is any divisor of m and if Xn is a multiple of d, all

succeeding elements Xn+1, Xn+2, . . . of the multiplicative sequence will be
multiples of d. So when c = 0, we will want Xn to be relatively prime to m
for all n, and this limits the length of the period to at most φ(m), the number
of integers between 0 and m that are relatively prime to m.

It may be possible to achieve an acceptably long period even if we
stipulate that c = 0. Let us now try to find conditions on the multiplier so that
the period is as long as possible in this special case.

According to Lemma Q, the period of the sequence depends entirely on
the periods of the sequences when m = pe, so let us consider that situation.
We have Xn = anX0 mod pe, and it is clear that the period will be of length 1
if a is a multiple of p, so we take a to be relatively prime to p. Then the
period is the smallest integer λ such that X0 = aλX0 mod pe. If the greatest
common divisor of X0 and pe is pf, this condition is equivalent to

By Euler’s theorem (exercise 1.2.4–28), aϕ(pe−f) ≡ 1 (modulo pe−f); hence λ is
a divisor of

When a is relatively prime to m, the smallest integer λ for which aλ ≡ 1
(modulo m) is conventionally called the order of a modulo m. Any such
value of a that has the maximum possible order modulo m is called a
primitive element modulo m.

Let λ(m) denote the order of a primitive element, namely the maximum
possible order, modulo m. The remarks above show that λ(pe) is a divisor of
pe−1(p − 1); with a little care (see exercises 11 through 16 below) we can
give the precise value of λ(m) in all cases as follows:

Our remarks may be summarized in the following theorem:
Theorem B. [C. F. Gauss, Disquisitiones Arithmeticæ (1801), §90–92.] The
maximum period possible when c = 0 is λ(m), where λ(m) is defined in (9).

This period is achieved if
i) X0 is relatively prime to m;
ii) a is a primitive element modulo m.

Notice that we can obtain a period of length m − 1 if m is prime; this is just
one less than the maximum length, so for all practical purposes such a period
is as long as we want.

The question now is, how can we find primitive elements modulo m?
The exercises at the close of this section tell us that there is a fairly simple
answer when m is prime or a power of a prime, namely the results stated in
our next theorem.
Theorem C. The number a is a primitive element modulo pe if and only if
one of the following cases applies:

i) p = 2, e = 1, and a is odd;
ii) p = 2, e = 2, and a mod 4 = 3;
iii) p = 2, e = 3, and a mod 8 = 3, 5, or 7;
iv) p = 2, e ≥ 4, and a mod 8 = 3 or 5;
v) p is odd, e = 1, a ≢ 0 (modulo p), and a(p−1)/q ≢ 1 (modulo p) for any

prime divisor q of p – 1;
vi) p is odd, e > 1, a satisfies the conditions of (v), and ap−1 ≢ 1 (modulo

p2).
Conditions (v) and (vi) of this theorem are readily tested on a computer for
large values of p, by using the efficient methods for evaluating powers
discussed in Section 4.6.3, if we know the factors of p − 1.

Theorem C applies to powers of primes only. But if we are given values
aj that are primitive modulo , it is possible to find a single value a such
that a ≡ aj (modulo), for 1 ≤ j ≤ t, using the Chinese remainder algorithm
discussed in Section 4.3.2; this number a will be a primitive element modulo

. Hence there is a reasonably efficient way to construct multipliers
satisfying the condition of Theorem B, for any modulus m of moderate size,
although the calculations can be somewhat lengthy in the general case.

In the common case m = 2e, with e ≥ 4, the conditions above simplify to
the single requirement that a ≡ 3 or 5 (modulo 8). In this case, one-fourth of

all possible multipliers will make the period length equal to m/4, and m/4 is
the maximum possible when c = 0.

The second most common case is when m = 10e. Using Lemmas P and Q,
it is not difficult to obtain necessary and sufficient conditions for the
achievement of the maximum period in the case of a decimal computer (see
exercise 18):
Theorem D. If m = 10e, e ≥ 5, c = 0, and X0 is not a multiple of 2 or 5, the
period of the linear congruential sequence is 5 × 10e−2 if and only if a mod
200 equals one of the following 32 values:

Exercises

1. [10] What is the length of the period of the linear congruential sequence
with X0 = 5772156648, a = 3141592621, c = 2718281829, and m =
10000000000?

2. [10] Are the following two conditions sufficient to guarantee the
maximum length period, when m is a power of 2? “(i) c is odd; (ii) a mod 4
= 1.”

3. [13] Suppose that m = 10e, where e ≥ 2, and suppose further that c is
odd and not a multiple of 5. Show that the linear congruential sequence will
have the maximum length period if and only if a mod 20 = 1.

4. [M20] Assume that m = 2e and X0 = 0. If the numbers a and c satisfy the
conditions of Theorem A, what is the value of X2e−1?

5. [14] Find all multipliers a that satisfy the conditions of Theorem A
when m = 235 + 1. (The prime factors of m may be found in Table 3.2.1.1–1.)
 6. [20] Find all multipliers a that satisfy the conditions of Theorem A
when m = 106 – 1. (See Table 3.2.1.1–1.)
 7. [M23] The period of a congruential sequence need not start with X0,
but we can always find indices μ ≥ 0 and λ > 0 such that Xn+λ = Xn
whenever n ≥ μ, and for which μ and λ are the smallest possible values
with this property. (See exercises 3.1–6 and 3.2.1–1.) If μj and λj are the
indices corresponding to the sequences

and if μ and λ correspond to the composite sequence (),
Lemma Q states that λ is the least common multiple of λ1, . . . , λt. What
is the value of μ in terms of the values of μ1, . . . , μt? What is the
maximum possible value of μ obtainable by varying X0, a, and c, when

 is fixed?

8. [M20] Show that if a mod 4 = 3, we have (a2e−1 – 1)/(a − 1) ≡ 0
(modulo 2e) when e > 1. (Use Lemma P.)
 9. [M22] (W. E. Thomson.) When c = 0 and m = 2e ≥ 16, Theorems B and
C say that the period has length 2e−2 if and only if the multiplier a satisfies a
mod 8 = 3 or a mod 8 = 5. Show that every such sequence is essentially a
linear congruential sequence with m = 2e−2, having full period, in the
following sense:

a) If Xn+1 = (4c + 1)Xn mod 2e, and Xn = 4Yn + 1, then

b) If Xn+1 = (4c − 1)Xn mod 2e, and Xn = ((–1)n(4Yn + 1)) mod 2e, then

[Note: In these formulas, c is an odd integer. The literature contains
several statements to the effect that sequences with c = 0 satisfying Theorem
B are somehow more random than sequences satisfying Theorem A, in spite
of the fact that the period is only one-fourth as long in the case of Theorem B.
This exercise refutes such statements; in essence, we must give up two bits of
the word length in order to save the addition of c, when m is a power of 2.]

10. [M21] For what values of m is λ(m) = ϕ(m)?
 11. [M28] Let x be an odd integer greater than 1. (a) Show that there exists

a unique integer f > 1 such that x ≡ 2f ± 1 (modulo 2f+1). (b) Given that 1 <
x < 2e − 1 and that f is the corresponding integer from part (a), show that
the order of x modulo 2e is 2e−f. (c) In particular, this proves parts (i)–(iv)
of Theorem C.
12. [M26] Let p be an odd prime. If e > 1, prove that a is a primitive
element modulo pe if and only if a is a primitive element modulo p and

ap−1 ≢ 1 (modulo p2). (For the purposes of this exercise, assume that λ(pe)
= pe−1(p − 1). This fact is proved in exercises 14 and 16 below.)
13. [M22] Let p be prime. Given that a is not a primitive element modulo
p, show that either a is a multiple of p or a(p−1)/q ≡ 1 (modulo p) for some
prime number q that divides p − 1.
14. [M18] If e > 1 and p is an odd prime, and if a is a primitive element
modulo p, prove that either a or a + p is a primitive element modulo pe.
[Hint: See exercise 12.]
15. [M29] (a) Let a1 and a2 be relatively prime to m, and let their orders
modulo m be λ1 and λ2, respectively. If λ is the least common multiple of
λ1 and λ2, prove that has order λ modulo m, for suitable integers κ1
and κ2. [Hint: Consider first the case that λ1 is relatively prime to λ2.] (b)
Let λ(m) be the maximum order of any element modulo m. Prove that λ(m)
is a multiple of the order of each element modulo m; that is, prove that
aλ(m) ≡ 1 (modulo m) whenever a is relatively prime to m. (Do not use
Theorem B.)

 16. [M24] (Existence of primitive roots.) Let p be a prime number.
a) Consider the polynomial f(x) = xn + c1xn−1 + ... + cn, where the c’s are

integers. Given that a is an integer for which f(a) ≡ 0 (modulo p), show
that there exists a polynomial

with integer coefficients such that f(x) ≡ (x – a)q(x) (modulo p) for all
integers x.

b) Let f(x) be a polynomial as in (a). Show that f(x) has at most n distinct
“roots” modulo p; that is, there are at most n integers a, with 0 ≤ a < p,
such that f(a) ≡ 0 (modulo p).

c) Because of exercise 15(b), the polynomial f(x) = xλ(p) – 1 has p − 1
distinct roots; hence there is an integer a with order p − 1.

17. [M26] Not all of the values listed in Theorem D would be found by the
text’s construction; for example, 11 is not primitive modulo 5e. How can
this be possible, when 11 is primitive modulo 10e, according to Theorem

D? Which of the values listed in Theorem D are primitive elements modulo
both 2e and 5e?
18. [M25] Prove Theorem D. (See the previous exercise.)
19. [40] Make a table of some suitable multipliers, a, for each of the
values of m listed in Table 3.2.1.1–1, assuming that c = 0.

 20. [M24] (G. Marsaglia.) The purpose of this exercise is to study the
period length of an arbitrary linear congruential sequence. Let Yn = 1 + a +
... + an−1, so that Xn = (AYn + X0) mod m for some constant A by Eq. 3.2.1–
(8).

a) Prove that the period length of 〈Xn〉 is the period length of 〈Yn

mod m′〉, where m′ = m/gcd(A, m).
b) Prove that the period length of 〈Yn mod pe〉 satisfies the following

when p is prime: (i) If a mod p = 0, it is 1. (ii) If a mod p = 1, it is pe,
except when p = 2 and e ≥ 2 and a mod 4 = 3. (iii) If p = 2, e ≥ 2, and a
mod 4 = 3, it is twice the order of a modulo pe (see exercise 11),
unless a ≡ –1 (modulo 2e) when it is 2. (iv) If a mod p > 1, it is the
order of a modulo pe.

21. [M25] In a linear congruential sequence of maximum period, let X0 = 0
and let s be the least positive integer such that as ≡ 1 (modulo m). Prove
that gcd(Xs, m) = s.

 22. [M25] Discuss the problem of finding moduli m = bk ± bl ± 1 so that
the subtract-with-borrow and add-with-carry generators of exercise
3.2.1.1–14 will have very long periods.

3.2.1.3. Potency
In the preceding section, we showed that the maximum period can be
obtained when b = a − 1 is a multiple of each prime dividing m; and b must
also be a multiple of 4 if m is a multiple of 4. If z is the radix of the machine
being used—so that z = 2 for a binary computer, and z = 10 for a decimal
computer—and if m is the word size ze, the multiplier

satisfies these conditions. Theorem 3.2.1.2A also says that we may take c =
1. The recurrence relation now has the form

and this equation suggests that we can avoid the multiplication; merely
shifting and adding will suffice.

For example, suppose we choose a = B2 + 1, where B is the byte size of
MIX. The code

can be used in place of the instructions given in Section 3.2.1.1, and the
execution time decreases from 16u to 7u.

For this reason, multipliers having form (1) have been widely discussed
in the literature, and indeed they have been recommended by many authors.
However, the early years of experimentation with this method showed
conclusively that multipliers having the simple form in (1) should be
avoided. The generated numbers just aren’t random enough.

Later in this chapter we shall be discussing some rather sophisticated
theory that accounts for the badness of all the linear congruential random
number generators known to be bad. However, some generators (such as (2))
are sufficiently awful that a comparatively simple theory can be used to rule
them out. This simple theory is related to the concept of “potency,” which we
shall now discuss.

The potency of a linear congruential sequence with maximum period is
defined to be the least integer s such that

(Such an integer s will always exist when the multiplier satisfies the
conditions of Theorem 3.2.1.2A, since b is a multiple of every prime
dividing m.)

We may analyze the randomness of the sequence by taking X0 = 0, since 0
occurs somewhere in the period. With this assumption, Eq. 3.2.1–(6) reduces
to

and if we expand an − 1 = (b + 1)n − 1 by the binomial theorem, we find that

All terms in bs, bs+1, etc., may be ignored, since they are multiples of m.
Equation (5) can be instructive, so we shall consider some special cases.

If a = 1, the potency is 1; and Xn ≡ cn (modulo m), as we have already
observed, so the sequence is surely not random. If the potency is 2, we have

, and again the sequence is not very random; indeed,

in this case, so the differences between consecutively generated numbers
change in a simple way from one value of n to the next. The point (Xn, Xn+1,
Xn+2) always lies on one of the four planes

in three-dimensional space, where d = cb mod m.
If the potency is 3, the sequence begins to look somewhat more random,

but there is a high degree of dependency between Xn, Xn+1, and Xn+2; tests
show that sequences with potency 3 are still not sufficiently good.
Reasonable results have been reported when the potency is 4 or more, but
they have been disputed by other people. A potency of at least 5 would seem
to be required for sufficiently random values.

Suppose, for example, that m = 235 and a = 2k + 1. Then b = 2k, so we
find that the value b2 = 22k is a multiple of m when k ≥ 18: The potency is 2.
If k = 17, 16, . . . , 12, the potency is 3, and a potency of 4 is achieved for k =
11, 10, 9. The only acceptable multipliers, from the standpoint of potency,
therefore have k ≤ 8. This means a ≤ 257, and we shall see later that small
multipliers are also to be avoided. We have now eliminated all multipliers of
the form 2k + 1 when m = 235.

When m is equal to w ± 1, where w is the word size, m is generally not
divisible by high powers of primes, and a high potency is impossible (see
exercise 6). So in this case, the maximum-period method should not be used;
the pure-multiplication method with c = 0 should be applied instead.

It must be emphasized that high potency is necessary but not sufficient for
randomness; we use the concept of potency only to reject impotent

generators, not to accept the potent ones. Linear congruential sequences
should pass the “spectral test” discussed in Section 3.3.4 before they are
considered to be acceptably random.

Exercises

1. [M10] Show that, no matter what the byte size B of MIX happens to be,
the code (3) yields a random number generator of maximum period.

2. [10] What is the potency of the generator represented by the MIX code
(3)?

3. [11] When m = 235, what is the potency of the linear congruential
sequence with a = 3141592621? What is the potency if the multiplier is a =
223 + 213 + 22 + 1?

4. [15] Show that if m = 2e ≥ 8, maximum potency is achieved when a
mod 8 = 5.

5. [M20] Given that and , where a
satisfies the conditions of Theorem 3.2.1.2A and k is relatively prime to m,
show that the potency is max(⌈e1/f1⌉, . . . , ⌈et/ft⌉).
 6. [20] Which of the values of m = w ± 1 in Table 3.2.1.1–1 can be used
in a linear congruential sequence of maximum period whose potency is 4 or
more? (Use the result of exercise 5.)

7. [M20] When a satisfies the conditions of Theorem 3.2.1.2A, it is
relatively prime to m; hence there is a number a′ such that aa′ ≡ 1 (modulo
m). Show that a′ can be expressed simply in terms of b.
 8. [M26] A random number generator defined by Xn+1 = (217 + 3)Xn mod
235 and X0 = 1 was subjected to the following test: Let Yn = ⌊20Xn/235⌋;
then Yn should be a random integer between 0 and 19, and the triples (Y3n,
Y3n+1, Y3n+2) should take on each of the 8000 possible values from (0, 0, 0)
to (19, 19, 19) with nearly equal frequency. But with 1,000,000 values of n
tested, many triples never occurred, and others occurred much more often
than they should have. Can you account for this failure?

3.2.2. Other Methods
Of course, linear congruential sequences are not the only sources of random
numbers that have been proposed for computer use. In this section we shall
review the most significant alternatives. Some of these methods are quite
important, while others are interesting chiefly because they are not as good
as a person might expect.

One of the common fallacies encountered in connection with random
number generation is the idea that we can take a good generator and modify it
a little, in order to get an “even more random” sequence. This is often false.
For example, we know that

leads to reasonably good random numbers; wouldn’t the sequence produced
by

be even more random? The answer is, the new sequence is probably a great
deal less random. For the whole theory breaks down, and in the absence of
any theory about the behavior of the sequence (2), we come into the area of
generators of the type Xn+1 = f(Xn) with the function f chosen at random;
exercises 3.1–11 through 3.1–15 show that these sequences probably behave
much more poorly than the sequences obtained from the more disciplined
function (1).

Let us consider another approach, in an attempt to obtain a genuine
improvement of sequence (1). The linear congruential method can be
generalized to, say, a quadratic congruential method:

Exercise 8 generalizes Theorem 3.2.1.2A to obtain necessary and sufficient
conditions on a, c, and d such that the sequence defined by (3) has a period
of the maximum length m; the restrictions are not much more severe than in
the linear method.

An interesting quadratic method has been proposed by R. R. Coveyou
when m is a power of two: Let

This sequence can be computed with about the same efficiency as (1),
without any worries of overflow. It has an interesting connection with von

Neumann’s original middle-square method: If we let Yn be 2eXn, so that Yn is
a double-precision number obtained by placing e zeros to the right of the
binary representation of Xn, then Yn+1 consists of precisely the middle 2e
digits of In other words, Coveyou’s method is almost identical to
a somewhat degenerate double-precision middle-square method, yet it is
guaranteed to have a long period; further evidence of its randomness is
proved in Coveyou’s paper cited in the answer to exercise 8.

Other generalizations of Eq. (1) also suggest themselves; for example,
we might try to extend the period length of the sequence. The period of a
linear congruential sequence is fairly long; when m is approximately the
word size of the computer, we usually get periods on the order of 109 or
more, and typical calculations will use only a very small portion of the
sequence. On the other hand, when we discuss the idea of “accuracy” in
Section 3.3.4 we will see that the period length influences the degree of
randomness achievable in a sequence. Therefore it can be desirable to seek a
longer period, and several methods are available for this purpose. One
technique is to make Xn+1 depend on both Xn and Xn−1, instead of just on Xn;
then the period length can be as high as m2, since the sequence will not begin
to repeat until we have (Xn+λ, Xn+λ+1) = (Xn, Xn+1). John Mauchly, in an
unpublished paper presented to a statistics conference in 1949, extended the
middle square method by using the recurrence Xn = middle (Xn−1 · Xn−6).

The simplest sequence in which Xn+1 depends on more than one of the
preceding values is the Fibonacci sequence,

This generator was considered in the early 1950s, and it usually gives a
period length greater than m. But tests have shown that the numbers produced
by the Fibonacci recurrence are definitely not satisfactorily random, and so
our main interest in (5) as a source of random numbers is that it makes a nice
“bad example.” We may also consider generators of the form

when k is a comparatively large value. This recurrence was introduced by
Green, Smith, and Klem [JACM 6 (1959), 527–537], who reported that,
when k ≤ 15, the sequence fails to pass the “gap test” described in Section
3.3.2, although when k = 16 the test was satisfactory.

A much better type of additive generator was devised in 1958 by G. J.
Mitchell and D. P. Moore [unpublished], who suggested the somewhat
unusual sequence defined by

where m is even, and where X0, . . . , X54 are arbitrary integers not all even.
The constants 24 and 55 in this definition were not chosen at random; they
are special values that happen to define a sequence whose least significant
bits, 〈Xn mod 2〉, will have a period of length 255 – 1. Therefore the
sequence 〈Xn〉 must have a period at least this long. Exercise 30 proves
that (7) has a period of length exactly 2e−1(255 – 1) when m = 2e.

At first glance Eq. (7) may not seem to be extremely well suited to
machine implementation, but in fact there is a very efficient way to generate
the sequence using a cyclic list:
Algorithm A (Additive number generator). Memory cells Y [1], Y [2], . . . ,
Y [55] are initially set to the values X54, X53, . . . , X0, respectively; j is
initially equal to 24 and k is 55. Successive performances of this algorithm
will produce the numbers X55, X56, . . . as output.

A1. [Add.] (If we are about to output Xn at this point, Y [j] now equals
Xn−24 and Y [k] equals Xn−55.) Set Y [k] ← (Y [k]+Y [j]) mod 2e, and
output Y [k].

A2. [Advance.] Decrease j and k by 1. If now j = 0, set j ← 55; otherwise
if k = 0, set k ← 55. (We cannot have both j = 0 and k = 0.)

This algorithm in MIX is simply the following:
Program A (Additive number generator). Assuming that index registers 5
and 6, representing j and k, are not touched by the remainder of the program
in which this routine is embedded, the following code performs Algorithm A
and leaves the result in register A.

This generator is usually faster than the other methods we have been
discussing, since it does not require any multiplication. Besides its speed, it
has the longest period we have seen yet, except in exercise 3.2.1.2–22.
Furthermore, as Richard Brent has observed, it can be made to work
correctly with floating point numbers, avoiding the need to convert between
integers and fractions (see exercise 23). Therefore it may well prove to be
the very best source of random numbers for practical purposes. The main
reason why it is difficult to recommend sequences like (7) wholeheartedly is
that there is still very little theory to prove that they do or do not have
desirable randomness properties; essentially all we know for sure is that the
period is very long, and this is not enough. John Reiser (Ph.D. thesis,
Stanford University, 1977) has shown, however, that an additive sequence
like (7) will be well distributed in high dimensions, provided that a certain
plausible conjecture is true (see exercise 26).

The numbers 24 and 55 in (7) are commonly called lags, and the
numbers Xn defined by (7) are said to form a lagged Fibonacci sequence.
Lags like (24, 55) work well because of theoretical results developed in
some of the exercises below. It is of course better to use somewhat larger
lags when an application happens to use, say, groups of 55 values at a time;
the numbers generated by (7) will never have Xn lying strictly between Xn−24
and Xn−55 (see exercise 2). J.-M. Normand, H. J. Herrmann, and M. Hajjar
detected slight biases in the numbers generated by (7) when they did
extensive high-precision Monte Carlo studies requiring 1011 random numbers
[J. Statistical Physics 52 (1988), 441–446]; but larger values of k decreased
the bad effects. Table 1 lists several useful pairs (l, k) for which the
sequence Xn = (Xn–l + Xn–k) mod 2e has period length 2e−1(2k − 1). The case
(l, k) = (30, 127) should be large enough for most applications, especially in

combination with other randomness-enhancing techniques that we will
discuss later.

For extensions of this table, see N. Zierler and J. Brillhart, Information
and Control 13 (1968), 541–554, 14 (1969), 566–569, 15 (1969), 67–69;
Y. Kurita and M. Matsumoto, Math. Comp. 56 (1991), 817–821; Heringa,

Blöte, and Compagner, Int. J. Mod. Phys. C3 (1992), 561–564.

Table 1 Lags That Yield Long Periods Mod 2

George Marsaglia [Comp. Sci. and Statistics: Symposium on the
Interface 16 (1984), 3–10] has suggested replacing (7) by

where m is a multiple of 4 and where X0 through X54 are odd, not all
congruent to 1 (modulo 4). Then the second-least significant bits have a
period of 255 – 1, while the most significant bits are more thoroughly mixed
than before since they depend on all bits of Xn−24 and Xn−55 in an essential
way. Exercise 31 shows that the period length of sequence (7′) is only
slightly less than that of (7).

Lagged Fibonacci generators have been used successfully in many
situations since 1958, so it came as a shock to discover in the 1990s that they
actually fail an extremely simple, non-contrived test for randomness (see
exercise 3.3.2–31). A workaround that avoids such problems by discarding
appropriate elements of the sequence is described near the end of this
section.

Instead of considering purely additive or purely multiplicative
sequences, we can construct useful random number generators by taking
general linear combinations of Xn−1, . . . , Xn–k for small k. In this case the
best results occur when the modulus m is a large prime; for example, m can
be chosen to be the largest prime number that fits in a single computer word
(see Table 4.5.4–2). When m = p is prime, the theory of finite fields tells us
that it is possible to find multipliers a1, . . . , ak such that the sequence
defined by

has period length pk − 1; here X0, . . . , Xk−1 may be chosen arbitrarily but not
all zero. (The special case k = 1 corresponds to a multiplicative congruential
sequence with prime modulus, with which we are already familiar.) The
constants a1, . . . , ak in (8) have the desired property if and only if the
polynomial

is a “primitive polynomial modulo p,” that is, if and only if this polynomial
has a root that is a primitive element of the field with pk elements (see
exercise 4.6.2–16).

Of course, the mere fact that suitable constants a1, .. ., ak exist giving a
period of length pk − 1 is not enough for practical purposes; we must be able
to find them, and we can’t simply try all pk possibilities, since p is on the
order of the computer’s word size. Fortunately there are exactly φ(pk − 1)/k
suitable choices of (a1,. . ., ak), so there is a fairly good chance of hitting one
after making a few random tries. But we also need a way to tell quickly
whether or not (9) is a primitive polynomial modulo p; it is certainly
unthinkable to generate up to pk − 1 elements of the sequence and wait for a
repetition! Methods of testing for primitivity modulo p are discussed by
Alanen and Knuth in Sankhyā A26 (1964), 305–328. The following criteria
can be used: Let r = (pk − 1)/(p − 1).

i) (−1)k−1ak must be a primitive root modulo p. (See Section 3.2.1.2.)

ii) The polynomial xr must be congruent to (−1)k−1ak, modulo f(x) and p.

iii) The degree of xr/q mod f(x), using polynomial arithmetic modulo p,
must be positive, for each prime divisor q of r.

Efficient ways to compute the polynomial xn mod f(x), using polynomial
arithmetic modulo a given prime p, are discussed in Section 4.6.2.

In order to carry out this test, we need to know the prime factorization of
r = (pk − 1)/(p − 1), and this is the limiting factor in the calculation; r can be
factored in a reasonable amount of time when k = 2, 3, and perhaps 4, but
higher values of k are difficult to handle when p is large. Even k = 2
essentially doubles the number of “significant random digits” over what is
achievable with k = 1, so larger values of k will rarely be necessary.

An adaptation of the spectral test (Section 3.3.4) can be used to rate the
sequence of numbers generated by (8); see exercise 3.3.4–24. The
considerations of that section show that we should not make the obvious
choice of a1 = +1 or −1 when a primitive polynomial of that form exists; it is
better to pick large, essentially “random” values of a1, . . . , ak that satisfy the
conditions, and to verify the choice by applying the spectral test. A
significant amount of computation is involved in finding a1, . . . , ak, but all
known evidence indicates that the result will be a very satisfactory source of
random numbers. We essentially achieve the randomness of a linear
congruential generator with k-tuple precision, using only single precision
operations.

The special case p = 2 is of independent interest. Sometimes a random
number generator is desired that merely produces a random sequence of bits
—zeros and ones—instead of fractions between zero and one. There is a
simple way to generate a highly random bit sequence on a binary computer,
manipulating k-bit words: Start with an arbitrary nonzero binary word X. To
get the next random bit of the sequence, do the following operations, shown
in MIX’s language (see exercise 16):

The fourth instruction here is the “exclusive or” operation found on nearly all
binary computers (see exercise 2.5–28 and Section 7.1.3); it changes each bit
position of rA in which location A has a “1” bit. The value in location A is
the binary constant (a1.. . ak)2, where xk − a1xk − 1 − · · · − ak is a primitive
polynomial modulo 2 as above. After the code (10) has been executed, the
next bit of the generated sequence may be taken as the least significant bit of
word X. Alternatively, we could consistently use the most significant bit of
X, if the most significant bit is more convenient.

For example, consider Fig. 1, which illustrates the sequence generated
for k = 4 and CONTENTS(A) = (0011)2. This is, of course, an unusually
small value for k. The right-hand column shows the sequence of bits of the
sequence, namely 1101011110001001..., repeating in a period of length 2k −
1 = 15. This sequence is quite random, considering that it was generated with

only four bits of memory; to see this, consider the adjacent sets of four bits
occurring in the period, namely 1101, 1010, 0101, 1011, 0111, 1111, 1110,
1100, 1000, 0001, 0010, 0100, 1001, 0011, 0110. In general, every possible
adjacent set of k bits occurs exactly once in the period, except the set of all
zeros, since the period length is 2k − 1; thus, adjacent sets of k bits are
essentially independent. We shall see in Section 3.5 that this is a very strong
criterion for randomness when k is, say, 30 or more. Theoretical results
illustrating the randomness of this sequence are given in an article by R. C.
Tausworthe, Math. Comp. 19 (1965), 201–209.

Fig. 1. Successive contents of the computer word X in the binary method,
assuming that k = 4 and CONTENTS(A) = (0011)2.

Primitive polynomials modulo 2 of degree ≤ 168 have been tabulated by
W. Stahnke, Math. Comp. 27 (1973), 977–980. When k = 35, we may take

but the considerations of exercises 18 and 3.3.4–24 imply that it would be
better to find “random” constants that define primitive polynomials modulo
2.

Caution: Several people have been trapped into believing that this
random bit-generation technique can be used to generate random whole-word
fractions (.X0X1 . . . Xk−1)2, (.XkXk+1 . . . X2k−1)2, . . . ; but it is actually a poor
source of random fractions, even though the bits are individually quite
random. Exercise 18 explains why.

Mitchell and Moore’s additive generator (7) is essentially based on the
concept of primitive polynomials: The polynomial x55 + x24 + 1 is primitive,
and Table 1 is essentially a listing of certain primitive trinomials modulo 2.
A generator almost identical to that of Mitchell and Moore was
independently discovered in 1971 by T. G. Lewis and W. H. Payne [JACM
20 (1973), 456–468], but using “exclusive or” instead of addition; this makes
the period length exactly 255 – 1. Each bit position in the sequence of Lewis
and Payne runs through the same periodic sequence, but has its own starting
point. Experience has shown that (7) gives better results.

We have now seen that sequences with 0 ≤ Xn < m and period mk − 1 can
be constructed without great difficulty, when Xn is a suitable function of Xn−1,
. . . , Xn–k and when m is prime. The highest conceivable period for any
sequence defined by a relation of the form

is easily seen to be mk. M. H. Martin [Bull. Amer. Math. Soc. 40 (1934),
859–864] was the first person to show that functions achieving this maximum
period are possible for all m and k. His method is easy to state (exercise 17)
and reasonably efficient to program (exercise 29), but it is unsuitable for
random number generation because it changes the value of Xn−1 + ... + Xn–k
very slowly: All k-tuples occur, but not in a very random order. A better
class of functions f that yield the maximum period mk is considered in
exercise 21. The corresponding programs are, in general, not as efficient for
random number generation as other methods we have described, but they do
give demonstrable randomness when the period as a whole is considered.

Many other schemes have been proposed for random number generation.
The most interesting of these alternative methods may well be the inversive
congruential sequences suggested by Eichenauer and Lehn [Statistische
Hefte 27 (1986), 315–326]:

Here p is prime, Xn ranges over the set {0, 1, . . . , p − 1, ∞}, and inverses
are defined by 0−1 = ∞, ∞−1 = 0, otherwise X−1X ≡ 1 (modulo p). Since 0 is
always followed by ∞ and then by c in this sequence, we could simply define
0−1 = 0 for purposes of implementation; but the theory is cleaner and easier
to develop when 0−1 = ∞. Efficient algorithms suitable for hardware

implementation are available for computing X−1 modulo p; see, for example,
exercise 4.5.2–39. Unfortunately, however, this operation is not in the
repertoire of most computers. Exercise 35 shows that many choices of a and
c yield the maximum period length p + 1. Exercise 37 demonstrates the most
important property: Inversive congruential sequences are completely free of
the lattice structure that is characteristic of linear congruential sequences.

Another important class of techniques deals with the combination of
random number generators. There will always be people who feel that the
linear congruential methods, additive methods, etc., are all too simple to give
sufficiently random sequences; and it may never be possible to prove that
their skepticism is unjustified—indeed, they may be right—so it is pretty
useless to argue the point. There are reasonably efficient ways to combine
two sequences into a third one that should be haphazard enough to satisfy all
but the most hardened skeptic.

Suppose we have two sequences X0, X1, . . . and Y0, Y1, . . . of random
numbers between 0 and m − 1, preferably generated by two unrelated
methods. Then we can, for example, use one random sequence to permute the
elements of another, as suggested by M. D. MacLaren and G. Marsaglia
[JACM 12 (1965), 83–89; see also Marsaglia and Bray, CACM 11 (1968),
757–759]:
Algorithm M (Randomizing by shuffling). Given methods for generating two
sequences 〈Xn〉 and 〈Yn〉, this algorithm will successively output the
terms of a “considerably more random” sequence. We use an auxiliary table
V [0], V [1], . . . , V [k − 1], where k is some number chosen for convenience,
usually in the neighborhood of 100. Initially, the V -table is filled with the
first k values of the X-sequence.

M1. [Generate X, Y.] Set X and Y equal to the next members of the
sequences 〈Xn〉 and 〈Yn〉, respectively.

M2. [Extract j.] Set j ← ⌊kY/m⌋, where m is the modulus used in the
sequence 〈Yn〉; that is, j is a random value, 0 ≤ j < k, determined by
Y.

M3. [Exchange.] Output V [j] and then set V [j] ← X.
As an example, assume that Algorithm M is applied to the following two

sequences, with k = 64:

On intuitive grounds it appears safe to predict that the sequence obtained by
applying Algorithm M to (13) will satisfy virtually anyone’s requirements
for randomness in a computer-generated sequence, because the relationship
between nearby terms of the output has been almost entirely obliterated.
Furthermore, the time required to generate this sequence is only slightly more
than twice as long as it takes to generate the sequence 〈Xn〉 alone.

Exercise 15 proves that the period length of Algorithm M’s output will
be the least common multiple of the period lengths of 〈Xn〉 and 〈Yn〉, in
most situations of practical interest. In particular, if we reject the value 0
when it occurs in the Y-sequence, so that 〈Yn〉 has period length 235 – 1,
the numbers generated by Algorithm M from (13) will have a period of
length 270 – 235. [See J. Arthur Greenwood, Computer Science and
Statistics: Symposium on the Interface 9 (1976), 222–227.]

However, there is an even better way to shuffle the elements of a
sequence, discovered by Carter Bays and S. D. Durham [ACM Trans. Math.
Software 2 (1976), 59–64]. Their approach, although it appears to be
superficially similar to Algorithm M, can give surprisingly better
performance even though it requires only one input sequence 〈Xn〉 instead
of two:
Algorithm B (Randomizing by shuffling). Given a method for generating a
sequence 〈Xn〉, this algorithm will successively output the terms of a
“considerably more random” sequence, using an auxiliary table V [0], V [1],
. . . , V [k − 1] as in Algorithm M. Initially the V -table is filled with the first
k values of the X-sequence, and an auxiliary variable Y is set equal to the (k
+ 1)st value.

B1. [Extract j.] Set j ← ⌊kY/m⌋, where m is the modulus used in the
sequence 〈Xn〉; that is, j is a random value, 0 ≤ j < k, determined by
Y.

B2. [Exchange.] Set Y ← V [j], output Y, and then set V [j] to the next
member of the sequence 〈Xn〉.

The reader is urged to work exercises 3 and 5, in order to get a feeling
for the difference between Algorithms M and B.

On MIX we may implement Algorithm B by taking k equal to the byte
size, obtaining the following simple generation scheme once the initialization
has been done:

The output appears in register A. Notice that Algorithm B requires only
four instructions of overhead per generated number.

F. Gebhardt [Math. Comp. 21 (1967), 708–709] found that satisfactory
random sequences were produced by Algorithm M even when it was applied
to a sequence as nonrandom as the Fibonacci sequence, with Xn = F2n mod m
and Yn = F2n+1 mod m. However, it is also possible for Algorithm M to
produce a sequence less random than the original sequences, if 〈Xn〉 and
〈Yn〉 are strongly related, as shown in exercise 3. Such problems do not
seem to arise with Algorithm B. Since Algorithm B won’t make a sequence
any less random, and since it enhances the randomness with very little extra
cost, it can be recommended for use in combination with any other random
number generator.

Shuffling methods have an inherent defect, however: They change only
the order of the generated numbers, not the numbers themselves. For most
purposes the order is the critical thing, but if a random number generator fails
the “birthday spacings” test discussed in Section 3.3.2 or the random walk
test of exercise 3.3.2–31 it will not fare much better after it has been
shuffled. Shuffling also has the comparative disadvantage that it does not
allow us to start at a given place in the period, or to skip quickly from Xn to
Xn+k for large k.

Many people have therefore suggested combining two sequences 〈Xn〉
and 〈Yn〉 in a much simpler way, which avoids both of the defects of

shuffling: We can use a combination like

when 0 ≤ Xn < m and 0 ≤ Yn < m′ ≤ m. Exercises 13 and 14 discuss the
period length of such sequences; exercise 3.3.2–23 shows that (15) tends to
enhance the randomness when the seeds X0 and Y0 are chosen independently.

An even simpler way to remove the structural biases of arithmetically
generated numbers was proposed already in the early days of computing by J.
Todd and O. Taussky Todd [Symp. on Monte Carlo Methods (Wiley, 1956),
15–28]: We can just throw away some numbers of the sequence. Their
suggestion was of little use with linear congruential generators, but it has
become quite appropriate nowadays in connection with generators like (7)
that have extremely long periods, because we have plenty of numbers to
discard.

The simplest way to improve the randomness of (7) is to use only every
jth term, for some small j. But a better scheme, which may be even simpler,
is to use (7) to produce, say, 500 random numbers in an array and to use only
the first 55 of them. After those 55 have been consumed, we generate 500
more in the same way. This idea was proposed by Martin Lüscher
[Computer Physics Communications 79 (1994), 100–110], motivated by the
theory of chaos in dynamical systems: We can regard (7) as a process that
maps 55 values (Xn−55, . . . , Xn−1) into another vector of 55 values (Xn+t−55, .
. . , Xn+t−1). Suppose we generate t ≥ 55 values and use the first 55 of them.
Then if t = 55 the new vector of values is rather close to the old; but if t ≈
500 there is almost no correlation between old and new (see exercise 33).
For the analogous case of add-with-carry or subtract-with-borrow generators
(exercise 3.2.1.1–14), the vectors are in fact known to be the radix-b
representation of numbers in a linear congruential generator, and the relevant
multiplier when we generate t numbers at a time is b−t. Lüscher’s theory for
this case can therefore be confirmed with the spectral test of Section 3.3.4. A
portable random number generator, based on a lagged Fibonacci sequence
enhanced with Lüscher’s approach, appears in Section 3.6, together with
further commentary.

Random number generators typically do only a few multiplications
and/or additions to get from one element of the sequence to the next. When
such generators are combined as suggested above, common sense tells us that

the resulting sequences ought to be indistinguishable from truly random
numbers. But intuitive hunches are no substitute for rigorous mathematical
proof. If we are willing to do more work—say 1000 or 1000000 times as
much—we can obtain sequences for which substantially better theoretical
guarantees of randomness are available.

For example, consider the sequence of bits B1, B2, . . . generated by

[Blum, Blum, and Shub, SICOMP 15 (1986), 364–383], or the more
elaborate sequence generated by

where the dot product of r-bit binary numbers (xr−1 . . . x0)2 and (zr−1 . . . z0)2
is xr−1zr−1 + ... + x0z0; here Z is an r-bit “mask,” and r is the number of bits in
M. The modulus M should be the product of two large primes of the form 4k
+ 3, and the starting value X0 should be relatively prime to M. Rule (17),
suggested by Leonid Levin, is a take-off on von Neumann’s original middle-
square method; we will call it the muddle-square method, because it jumbles
the bits of the squares. Rule (16) is, of course, the special case Z = 1.

Section 3.5F contains a proof that, when X0, Z, and M are chosen at
random, the sequences generated by (16) and (17) pass all statistical tests for
randomness that require no more work than factoring large numbers. In other
words, the bits cannot be distinguished from truly random numbers by any
computation lasting less than 100 years on today’s fastest computers, when M
is suitably large, unless it is possible to find the factors of a nontrivial
fraction of such numbers much more rapidly than is presently known.
Formula (16) is simpler than (17), but the modulus M in (16) has to be
somewhat larger than it does in (17) if we want to achieve the same
statistical guarantees.

Exercises

 1. [12] In practice, we form random numbers using Xn+1 = (aXn +c) mod
m, where the X’s are integers, afterwards treating them as the fractions Un
= Xn/m. The recurrence relation for Un is actually

Discuss the generation of random sequences using this relation directly,
by making use of floating point arithmetic on the computer.

 2. [M20] A good source of random numbers will have Xn−1 < Xn+1 < Xn
about one-sixth of the time, since each of the six possible relative orders of
Xn−1, Xn, and Xn+1 should be equally probable. However, show that the
ordering above never occurs if the Fibonacci sequence (5) is used.

3. [23] (a) What sequence comes from Algorithm M if

and k = 4? (Note that the potency is two, so 〈Xn〉 and 〈Yn〉 aren’t
extremely random to start with.) (b) What happens if Algorithm B is
applied to this same sequence 〈Xn〉 with k = 4?

4. [00] Why is the most significant byte used in the first line of program
(14), instead of some other byte?
 5. [20] Discuss using Xn = Yn in Algorithm M, in order to improve the
speed of generation. Is the result analogous to Algorithm B?

6. [10] In the binary method (10), the text states that the low-order bit of X
is random, if the code is performed repeatedly. Why isn’t the entire word X
random?

7. [20] Show that a complete sequence of length 2e (that is, a sequence in
which each of the 2e possible sets of e adjacent bits occurs just once in the
period) may be obtained if program (10) is changed to the following:

8. [M39] Prove that the quadratic congruential sequence (3) has period
length m if and only if the following conditions are satisfied:

i) c is relatively prime to m;
ii) d and a – 1 are both multiples of p, for all odd primes p dividing m;
iii) d is even, and d ≡ a – 1 (modulo 4), if m is a multiple of 4;

d ≡ a − 1 (modulo 2), if m is a multiple of 2;
iv) d ≢ 3c (modulo 9), if m is a multiple of 9.

[Hint: The sequence defined by modulo m
has a period of length m only if the same sequence modulo any divisor r of m

has period length r.]
 9. [M24] (R. R. Coveyou.) Use the result of exercise 8 to prove that the
modified middle-square method (4) has a period of length 2e−2.
10. [M29] Show that if X0 and X1 are not both even and if m = 2e, the
period of the Fibonacci sequence (5) is 3 · 2e−1.
11. [M36] The purpose of this exercise is to analyze certain properties of
integer sequences satisfying the recurrence relation

If we can calculate the period length of this sequence modulo m = pe, when p
is prime, the period length with respect to an arbitrary modulus m is the least
common multiple of the period lengths for the prime power factors of m.

a) If f(z), a(z), b(z) are polynomials with integer coefficients, let us write
a(z) ≡ b(z) (modulo f(z) and m) if a(z) = b(z) + f(z)u(z) + mv(z) for
some polynomials u(z) and v(z) with integer coefficients. Prove that the
following statement holds when f(0) = 1 and pe > 2: If zλ ≡ 1 (modulo
f(z) and pe) and zλ ≢ 1 (modulo f(z) and pe+1), then zpλ ≡ 1 (modulo f(z)
and pe+1) and zpλ ≢ 1 (modulo f(z) and pe+2).

b) Let f(z) = 1 – a1z – ... – akzk, and let

Let λ(m) denote the period length of 〈An mod m〉. Prove that λ(m) is
the smallest positive integer λ such that zλ ≡ 1 (modulo f(z) and m).

c) Given that p is prime, pe > 2, and λ(pe) ≠ λ(pe+1), prove that λ(pe+r) =
prλ(pe) for all r ≥ 0. (Thus, to find the period length of the sequence
〈An mod 2e〉, we can compute λ(4), λ(8), λ(16), . . . until we find the
smallest e ≥ 3 such that λ(2e) ≠ λ(4); then the period length is
determined mod 2e for all e. Exercise 4.6.3–26 explains how to
calculate Xn for large n in O(log n) operations.)

d) Show that any sequence of integers satisfying the recurrence stated at
the beginning of this exercise has the generating function g(z)/f(z), for
some polynomial g(z) with integer coefficients.

e) Given that the polynomials f(z) and g(z) in part (d) are relatively
prime modulo p (see Section 4.6.1), prove that the sequence 〈Xn mod
pe〉 has exactly the same period length as the special sequence 〈An

mod pe〉 in (b). (No longer period could be obtained by any choice of
X0, . . . , Xk−1, since the general sequence is a linear combination of
“shifts” of the special sequence.) [Hint: By exercise 4.6.2–22
(Hensel’s lemma), there exist polynomials such that a(z)f(z) + b(z)g(z)
≡ 1 (modulo pe).]

 12. [M28] Find integers X0, X1, a, b, and c such that the sequence

has the longest period length of all sequences of this type. [Hint: It
follows that Xn+2 = ((a + 1)Xn+1 + (b – a)Xn – bXn–1) mod 2e; see
exercise 11(c).]

13. [M20] Let 〈Xn〉 and 〈Yn〉 be sequences of integers mod m with
periods of lengths λ1 and λ2, and combine them by letting Zn = (Xn + Yn)
mod m. Show that if λ1 and λ2 are relatively prime, the sequence 〈Zn〉
has a period of length λ1λ2.
14. [M24] Let Xn, Yn, Zn, λ1, λ2 be as in the previous exercise. Suppose
that the prime factorization of λ1 is 2e2 3e3 5e5. . . , and similarly suppose
that λ2 = 2f2 3f3 5f5. . . . Let gp = (max(ep, fp) if ep ≠ fp, otherwise 0), and
let λ0 = 2g2 3g3 5g5. . . . Show that the period length λ′ of the sequence
〈Zn〉 is a multiple of λ0, and it is a divisor of λ = lcm(λ1, λ2). In
particular, λ′ = λ if (ep ≠ fp or ep = fp = 0) for each prime p.

15. [M27] Let the sequence 〈Xn〉 in Algorithm M have period length λ1,
and assume that all elements of its period are distinct. Let qn = min{r | r >
0 and ⌊kYn–r/m⌋ = ⌊kYn/m⌋}. Assume that for all n ≥ n0, and that
the sequence 〈qn〉 has period length λ2. Let λ be the least common
multiple of λ1 and λ2. Prove that the output sequence 〈Zn〉 produced by
Algorithm M has a period of length λ.

 16. [M28] Let CONTENTS(A) in method (10) be (a1a2 . . . ak)2 in binary
notation. Show that the generated sequence of low-order bits X0, X1, . . .
satisfies the relation

[This may be regarded as another way to define the sequence, although
the connection between this relation and the efficient code (10) is not
apparent at first glance!]

17. [M33] (M. H. Martin, 1934.) Let m and k be positive integers, and let
X1 = X2 = ... = Xk = 0. For all n > 0, set Xn+k equal to the largest
nonnegative value y < m such that the k-tuple (Xn+1, . . . , Xn+k−1, y) has not
already occurred in the sequence; in other words, (Xn+1, . . . , Xn+k−1, y)
must differ from (Xr+1, . . . , Xr+k) for 0 ≤ r < n. In this way, each possible
k-tuple will occur at most once in the sequence. Eventually the process
will terminate, when we reach a value of n such that (Xn+1, . . . , Xn+k−1, y)
has already occurred in the sequence for all nonnegative y < m. For
example, if m = k = 3 the sequence is 00022212202112102012001110100,
and the process terminates at this point. (a) Prove that when the sequence
terminates, we have Xn+1 = ... = Xn+k−1 = 0. (b) Prove that every k-tuple
(a1, a2, . . . , ak) of elements with 0 ≤ aj < m occurs in the sequence; hence
the sequence terminates when n = mk. [Hint: Prove that the k-tuple (a1, . . .
, as, 0, . . . , 0) appears, when as ≠ 0, by induction on s.] Note that if we
now define f(Xn, . . . , Xn+k−1) = Xn+k for 1 ≤ n ≤ mk, setting Xmk +k = 0,
we obtain a function of maximum possible period.
18. [M22] Let 〈Xn〉 be the sequence of bits generated by method (10),
with k = 35 and CONTENTS(A) =
(00000000000000000000000000000000101)2. Let Un be the binary
fraction (.XnkXnk+1 . . . Xnk+k−1)2; show that this sequence 〈Un〉 fails the
serial test on pairs (Section 3.3.2B) when d = 8.
19. [M41] For each prime p specified in the first column of Table 2 in
Section 4.5.4, find suitable constants a1 and a2 as suggested in the text,
such that the period length of (8), when k = 2, is p2 – 1. (See Eq. 3.3.4–
(39) for an example.)

20. [M40] Calculate constants suitable for use as CONTENTS(A) in
method (10), having approximately the same number of zeros as ones, for 2
≤ k ≤ 64.
21. [M35] (D. Rees.) The text explains how to find functions f such that the
sequence (11) has period length mk − 1, provided that m is prime and X0, .
. . , Xk−1 are not all zero. Show that such functions can be modified to
obtain sequences of type (11) with period length mk, for all integers m.
[Hints: Consider the results of exercises 7 and 13, and sequences such as
〈pX2n + X2n+1〉.]

 22. [M24] The text restricts discussion of the extended linear sequences
(8) to the case that m is prime. Prove that reasonably long periods can also
be obtained when m is “squarefree,” that is, the product of distinct primes.
(Examination of Table 3.2.1.1–1 shows that m = w ± 1 often satisfies this
hypothesis; many of the results of the text can therefore be carried over to
that case, which is somewhat more convenient for calculation.)

 23. [20] Discuss the sequence defined by Xn = (Xn−55 – Xn−24) mod m as
an alternative to (7).
24. [M20] Let 0 < l < k. Prove that the sequence of bits defined by the
recurrence Xn = (Xn–k+l + Xn–k) mod 2 has period length 2k – 1 whenever
the sequence defined by Yn = (Yn–l + Yn–k) mod 2 does.

25. [26] Discuss the alternative to Program A that changes all 55 entries of
the Y table every 55th time a random number is required.
26. [M48] (J. F. Reiser.) Let p be prime and let k be a positive integer.
Given integers a1, . . . , ak and x1, . . . , xk, let λα be the period of the
sequence 〈Xn〉 generated by the recurrence

and let Nα be the number of 0s that occur in the period (the number of
indices j such that μα ≤ j < μα + λα and Xj = 0). Prove or disprove the
following conjecture: There exists a constant c (depending possibly on p
and k and a1, . . . , ak) such that Nα ≤ cpα(k−2)/(k−1) for all α and all x1, . . .
, xk.

[Notes: Reiser has proved that if the recurrence has maximum period
length mod p (that is, if λ1 = pk − 1), and if the conjecture holds, then the k-
dimensional discrepancy of 〈Xn〉 will be O(αkp−α/(k−1)) as α → ∞; thus
an additive generator like (7) would be well distributed in 55 dimensions,
when m = 2e and the entire period is considered. (See Section 3.3.4 for the
definition of discrepancy in k dimensions.) The conjecture is a very weak
condition, for if 〈Xn〉 takes on each value about equally often and if λα =
pα–1(pk − 1), the quantity Nα ≈ (pk − 1)/p does not grow at all as α
increases. Reiser has verified the conjecture for k = 3. On the other hand
he has shown that it is possible to find unusually bad starting values x1, . . .
, xk (depending on α) so that N2α ≥ pα, provided that λα = pα–1(pk − 1) and
k ≥ 3 and α is sufficiently large.]
27. [M30] Suppose Algorithm B is being applied to a sequence 〈Xn〉
whose period length is λ, where λ ≫ k. Show that for fixed k and all
sufficiently large λ, the output of the sequence will eventually be periodic
with the same period length λ, unless 〈Xn〉 isn’t very random to start
with. [Hint: Find a pattern of consecutive values of ⌊kXn/m⌋ that causes
Algorithm B to “synchronize” its subsequent behavior.]
28. [40] (A. G. Waterman.) Experiment with linear congruential sequences
with m the square or cube of the computer word size, while a and c are
single-precision numbers.

 29. [40] Find a good way to compute the function f(x1, . . . , xk) defined by
Martin’s sequence in exercise 17, given only the k-tuple (x1, . . . , xk).

30. [M37] (R. P. Brent.) Let f(x) = xk – a1xk− 1 – ... – ak be a primitive
polynomial modulo 2, and suppose that X0, . . . , Xk−1 are integers not all
even.

a) Prove that the period of the recurrence Xn = (a1Xn−1 + ... + akXn–k)
mod 2e is 2e–1(2k – 1) for all e ≥ 1 if and only if f(x)2 + f(–x)2 ≢ 2f(x2)
and f(x)2 + f(–x)2 ≢ 2(–1)kf(–x2) (modulo 8). [Hint: We have x2k ≡ –x
(modulo 4 and f(x)) if and only if f(x)2 + f(–x)2 ≡ 2f(x2) (modulo 8).]

b) Prove that this condition always holds when the polynomial f(x) = xk ±
xl ± 1 is primitive modulo 2 and k > 2.

31. [M30] (G. Marsaglia.) What is the period length of the sequence (7′)
when m = 2e ≥ 8? Assume that X0, . . . , X54 are not all ≡ ±1 (modulo 8).

32. [M21] What recurrences are satisfied by the elements of the
subsequences 〈X2n〉 and 〈X3n〉, when Xn = (Xn−24 + Xn−55) mod m?

 33. [M23] (a) Let gn(z) = Xn+30 +Xn+29z + ... + Xnz30 +Xn+54z31 + ... +
Xn+31z54, where the X’s satisfy the lagged Fibonacci recurrence (7). Find a
simple relation between gn(z) and gn+t(z). (b) Express X500 in terms of X0, .
. . , X54.
34. [M25] Prove that the inversive congruential sequence (12) has period p
+ 1 if and only if the polynomial f(x) = x2 –cx−a has the following two
properties: (i) xp+1 mod f(x) is a nonzero constant, when computed with
polynomial arithmetic modulo p; (ii) x(p+1)/q mod f(x) has degree 1 for
every prime q that divides p+1. [Hint: Consider powers of the matrix
.]
35. [HM35] How many pairs (a, c) satisfy the conditions of exercise 34?
36. [M25] Prove that the inversive congruential sequence

 mod 2e, X0 = 1, e ≥ 3, has period length 2e−1 whenever
a mod 4 = 1 and c mod 4 = 2.

 37. [HM32] Let p be prime and assume that mod p
defines an inversive congruential sequence of period p + 1. Also let 0 ≤ b1
< ... < bd ≤ p, and consider the set

This set contains p + 1 – d vectors, any d of which lie in some (d − 1)-
dimensional hyperplane H = {(v1, . . . , vd) | r1v1 + ... + rdvd ≡ r0

(modulo p)}, where (r1, . . . , rd) ≢ (0, . . . , 0). Prove that no d + 1
vectors of V lie in the same hyperplane.

3.3. Statistical Tests
Our main purpose is to obtain sequences that behave as if they are random.
So far we have seen how to make the period of a sequence so long that for
practical purposes it never will repeat; this is an important criterion, but it by
no means guarantees that the sequence will be useful in applications. How
then are we to decide whether a sequence is sufficiently random?

If we were to give some randomly chosen man a pencil and paper and
ask him to write down 100 random decimal digits, chances are very slim that
he would produce a satisfactory result. People tend to avoid things that seem
nonrandom, such as pairs of equal adjacent digits (although about one out of
every 10 digits should equal its predecessor). And if we would show that
same man a table of truly random digits, he would quite probably tell us they
are not random at all; his eye would spot certain apparent regularities.

According to Dr. I. J. Matrix and Donald C. Rehkopf (as quoted by
Martin Gardner in Scientific American, January, 1965), “Mathematicians
consider the decimal expansion of π a random series, but to a modern
numerologist it is rich with remarkable patterns.” Dr. Matrix has pointed out,
for example, that the first repeated two-digit number in π’s expansion is 26,
and its second appearance comes in the middle of a curious repetition
pattern:

After listing a dozen or so further properties of these digits, he observed that
π, when correctly interpreted, conveys the entire history of the human race!

We all notice patterns in our telephone numbers, license numbers, etc., as
aids to memory. The point of these remarks is that we cannot be trusted to
judge by ourselves whether a sequence of numbers is random or not. Some
unbiased mechanical tests must be applied.

The theory of statistics provides us with some quantitative measures for
randomness. There is literally no end to the number of tests that can be
conceived; we will discuss the tests that have proved to be most useful, most
instructive, and most readily adapted to computer calculation.

If a sequence behaves randomly with respect to tests T1, T2, . . . , Tn, we
cannot be sure in general that it will not be a miserable failure when it is

subjected to a further test Tn+1. Yet each test gives us more and more
confidence in the randomness of the sequence. In practice, we apply about
half a dozen different kinds of statistical tests to a sequence, and if it passes
them satisfactorily we consider it to be random—it is then presumed innocent
until proven guilty.

Every sequence that is to be used extensively should be tested carefully,
so the following sections explain how to administer the tests in an
appropriate way. Two kinds of tests are distinguished: empirical tests, for
which the computer manipulates groups of numbers of the sequence and
evaluates certain statistics; and theoretical tests, for which we establish
characteristics of the sequence by using number-theoretic methods based on
the recurrence rule used to form the sequence.

If the evidence doesn’t come out as desired, the reader may wish to try
the techniques in How to Lie With Statistics by Darrell Huff (Norton, 1954).

3.3.1. General Test Procedures for Studying Random Data
A. “Chi-square” tests. The chi-square test (χ2 test) is perhaps the best
known of all statistical tests, and it is a basic method that is used in
connection with many other tests. Before considering the idea in general, let
us consider a particular example of the chi-square test as it might be applied
to dice throwing. Using two “true” dice (each of which, independently, is
assumed to yield the values 1, 2, 3, 4, 5, or 6 with equal probability), the
following table gives the probability of obtaining a given total, s, on a single
throw:

For example, a value of 4 can be thrown in three ways: 1 + 3, 2 + 2, 3 + 1;
this constitutes of the 36 possible outcomes.

If we throw the dice n times, we should obtain the value s approximately
nps times on the average. For example, in 144 throws we should get the value
4 about 12 times. The following table shows what results were actually
obtained in a particular sequence of 144 throws of the dice:

Notice that the observed number was different from the expected number in
all cases; in fact, random throws of the dice will hardly ever come out with
exactly the right frequencies. There are 36144 possible sequences of 144
throws, all of which are equally likely. One of these sequences consists of all
2s (“snake eyes”), and anyone throwing 144 snake eyes in a row would be
convinced that the dice were loaded. Yet the sequence of all 2s is just as
probable as any other particular sequence if we specify the outcome of each
throw of each die.

In view of this, how can we test whether or not a given pair of dice is
loaded? The answer is that we can’t make a definite yes-no statement, but we
can give a probabilistic answer. We can say how probable or improbable
certain types of events are.

A fairly natural way to proceed in the example above is to consider the
squares of the differences between the observed numbers Ys and the expected
numbers nps. We can add these together, obtaining

A bad set of dice should result in a relatively high value of V; and for any
given value of V we can ask, “What is the probability that V is this high,
using true dice?” If this probability is very small, say , we would know
that only about one time in 100 would true dice give results so far away from
the expected numbers, and we would have definite grounds for suspicion.
(Remember, however, that even good dice would give such a high value of V
about one time in a hundred, so a cautious person would repeat the
experiment to see if the high value of V is repeated.)

The statistic V in (3) gives equal weight to (Y7 – np7)2 and (Y2 – np2)2,
although (Y7 – np7)2 is likely to be a good deal higher than (Y2 – np2)2 since
7s occur about six times as often as 2s. It turns out that the “right” statistic, at
least one that has proved to be most important, will give (Y7 – np7)2 only as
much weight as (Y2 – np2)2, and we should change (3) to the following
formula:

This is called the “chi-square” statistic of the observed quantities Y2, . . . ,
Y12 in the dice-throwing experiment. For the data in (2), we find that

The important question now is, of course, “Does constitute an
improbably high value for V to assume?” Before answering this question, let
us consider the general application of the chi-square method.

In general, suppose that every observation can fall into one of k
categories. We take n independent observations; this means that the outcome
of one observation has absolutely no effect on the outcome of any of the
others. Let ps be the probability that each observation falls into category s,

and let Ys be the number of observations that actually do fall into category s.
We form the statistic

In our example above, there are eleven possible outcomes of each throw of
the dice, so k = 11. (Eq. (6) is a slight change of notation from Eq. (4), since
we are numbering the possibilities from 1 to k instead of from 2 to 12.)

By expanding in (6), and using the
facts that

we arrive at the formula

which often makes the computation of V somewhat easier.
Now we turn to the important question, “What constitutes a reasonable

value of V ?” This is found by referring to a table such as Table 1, which
gives values of “the chi-square distribution with ν degrees of freedom” for
various values of ν. The line of the table with ν = k –1 is to be used; the
number of “degrees of freedom” is k−1, one less than the number of
categories. (Intuitively, this means that Y1, Y2, . . . , Yk are not completely
independent, since Eq. (7) shows that Yk can be computed if Y1, . . . , Yk−1 are
known; hence, k − 1 degrees of freedom are present. This argument is not
rigorous, but the theory below justifies it.)

(For further values, see Handbook of Mathematical Functions, edited by
M. Abramowitz and I. A. Stegun (Washington, D.C.: U.S. Government
Printing Office, 1964), Table 26.8. See also Eq. (22) and exercise 16.)

Table 1 Selected Percentage Points of the Chi-Square Distribution

If the table entry in row ν under column p is x, it means, “The quantity V
in Eq. (8) will be less than or equal to x with approximate probability p, if n
is large enough.” For example, the 95 percent entry in row 10 is 18.31; we
will have V > 18.31 only about 5 percent of the time.

Let us assume that our dice-throwing experiment has been simulated on a
computer using some sequence of supposedly random numbers, with the
following results:

We can compute the chi-square statistic in the first case, getting the value V1
= , and in the second case we get . Referring to the table
entries for 10 degrees of freedom, we see that V1 is much too high; V will be
greater than 23.21 only about one percent of the time! (By using more
extensive tables, we find in fact that V will be as high as V1 only 0.1 percent
of the time.) Therefore Experiment 1 represents a significant departure from
random behavior.

On the other hand, V2 is quite low, since the observed values Ys in
Experiment 2 are quite close to the expected values nps in (2). The chi-
square table tells us, in fact, that V2 is much too low: The observed values
are so close to the expected values, we cannot consider the result to be
random! (Indeed, reference to other tables shows that such a low value of V
occurs only 0.03 percent of the time when there are 10 degrees of freedom.)
Finally, the value computed in (5) can also be checked with Table
1. It falls between the entries for 25 percent and 50 percent, so we cannot
consider it to be significantly high or significantly low; thus the observations
in (2) are satisfactorily random with respect to this test.

It is somewhat remarkable that the same table entries are used no matter
what the value of n is, and no matter what the probabilities ps are. Only the
number ν = k − 1 affects the results. In actual fact, however, the table entries
are not exactly correct: The chi-square distribution is an approximation
that is valid only for large enough values of n. How large should n be? A
common rule of thumb is to take n large enough so that each of the expected
values nps is five or more; preferably, however, take n much larger than this,
to get a more powerful test. In our examples above we took n = 144, so np2
was only 4, violating the stated rule of thumb. This was done only because
the author tired of throwing the dice; it makes the entries in Table 1 less
accurate for our application. Experiments run on a computer, with n = 1000,
or 10000, or even 100000, would be much better than this. We could also
combine the data for s = 2 and s = 12; then the test would have only nine

degrees of freedom but the chi-square approximation would be more
accurate.

We can get an idea of how crude an approximation is involved by
considering the case when there are only two categories, having probabilities
p1 and p2. Suppose and . According to the stated rule of
thumb, we should have n ≥ 20 to have a satisfactory approximation, so let’s
check that out. When n = 20, the possible values of V are

 for –5 ≤ r ≤ 15; we wish to
know how well the row ν = 1 of Table 1 describes the distribution of V. The
chi-square distribution varies continuously, while the actual distribution of V
has rather big jumps, so we need some convention for representing the exact
distribution. If the distinct possible outcomes of the experiment lead to the
values V0 ≤ V1 ≤ ... ≤ Vn with respective probabilities π0, π1, . . . , πn,
suppose that a given percentage p falls in the range π0 + ... + πj−1 < p < π0 +
... + πj−1 + πj. We would like to represent p by a “percentage point” x such
that V is less than x with probability ≤ p and V is greater than x with
probability ≤ 1–p. It is not difficult to see that the only such number is x = Vj.
In our example for n = 20 and ν = 1, it turns out that the percentage points of
the exact distribution, corresponding to the approximations in Table 1 for p =
1%, 5%, 25%, 50%, 75%, 95%, and 99%, respectively, are

(to two decimal places). For example, the percentage point for p = 95% is
4.27, while Table 1 gives the estimate 3.841. The latter value is too low; it
tells us (incorrectly) to reject the value V = 4.27 at the 95% level, while in
fact the probability that V ≥ 4.27 is more than 6.5%. When n = 21, the
situation changes slightly because the expected values np1 = 5.25 and np2 =
15.75 can never be obtained exactly; the percentage points for n = 21 are

We would expect Table 1 to be a better approximation when n = 50, but
the corresponding tableau actually turns out to be further from Table 1 in
some respects than it was for n = 20:

Here are the values when n = 300:

Even in this case, when nps is ≥ 75 in each category, the entries in Table 1
are good to only about one significant digit.

The proper choice of n is somewhat obscure. If the dice are actually
biased, the fact will be detected as n gets larger and larger. (See exercise
12.) But large values of n will tend to smooth out locally nonrandom
behavior, when blocks of numbers with a strong bias are followed by blocks
of numbers with the opposite bias. Locally nonrandom behavior is not an
issue when actual dice are rolled, since the same dice are used throughout the
test, but a sequence of numbers generated by computer might very well
display such anomalies. Perhaps a chi-square test should be made for several
different values of n. At any rate, n should always be rather large.

We can summarize the chi-square test as follows. A fairly large number,
n, of independent observations is made. (It is important to avoid using the
chi-square method unless the observations are independent. See, for
example, exercise 10, which considers the case when half of the
observations depend on the other half.) We count the number of observations
falling into each of k categories and compute the quantity V given in Eqs. (6)
and (8). Then V is compared with the numbers in Table 1, with ν = k − 1. If V
is less than the 1% entry or greater than the 99% entry, we reject the numbers
as not sufficiently random. If V lies between the 1% and 5% entries or
between the 95% and 99% entries, the numbers are “suspect”; if (by
interpolation in the table) V lies between the 5% and 10% entries, or the
90% and 95% entries, the numbers might be “almost suspect.” The chi-
square test is often done at least three times on different sets of data, and if at
least two of the three results are suspect the numbers are regarded as not
sufficiently random.

For example, see Fig. 2, which shows schematically the results of
applying five different types of chi-square tests on each of six sequences of
random numbers. Each test in this illustration was applied to three different
blocks of numbers of the sequence. Generator A is the MacLaren–Marsaglia
method (Algorithm 3.2.2M applied to the sequences in 3.2.2–(13));
Generator E is the Fibonacci method, 3.2.2–(5); and the other generators are
linear congruential sequences with the following parameters:

Fig. 2. Indications of “significant” deviations in 90 chi-square tests (see
also Fig. 5).

From Fig. 2 we conclude that (so far as these tests are concerned) Generators
A, B, D are satisfactory, Generator C is on the borderline and should
probably be rejected, Generators E and F are definitely unsatisfactory.
Generator F has, of course, low potency; Generators C and D have been
discussed in the literature, but their multipliers are too small. (Generator D is
the original multiplicative generator proposed by Lehmer in 1948; Generator
C is the original linear congruential generator with c ≠ 0 proposed by
Rotenberg in 1960.)

Instead of using the “suspect,” “almost suspect,” etc., criteria for judging
the results of chi-square tests, one can employ a less ad hoc procedure
discussed later in this section.
B. The Kolmogorov–Smirnov test. As we have seen, the chi-square test
applies to the situation when observations can fall into a finite number of
categories. It is not unusual, however, to consider random quantities that

range over infinitely many values, such as a random fraction (a random real
number between 0 and 1). Even though only finitely many real numbers can
be represented in a computer, we want our random values to behave
essentially as if all real numbers in [0 . . 1) were equally likely.

A general notation for specifying probability distributions, whether they
are finite or infinite, is commonly used in the study of probability and
statistics. Suppose we want to specify the distribution of the values of a
random quantity, X; we do this in terms of the distribution function F (x),
where

Three examples are shown in Fig. 3. First we see the distribution function for
a random bit, namely for the case when X takes on only the two values 0 and
1, each with probability . Part (b) of the figure shows the distribution
function for a uniformly distributed random real number between zero and
one; here the probability that X ≤ x is simply equal to x when 0 ≤ x ≤ 1. For
example, the probability that X ≤ is, naturally, . And part (c) shows the
limiting distribution of the value V in the chi-square test (shown here with 10
degrees of freedom); this is a distribution that we have already seen
represented in another way in Table 1. Notice that F(x) always increases
from 0 to 1 as x increases from –∞ to +∞.

Fig. 3. Examples of distribution functions.
If we make n independent observations of the random quantity X, thereby

obtaining the values X1, X2, . . . , Xn, we can form the empirical distribution
function Fn(x), where

Figure 4 illustrates three empirical distribution functions (shown as zigzag
lines, although strictly speaking the vertical lines are not part of the graph of
Fn(x)), superimposed on a graph of the assumed actual distribution function
F(x). As n gets large, Fn(x) should be a better and better approximation to
F(x).

Fig. 4. Examples of empirical distributions. The x value marked “5%” is
the percentage point where F(x) = 0.05.

The Kolmogorov–Smirnov test (KS test) may be used when F(x) has no
jumps. It is based on the difference between F (x) and Fn(x). A bad source
of random numbers will give empirical distribution functions that do not
approximate F(x) sufficiently well. Figure 4(b) shows an example in which
the Xi are consistently too high, so the empirical distribution function is too
low. Part (c) of the figure shows an even worse example; it is plain that such

great deviations between Fn(x) and F(x) are extremely improbable, and the
KS test is used to tell us how improbable they are.

To make the KS test, we form the following statistics:

Here measures the greatest amount of deviation when Fn is greater than
F, and measures the maximum deviation when Fn is less than F. The
statistics for the examples of Fig. 4 are

(Note: The factor that appears in Eqs. (11) may seem puzzling at
first. Exercise 6 shows that, for fixed x, the standard deviation of Fn(x) is
proportional to 1/ ; hence the factor magnifies the statistics and

 in such a way that this standard deviation is independent of n.)
As in the chi-square test, we may now look up the values , in a

percentile table to determine if they are significantly high or low. Table 2
may be used for this purpose, both for and . For example, the
probability is 75 percent that will be 0.7975 or less. Unlike the chi-
square test, the table entries are not merely approximations that hold for
large values of n; Table 2 gives exact values (except, of course, for roundoff
error), and the KS test may be used reliably for any value of n.

(To extend this table, see Eqs. (25) and (26), and the answer to exercise
20.)

Table 2 Selected Percentage Points of the Distributions and

As they stand, formulas (11) are not readily adapted to computer
calculation, since we are asking for a least upper bound over infinitely many
values of x. But from the fact that F(x) is increasing and the fact that Fn(x)
increases only in finite steps, we can derive a simple procedure for
evaluating the statistics and :
Step 1. Obtain independent observations X1, X2, . . . , Xn.

Step 2. Rearrange the observations so that they are sorted into ascending
order, X1 ≤ X2 ≤ ... ≤ Xn. (Efficient sorting algorithms are the subject of

Chapter 5. But it is possible to avoid sorting in this case, as shown in
exercise 23.)
Step 3. The desired statistics are now given by the formulas

An appropriate choice of the number of observations, n, is slightly easier
to make for this test than it is for the χ2 test, although some of the
considerations are similar. If the random variables Xj actually belong to the
probability distribution G(x), while they were assumed to belong to the
distribution given by F(x), we want n to be comparatively large, in order to
reject the hypothesis that G(x) = F(x); for we need n large enough that the
empirical distributions Gn(x) and Fn(x) are expected to be observably
different. On the other hand, large values of n will tend to average out locally
nonrandom behavior, and such undesirable behavior is a significant danger in
most computer applications of random numbers; this makes a case for
smaller values of n. A good compromise would be to take n equal to, say,
1000, and to make a fairly large number of calculations of on different
parts of a random sequence, thereby obtaining values

We can also apply the KS test again to these results: Let F(x) now be the
distribution function for , and determine the empirical distribution
Fr(x) obtained from the observed values in (14). Fortunately, the function
F(x) in this case is very simple; for a large value of n like n = 1000, the
distribution of is closely approximated by

The same remarks apply to , since and have the same expected
behavior. This method of using several tests for moderately large n, then
combining the observations later in another KS test, will tend to detect
both local and global nonrandom behavior.

For example, the author conducted the following simple experiment
while writing this chapter: The “maximum-of-5” test described in the next

section was applied to a set of 1000 uniform random numbers, yielding 200
observations X1, X2, . . . , X200 that were supposed to belong to the
distribution F(x) = x5 for 0 ≤ x ≤ 1. The observations were divided into 20
groups of 10 each, and the statistic was computed for each group. The
20 values of thus obtained led to the empirical distributions shown in
Fig. 4. The smooth curve shown in each of the diagrams in Fig. 4 is the actual
distribution the statistic should have. Figure 4(a) shows the empirical
distribution of obtained from the sequence

and it is satisfactorily random. Part (b) of the figure came from the Fibonacci
method; this sequence has globally nonrandom behavior—that is, it can be
shown that the observations Xn in the maximum-of-5 test do not have the
correct distribution F(x) = x5. Part (c) came from the notorious and impotent
linear congruential sequence Yn+1 = ((218 + 1)Yn + 1) mod 235, Un = Yn/235.

The KS test applied to the data in Fig. 4 gives the results shown in (12).
Referring to Table 2 for n = 20, we see that the values of and for
Fig. 4(b) are almost suspect (they lie at about the 5 percent and 88 percent
levels), but they are not quite bad enough to be rejected outright. The value of

 for Fig. 4(c) is, of course, completely out of line, so the maximum-of-5
test shows a definite failure of that random number generator.

We would expect the KS test in this experiment to have more difficulty
locating global nonrandomness than local nonrandomness, since the basic
observations in Fig. 4 were made on samples of only 10 numbers each. If we
were to take 20 groups of 1000 numbers each, part (b) would show a much
more significant deviation. To illustrate this point, a single KS test was
applied to all 200 of the observations that led to Fig. 4, and the following
results were obtained:

The global nonrandomness of the Fibonacci generator has definitely been
detected here.

We may summarize the Kolmogorov–Smirnov test as follows. We are
given n independent observations X1, . . . , Xn taken from some distribution
specified by a continuous function F(x). That is, F(x) must be like the
functions shown in Fig. 3(b) and 3(c), having no jumps like those in Fig.
3(a). The procedure explained just before Eqs. (13) is carried out on these
observations, and we obtain the statistics and . These statistics should
be distributed according to Table 2.

Some comparisons between the KS test and the χ2 test can now be made.
In the first place, we should observe that the KS test may be used in
conjunction with the χ2 test, to give a better procedure than the ad hoc
method we mentioned when summarizing the χ2 test. (That is, there is a better
way to proceed than to make three tests and to consider how many of the
results were “suspect.”) Suppose we have made, say, 10 independent χ2 tests
on different parts of a random sequence, so that values V1, V2, . . . , V10 have
been obtained. It is not a good policy simply to count how many of the V’s
are suspiciously large or small. This procedure will work in extreme cases,
and very large or very small values may mean that the sequence has too much
local nonrandomness; but a better general method would be to plot the
empirical distribution of these 10 values and to compare it to the correct
distribution, which may be obtained from Table 1. The empirical distribution
gives a clearer picture of the results of the χ2 tests, and in fact the statistics

 and could be determined from the empirical χ2 values as an
indication of success or failure. With only 10 values or even as many as 100
this could all be done easily by hand, using graphical methods; with a larger
number of V’s, a computer subroutine for calculating the chi-square
distribution would be necessary. Notice that all 20 of the observations in
Fig. 4(c) fall between the 5 and 95 percent levels, so we would not have
regarded any of them as suspicious, individually; yet collectively the
empirical distribution shows that these observations are not at all right.

An important difference between the KS test and the chi-square test is
that the KS test applies to distributions F(x) having no jumps, while the chi-
square test applies to distributions having nothing but jumps (since all
observations are divided into k categories). The two tests are thus intended
for different sorts of applications. Yet it is possible to apply the χ2 test even
when F(x) is continuous, if we divide the domain of F(x) into k parts and

ignore all variations within each part. For example, if we want to test
whether or not U1, U2, . . . , Un can be considered to come from the uniform
distribution between zero and one, we want to test if they have the
distribution F(x) = x for 0 ≤ x ≤ 1. This is a natural application for the KS
test. But we might also divide up the interval from 0 to 1 into k = 100 equal
parts, count how many U’s fall into each part, and apply the chi-square test
with 99 degrees of freedom. There are not many theoretical results available
at the present time to compare the effectiveness of the KS test versus the chi-
square test. The author has found some examples in which the KS test pointed
out nonrandomness more clearly than the χ2 test, and others in which the χ2

test gave a more significant result. If, for example, the 100 categories
mentioned above are numbered 0, 1, . . . , 99, and if the deviations from the
expected values are positive in compartments 0 to 49 but negative in
compartments 50 to 99, then the empirical distribution function will be much
further from F(x) than the χ2 value would indicate; but if the positive
deviations occur in compartments 0, 2, . . . , 98 and the negative ones occur
in 1, 3, . . . , 99, the empirical distribution function will tend to hug F(x)
much more closely. The kinds of deviations measured are therefore
somewhat different. A χ2 test was applied to the 200 observations that led to
Fig. 4, with k = 10, and the respective values of V were 9.4, 17.7, and 39.3;
so in this particular case the values were quite comparable to the KS values
given in (16). Since the χ2 test is intrinsically less accurate, and since it
requires comparatively large values of n, the KS test has several advantages
when a continuous distribution is to be tested.

A further example will also be of interest. The data that led to Fig. 2
were chi-square statistics based on n = 200 observations of the maximum-of-
t criterion for 1 ≤ t ≤ 5, with the range divided into 10 equally probable
parts. KS statistics and can be computed from exactly the same
sets of 200 observations, and the results can be tabulated in just the same
way as we did in Fig. 2 (showing which KS values are beyond the 99-
percent level, etc.); the results in this case are shown in Fig. 5. Notice that
Generator D (Lehmer’s original method) shows up very badly in Fig. 5,
while chi-square tests on the very same data revealed no difficulty in Fig. 2;
contrariwise, Generator E (the Fibonacci method) does not look so bad in
Fig. 5. The good generators, A and B, passed all tests satisfactorily. The
reasons for the discrepancies between Fig. 2 and Fig. 5 are primarily that (a)

the number of observations, 200, is really not large enough for a powerful
test, and (b) the “reject,” “suspect,” “almost suspect” ranking criterion is
itself suspect.

Fig. 5. The KS tests applied to the same data as Fig. 2.

(Incidentally, it is not fair to blame Lehmer for using a “bad” random
number generator in the 1940s, since his actual use of Generator D was quite
valid. The ENIAC computer was a highly parallel machine, programmed by
means of a plugboard; Lehmer set it up so that one of its accumulators was
repeatedly multiplying its own contents by 23 (modulo 108 + 1), yielding a
new value every few milliseconds. Since this multiplier 23 is too small, we
know that each value obtained by such a process is too strongly related to the
preceding value to be considered sufficiently random; but the durations of
time between actual uses of the values in the special accumulator by the
accompanying program were comparatively long and subject to some
fluctuation. So the effective multiplier was 23k for large, varying values of
k.)

C. History, bibliography, and theory. The chi-square test was introduced by
Karl Pearson in 1900 [Philosophical Magazine, Series 5, 50, 157–175].
Pearson’s important paper is regarded as one of the foundations of modern
statistics, since before that time people would simply plot experimental
results graphically and assert that they were correct. In his paper, Pearson
gave several interesting examples of the previous misuse of statistics; and he
also proved that certain runs at roulette (which he had experienced during
two weeks at Monte Carlo in 1892) were so far from the expected
frequencies that odds against the assumption of an honest wheel were some
1029 to one! A general discussion of the chi-square test and an extensive
bibliography appear in the survey article by William G. Cochran, Annals
Math. Stat. 23 (1952), 315–345.

Let us now consider a brief derivation of the theory behind the chi-
square test. The exact probability that Y1 = y1, . . . , Yk = yk is easily seen to
be

If we assume that Ys has the value ys with the Poisson probability

and that the Y’s are independent, then (Y1, . . . , Yk) will equal (y1, . . . , yk)
with probability

and Y1 + ... + Yk will equal n with probability

If we assume that they are independent except for the condition Y1 + ... + Yk =
n, the probability that (Y1, . . . , Yk) = (y1, . . . , yk) is the quotient

which equals (17). We may therefore regard the Y ’s as independently
Poisson distributed, except for the fact that they have a fixed sum.

It is convenient to make a change of variables,

so that . The condition Y1 + ... + Yk = n is equivalent to
requiring that

Let us consider the (k − 1)-dimensional space S of all vectors (Z1, . . . , Zk)
such that (19) holds. For large values of n, each Zs has approximately the
normal distribution (see exercise 1.2.10–15); therefore points in a
differential volume dz2 . . . dzk of S occur with probability approximately
proportional to exp . (It is at this point in the derivation
that the chi-square method becomes only an approximation for large n.) The
probability that V ≤ v is now

Since the hyperplane (19) passes through the origin of k-dimensional space,
the numerator in (20) is an integration over the interior of a (k − 1)-
dimensional hypersphere centered at the origin. An appropriate
transformation to generalized polar coordinates with radius χ and angles ω1, .
. . , ωk−2 transforms (20) into

for some function f (see exercise 15); then integration over the angles ω1, . . .
, ωk−2 gives a constant factor that cancels from numerator and denominator.
We finally obtain the formula

for the approximate probability that V ≤ v.

Our derivation of (21) uses the symbol χ to stand for the radial length,
just as Pearson did in his original paper; this is how the χ2 test got its name.
Substituting t = χ2/2, the integrals can be expressed in terms of the
incomplete gamma function, which we discussed in Section 1.2.11.3:

This is the definition of the chi-square distribution with k –1 degrees of
freedom.

We now turn to the KS test. In 1933, A. N. Kolmogorov proposed a test
based on the statistic

N. V. Smirnov discussed several modifications of this test in 1939, including
the individual examination of and as we have suggested above. There
is a large family of similar tests, but the and statistics seem to be
most convenient for computer application. A comprehensive review of the
literature concerning KS tests and their generalizations, including an
extensive bibliography, appears in a monograph by J. Durbin, Regional
Conf. Series on Applied Math. 9 (SIAM, 1973).

To study the distribution of and , we begin with the following
basic fact: If X is a random variable with the continuous distribution F (x),
then F (X) is a uniformly distributed real number between 0 and 1. To
prove this, we need only verify that if 0 ≤ y ≤ 1 we have F(X) ≤ y with
probability y. Since F is continuous, F(x0) = y for some x0; thus the
probability that F(X) ≤ y is the probability that X ≤ x0. By definition, the
latter probability is F(x0), that is, it is y.

Let Yj = nF (Xj), for 1 ≤ j ≤ n, where the X’s have been sorted as in Step
2 preceding Eq. (13). Then the variables Yj are essentially the same as
independent, uniformly distributed random numbers between 0 and n that
have been sorted into nondecreasing order, Y1 ≤ Y2 ≤ ... ≤ Yn; and the first
equation of (13) may be transformed into

If 0 ≤ t ≤ n, the probability that is therefore the probability that
Yj ≥ j – t for 1 ≤ j ≤ n. This is not hard to express in terms of n-dimensional
integrals,

The denominator here is immediately evaluated: It is found to be nn/n!,
which makes sense since the hypercube of all vectors (y1, y2, . . . , yn) with 0
≤ yj < n has volume nn, and it can be divided into n! equal parts
corresponding to each possible ordering of the y’s. The integral in the
numerator is a little more difficult, but it yields to the attack suggested in
exercise 17, and we get the general formulas

The distribution of is exactly the same. Equation (26) was first obtained
by N. V. Smirnov [Uspekhi Mat. Nauk 10 (1944), 176–206]; see also Z. W.
Birnbaum and Fred H. Tingey, Annals Math. Stat. 22 (1951), 592–596.
Smirnov derived the asymptotic formula

for all fixed s ≥ 0; this yields the approximations for large n that appear in
Table 2.

Abel’s binomial theorem, Eq. 1.2.6–(16), shows the equivalence of (25)
and (26). We can extend Table 2 using either formula, but there is an
interesting tradeoff: Although the sum in (25) has only about terms,
when is given, it must be evaluated with multiple-precision
arithmetic, because the terms are large and their leading digits cancel out. No
such problem arises in (26), since its terms are all positive; but (26) has

 terms.

Exercises

1. [00] What line of the chi-square table should be used to check whether
or not the value of Eq. (5) is improbably high?

2. [20] If two dice are “loaded” so that, on one die, the value 1 will turn
up exactly twice as often as any of the other values, and the other die is
similarly biased towards 6, compute the probability ps that a total of exactly
s will appear on the two dice, for 2 ≤ s ≤ 12.
 3. [23] Some dice that were loaded as described in the previous exercise
were rolled 144 times, and the following values were observed:

Apply the chi-square test to these values, using the probabilities in (1),
pretending that the dice are not in fact known to be faulty. Does the chi-
square test detect the bad dice? If not, explain why not.

 4. [23] The author actually obtained the data in experiment 1 of (9) by
simulating dice in which one was normal, the other was loaded so that it
always turned up 1 or 6. (The latter two possibilities were equally
probable.) Compute the probabilities that replace (1) in this case, and by
using a chi-square test decide if the results of that experiment are consistent
with the dice being loaded in this way.

5. [22] Let F(x) be the uniform distribution, Fig. 3(b). Find and
for the following 20 observations:

and state whether these observations are significantly different from the
expected behavior with respect to either of these two tests.

6. [M20] Consider Fn(x), as given in Eq. (10), for fixed x. What is the
probability that Fn(x) = s/n, given an integer s? What is the mean value of
Fn(x)? What is the standard deviation?

7. [M15] Show that and can never be negative. What is the largest
possible value can have?

8. [00] The text describes an experiment in which 20 values of the statistic
 were obtained in the study of a random sequence. These values were

plotted, to obtain Fig. 4, and a KS statistic was computed from the resulting

graph. Why were the table entries for n = 20 used to study the resulting
statistic, instead of the table entries for n = 10?
 9. [20] The experiment described in the text consisted of plotting 20
values of , computed from the maximum-of-5 test applied to different
parts of a random sequence. We could have computed also the
corresponding 20 values of ; since has the same distribution as
, we could lump together the 40 values thus obtained (that is, 20 of the
’s and 20 of the ’s), and a KS test could be applied so that we would get
new values , . Discuss the merits of this idea.

 10. [20] Suppose a chi-square test is done by making n observations, and
the value V is obtained. Now we repeat the test on these same n
observations over again (getting, of course, the same results), and we put
together the data from both tests, regarding it as a single chi-square test
with 2n observations. (This procedure violates the text’s stipulation that all
of the observations must be independent of one another.) How is the second
value of V related to the first one?
11. [10] Solve exercise 10 substituting the KS test for the chi-square test.
12. [M28] Suppose a chi-square test is made on a set of n observations,
assuming that ps is the probability that each observation falls into category
s; but suppose that in actual fact the observations have probability qs ≠ ps
of falling into category s. (See exercise 3.) We would, of course, like the
chi-square test to detect the fact that the ps assumption was incorrect. Show
that this will happen, if n is large enough. Prove also the analogous result
for the KS test.
13. [M24] Prove that Eqs. (13) are equivalent to Eqs. (11).

 14. [HM26] Let Zs be given by Eq. (18). Show directly by using Stirling’s
approximation that the multinomial probability

if Z1, Z2, . . . , Zk are bounded as n → ∞. (This idea leads to a proof of
the chi-square test that is much closer to “first principles,” and requires
less handwaving, than the derivation in the text.)

15. [HM24] Polar coordinates in two dimensions are conventionally
defined by the equations x = r cos θ and y = r sin θ. For the purposes of

integration, we have dx dy = r dr dθ. More generally, in n-dimensional
space we can let

Show that in this case

 16. [HM35] Generalize Theorem 1.2.11.3A to find the value of

for large x and fixed y, z. Disregard terms of the answer that are O(1/x).
Use this result to find the approximate solution, t, to the equation

for large ν and fixed p, thereby accounting for the asymptotic formulas
indicated in Table 1. [Hint: See exercise 1.2.11.3–8.]

17. [HM26] Let t be a fixed real number. For 0 ≤ k ≤ n, let

by convention, let P00(x) = 1. Prove the following relations:

a)

b) Pn0(x) = (x + t)n/n! – (x + t)n– 1/(n − 1)!.

c)

d) Obtain a general formula for Pnk(x), and apply it to the evaluation of
Eq. (24).

18. [M20] Give a “simple” reason why has the same probability
distribution as .
19. [HM48] Develop tests, analogous to the Kolmogorov–Smirnov test, for
use with multivariate distributions F(x1, . . . , xr) = Pr(X1 ≤ x1, . . . , Xr ≤
xr). (Such procedures could be used, for example, in place of the “serial
test” in the next section.)
20. [HM41] Deduce further terms of the asymptotic behavior of the KS
distribution, extending (27).

21. [M40] Although the text states that the KS test should be applied only
when F(x) is a continuous distribution function, it is, of course, possible to
try to compute and even when the distribution has jumps. Analyze
the probable behavior of and for various discontinuous
distributions F(x). Compare the effectiveness of the resulting statistical test
with the chi-square test on several samples of random numbers.
22. [HM46] Investigate the “improved” KS test suggested in the answer to
exercise 6.
23. [M22] (T. Gonzalez, S. Sahni, and W. R. Franta.) (a) Suppose that the
maximum value in formula (13) for the KS statistic occurs at a given
index j where ⌊nF (Xj)⌋ = k. Prove that F(Xj) = max1≤i≤n{F (Xi) | ⌊nF (Xi)⌋
= k}. (b) Design an algorithm that calculates and in O(n) steps
(without sorting).

 24. [40] Experiment with various probability distributions (p, q, r) on
three categories, where p + q + r = 1, by computing the exact distribution
of the chi-square statistic V for various n, thereby determining how
accurate an approximation the chi-square distribution with two degrees of
freedom really is.
25. [HM26] Suppose for 1 ≤ i ≤ m, where X1, . . . ,
Xn are independent random variables with mean zero and unit variance,
and the matrix A = (aij) has rank n.

a) Express the covariance matrix C = (cij), where cij = E(Yi – μi)(Yj – μj),
in terms of the matrix A.

b) Prove that if is any matrix such that , the statistic

is equal to . [Consequently, if the Xj have the normal
distribution, W has the chi-square distribution with n degrees of
freedom.]

The equanimity of your average tosser of coins depends
upon a law . . . which ensures that he will not upset himself

by losing too much nor upset his opponent by winning too
often.

— TOM STOPPARD, Rosencrantz & Guildenstern are Dead
(1966)

3.3.2. Empirical Tests
In this section we shall discuss eleven kinds of specific tests that have
traditionally been applied to sequences in order to investigate their
randomness. The discussion of each test has two parts: (a) a “plug-in”
description of how to perform the test; and (b) a study of the theoretical basis
for the test. (Readers who lack mathematical training may wish to skip over
the theoretical discussions. Conversely, mathematically inclined readers may
find the associated theory quite interesting, even if they never intend to test
random number generators, since some instructive combinatorial questions
are involved here. Indeed, this section introduces several topics that will be
important to us later in quite different contexts.)

Each test is applied to a sequence

of real numbers, which purports to be independently and uniformly
distributed between zero and one. Some of the tests are designed primarily
for integer-valued sequences, instead of the real-valued sequence (1). In this
case, the auxiliary sequence

defined by the rule

is used instead. This is a sequence of integers that purports to be
independently and uniformly distributed between 0 and d − 1. The number d
is chosen for convenience; for example, we might have d = 64 = 26 on a
binary computer, so that Yn represents the six most significant bits of the
binary representation of Un. The value of d should be large enough so that the
test is meaningful, but not so large that the test becomes impracticably
difficult to carry out.

The quantities Un, Yn, and d will have the significance stated above
throughout this section, although the value of d will probably be different in
different tests.
A. Equidistribution test (Frequency test). The first requirement that
sequence (1) must meet is that its numbers are, in fact, uniformly distributed
between zero and one. There are two ways to make this test: (a) Use the
Kolmogorov–Smirnov test, with F(x) = x for 0 ≤ x ≤ 1. (b) Let d be a
convenient number, such as 100 on a decimal computer, 64 or 128 on a
binary computer, and use the sequence (2) instead of (1). For each integer r,
0 ≤ r < d, count the number of times that Yj = r for 0 ≤ j < n, and then apply
the chi-square test using k = d and probability ps = 1/d for each category.

The theory behind this test has been covered in Section 3.3.1.
B. Serial test. More generally, we want pairs of successive numbers to be
uniformly distributed in an independent manner. The sun comes up just about
as often as it goes down, in the long run, but that doesn’t make its motion
random.

To carry out the serial test, we simply count the number of times that the
pair (Y2j, Y2j+1) = (q, r) occurs, for 0 ≤ j < n; these counts are to be made for
each pair of integers (q, r) with 0 ≤ q, r < d, and the chi-square test is
applied to these k = d2 categories with probability 1/d2 in each category. As
with the equidistribution test, d may be any convenient number, but it will be
somewhat smaller than the values suggested above since a valid chi-square
test should have n large compared to k (say n ≥ 5d2 at least).

Clearly we can generalize this test to triples, quadruples, etc., instead of
pairs (see exercise 2); however, the value of d must then be severely reduced
in order to avoid having too many categories. When quadruples and larger
numbers of adjacent elements are considered, we therefore make use of less
exact tests such as the poker test or the maximum test described below.

Notice that 2n numbers of the sequence (2) are used in this test in order
to make n observations. It would be a mistake to perform the serial test on
the pairs (Y0, Y1), (Y1, Y2), . . . , (Yn−1, Yn); can the reader see why? We might
perform another serial test on the pairs (Y2j+1, Y2j+2), and expect the sequence
to pass both tests, remembering that the tests aren’t independent of each other.
Alternatively, George Marsaglia has proved that, if the pairs (Y0, Y1), (Y1,

Y2), . . . , (Yn−1, Yn) are used, and if we use the usual chi-square method to
compute both the statistics V2 for the serial test and V1 for the frequency test
on Y0, . . . , Yn−1 with the same value of d, then V2 – V1 should have the chi-
square distribution with d(d − 1) degrees of freedom when n is large. (See
exercise 24.)
C. Gap test. Another test is used to examine the length of “gaps” between
occurrences of Uj in a certain range. If α and β are two real numbers with 0 ≤
α < β ≤ 1, we want to consider the lengths of consecutive subsequences Uj,
Uj+1, . . . , Uj+r in which Uj+r lies between α and β but the other U’s do not.
(This subsequence of r + 1 numbers represents a gap of length r.)
Algorithm G (Data for gap test). The following algorithm, applied to the
sequence (1) for any given values of α and β, counts the number of gaps of
lengths 0, 1, . . . , t − 1 and the number of gaps of length ≥ t, until n gaps have
been tabulated.

G1. [Initialize.] Set j ← –1, s ← 0, and set COUNT[r] ← 0 for 0 ≤ r ≤ t.
G2. [Set r zero.] Set r ← 0.
G3. [α ≤ Uj < β?] Increase j by 1. If Uj ≥ α and Uj < β, go to step G5.
G4. [Increase r.] Increase r by one, and return to step G3.
G5. [Record the gap length.] (A gap of length r has now been found.) If r ≥

t, increase COUNT[t] by one, otherwise increase COUNT[r] by one.
G6. [n gaps found?] Increase s by one. If s < n, return to step G2.

Fig. 6. Gathering data for the gap test. (Algorithms for the “coupon-
collector’s test” and the “run test” are similar.)

After Algorithm G has been performed, the chi-square test is applied to
the k = t + 1 values of COUNT[0], COUNT[1], . . . , COUNT[t], using the

following probabilities:

Here p = β – α is the probability that α ≤ Uj < β. The values of n and t are to
be chosen, as usual, so that each of the values of COUNT[r] is expected to be
5 or more, preferably more.

The gap test is often applied with α = 0 or β = 1 in order to omit one of
the comparisons in step G3. The special cases or give
rise to tests that are sometimes called “runs above the mean” and “runs
below the mean,” respectively.

The probabilities in Eq. (4) are easily deduced, so this derivation is left
to the reader. Notice that the gap test as described above observes the lengths
of n gaps; it does not observe the gap lengths among n numbers. If the
sequence 〈Un〉 is sufficiently nonrandom, Algorithm G might not
terminate. Other gap tests that examine a fixed number of U’s have also been
proposed (see exercise 5).
D. Poker test (Partition test). The “classical” poker test considers n
groups of five successive integers, {Y5j, Y5j+1, . . . , Y5j+4} for 0 ≤ j < n, and
observes which of the following seven patterns is matched by each
(orderless) quintuple:

A chi-square test is based on the number of quintuples in each category.
It is reasonable to ask for a somewhat simpler version of this test, to

facilitate the programming involved. A good compromise would simply be to
count the number of distinct values in the set of five. We would then have
five categories:

This breakdown is easier to determine systematically, and the test is nearly
as good.

In general we can consider n groups of k successive numbers, and we
can count the number of k-tuples with r different values. A chi-square test is
then made, using the probability

that there are r different. (The Stirling numbers are defined in Section
1.2.6, and they can readily be computed using the formulas given there.)
Since the probability pr is very small when r = 1 or 2, we generally lump a
few categories of low probability together before the chi-square test is
applied.

To derive the proper formula for pr, we must count how many of the dk

k-tuples of numbers between 0 and d − 1 have exactly r different elements,
and divide the total by dk. Since d(d − 1) . . . (d – r + 1) is the number of
ordered choices of r things from a set of d objects, we need only show that

 is the number of ways to partition a set of k elements into exactly r parts.
Therefore exercise 1.2.6–64 completes the derivation of Eq. (5).
E. Coupon collector’s test. The next test is related to the poker test
somewhat as the gap test is related to the frequency test. We use the sequence
Y0, Y1, . . . , and we observe the lengths of segments Yj+1, Yj+2, . . . , Yj+r that
are required to get a “complete set” of integers from 0 to d−1. Algorithm C
describes this precisely:
Algorithm C (Data for coupon collector’s test). Given a sequence of
integers Y0, Y1, . . . , with 0 ≤ Yj < d, this algorithm counts the lengths of n
consecutive “coupon collector” segments. At the conclusion of the algorithm,
COUNT[r] is the number of segments with length r, for d ≤ r < t, and
COUNT[t] is the number of segments with length ≥ t.

C1. [Initialize.] Set j ← –1, s ← 0, and set COUNT[r] ← 0 for d ≤ r ≤ t.
C2. [Set q, r zero.] Set q ← r ← 0, and set OCCURS[k] ← 0 for 0 ≤ k < d.
C3. [Next observation.] Increase r and j by 1. If OCCURS[Yj] ≠ 0, repeat

this step.
C4. [Complete set?] Set OCCURS[Yj] ← 1 and q ← q + 1. (The

subsequence observed so far contains q distinct values; if q = d, we
therefore have a complete set.) If q < d, return to step C3.

C5. [Record the length.] If r ≥ t, increase COUNT[t] by one, otherwise
increase COUNT[r] by one.

C6. [n found?] Increase s by one. If s < n, return to step C2.
For an example of this algorithm, see exercise 7. We may think of a boy

collecting d types of coupons, which are randomly distributed in his
breakfast cereal boxes; he must keep eating more cereal until he has one
coupon of each type.

A chi-square test is to be applied to COUNT[d], COUNT[d + 1], . . . ,
COUNT[t], with k = t – d + 1, after Algorithm C has counted n lengths. The
corresponding probabilities are

To derive these probabilities, we simply note that if qr denotes the
probability that a subsequence of length r is incomplete, then

by Eq. (5); for this means we have an r-tuple of elements that do not have all
d different values. Then (6) follows from the relations pt = qt−1 and

For formulas that arise in connection with generalizations of the coupon
collector’s test, see exercises 9 and 10 and also the papers by George Pólya,
Zeitschrift für angewandte Math. und Mech. 10 (1930), 96–97; Hermann
von Schelling, AMM 61 (1954), 306–311.
F. Permutation test. Divide the input sequence into n groups of t elements
each, that is, (Ujt, Ujt+1, . . . , Ujt+t−1) for 0 ≤ j < n. The elements in each
group can have t! possible relative orderings; the number of times each

ordering appears is counted, and a chi-square test is applied with k = t! and
with probability 1/t! for each ordering.

For example, if t = 3 we would have six possible categories, according
to whether U3j < U3j+1 < U3j+2 or U3j < U3j+2 < U3j+1 or ... or U3j+2 < U3j+1 <
U3j. We assume in this test that equality between U’s does not occur; such an
assumption is justified, for the probability that two U’s are equal is zero.

A convenient way to perform the permutation test on a computer makes
use of the following algorithm, which is of interest in itself:
Algorithm P (Analyze a permutation). Given a sequence of distinct elements
(U1, . . . , Ut), we compute an integer f(U1, . . . , Ut) such that

and f(U1, . . . , Ut) = f(V1, . . . , Vt) if and only if (U1, . . . , Ut) and (V1, . . . ,
Vt) have the same relative ordering.

P1. [Initialize.] Set r ← t, f ← 0. (During this algorithm we will have 0 ≤ f
< t!/r!.)

P2. [Find maximum.] Find the maximum of {U1, . . . , Ur}, and suppose that
Us is the maximum. Set f ← r · f + s − 1.

P3. [Exchange.] Exchange Ur ↔ Us.
P4. [Decrease r.] Decrease r by one. If r > 1, return to step P2.

The sequence (U1, . . . , Ut) will have been sorted into ascending order
when this algorithm stops. To prove that the result f uniquely characterizes
the initial order of (U1, . . . , Ut), we note that Algorithm P can be run
backwards:

It is easy to see that this will undo the effects of steps P2–P4; hence no two
permutations can yield the same value of f, and Algorithm P performs as
advertised.

The essential idea that underlies Algorithm P is a mixed-radix
representation called the “factorial number system”: Every integer in the
range 0 ≤ f < t! can be uniquely written in the form

where the “digits” cj are integers satisfying

In Algorithm P, cr−1 = s − 1 when step P2 is performed for a given value of r.
G. Run test. A sequence may also be tested for “runs up” and “runs down.”
This means that we examine the length of monotone portions of the original
sequence (segments that are increasing or decreasing).

As an example of the precise definition of a run, consider the sequence
of ten digits “1298536704”. Putting a vertical line at the left and right and
between Xj and Xj+1 whenever Xj > Xj+1, we obtain

which displays the “runs up”: There is a run of length 3, followed by two
runs of length 1, followed by another run of length 3, followed by a run of
length 2. The algorithm of exercise 12 shows how to tabulate the length of
“runs up.”

Unlike the gap test and the coupon collector’s test (which are in many
other respects similar to this test), we should not apply a chi-square test to
the run counts, since adjacent runs are not independent. A long run will tend
to be followed by a short run, and conversely. This lack of independence is
enough to invalidate a straightforward chi-square test. Instead, the following
statistic may be computed, when the run lengths have been determined as in
exercise 12:

where n is the length of the sequence, and the matrices of coefficients A =
(aij)1≤i,j≤6 and B = (bi)1≤i≤6 are given by

(The values of aij shown here are approximate only; exact values can be
obtained from formulas derived below.) The statistic V in (10) should have
the chi-square distribution with six, not five, degrees of freedom, when n is
large. The value of n should be, say, 4000 or more. The same test can be
applied to “runs down.”

A vastly simpler and more practical run test appears in exercise 14, so a
reader who is interested only in testing random number generators should
skip the next few pages and go on to the “maximum-of-t test” after looking at
exercise 14. On the other hand it is instructive from a mathematical
standpoint to see how a complicated run test with interdependent runs can be
treated, so we shall now digress for a moment.

Given any permutation of n elements, let Zpi = 1 if position i is the
beginning of an ascending run of length p or more, and let Zpi = 0 otherwise.
For example, consider the permutation (9) with n = 10; we have

and all other Z’s are zero. With this notation,

is the number of runs of length ≥ p, and

is the number of runs of length p exactly. Our goal is to compute the mean
value of Rp, and also the covariance

which measures the interdependence of Rp and Rq. These mean values are to
be computed as the average over the set of all n! permutations.

Equations (12) and (13) show that the answers can be expressed in terms
of the mean values of Zpi and of ZpiZqj, so as the first step of the derivation
we obtain the following results (assuming that i < j):

The ∑-signs stand for summation over all possible permutations. To illustrate
the calculations involved here, we will work the most difficult case, when i
+ p = j ≤ n – q + 1, and when i > 1. The quantity ZpiZqj is either zero or one,
so the summation consists of counting all permutations U1U2 . . . Un for
which Zpi = Zqj = 1, that is, all permutations such that

The number of such permutations may be enumerated as follows: There are
 ways to choose the elements for the positions indicated in (15);

there are

ways to arrange them in the order (15), as shown in exercise 13; and there
are (n – p – q − 1)! ways to arrange the remaining elements. Thus there are

 times (16) ways in all, and we divide by n! to
get the desired formula.

From relations (14) a rather lengthy calculation leads to

where t = max(p, q), s = p + q, and

This expression for the covariance is unfortunately quite complicated, but it
is necessary for a successful run test as described above. From these
formulas it is easy to compute

In Annals Math. Stat. 15 (1944), 163–165, J. Wolfowitz proved that the
quantities R1, R2, . . . , Rt−1, become normally distributed as n → ∞,
subject to the mean and covariance expressed above; this implies that the
following test for runs is valid: Given a sequence of n random numbers,
compute the number of runs Rp of length p for 1 ≤ p < t, and also the number
of runs of length t or more. Let

Form the matrix C of the covariances of the R′s; for example, C13 =
covar(R1, R3), while C1t = covar(R1,). When t = 6, we have

where

if n ≥ 12. Now form A = (aij), the inverse of the matrix C, and compute
. The result for large n should have approximately the chi-

square distribution with t degrees of freedom.
The matrix A given earlier in (11) is the inverse of C1 to five significant

figures. The true inverse, A, is
, and it turns out

that is very nearly equal to . Therefore by (10),
, where Q = (Q1 . . . Qt)T.

H. Maximum-of-t test. For 0 ≤ j < n, let Vj = max(Utj, Utj+1, . . . , Utj+t−1).
Now apply the Kolmogorov–Smirnov test to the sequence V0, V1, . . . , Vn−1,
with the distribution function F (x) = xt, 0 ≤ x ≤ 1. Alternatively, apply the
equidistribution test to the sequence .

To verify this test, we must show that the distribution function for the Vj

is F (x) = xt. The probability that max(U1, U2, . . . , Ut) ≤ x is the probability
that U1 ≤ x and U2 ≤ x and . . . and Ut ≤ x, which is the product of the
individual probabilities, namely xx . . . x = xt.
I. Collision test. Chi-square tests can be made only when a nontrivial
number of items are expected in each category. But another kind of test can

be used when the number of categories is much larger than the number of
observations; this test is related to “hashing,” an important method for
information retrieval that we shall study in Section 6.4.

Suppose we have m urns and we throw n balls at random into those urns,
where m is much greater than n. Most of the balls will land in urns that were
previously empty, but if a ball falls into an urn that already contains at least
one ball we say that a “collision” has occurred. The collision test counts the
number of collisions, and a generator passes this test if it doesn’t induce too
many or too few collisions.

To fix the ideas, suppose m = 220 and n = 214. Then each urn will receive
only one 64th of a ball, on the average. The probability that a given urn will
contain exactly k balls is , so the expected
number of collisions per urn is

Since – smaller terms, we find
that the average total number of collisions taken over all m urns is slightly
less than n2/(2m) = 128. (The actual value is ≈ 127.33.)

We can use the collision test to rate a random number generator in a large
number of dimensions. For example, when m = 220 and n = 214 we can test
the 20-dimensional randomness of a number generator by letting d = 2 and
forming 20-dimensional vectors Vj = (Y20j, Y20j+1, . . . , Y20j+19) for 0 ≤ j < n.
We keep a table of m = 220 bits to determine collisions, one bit for each
possible value of the vector Vj; on a computer with 32 bits per word, this
amounts to 215 words. Initially all 220 bits of this table are cleared to zero;
then for each Vj, if the corresponding bit is already 1 we record a collision,
otherwise we set the bit to 1. This test can also be used in 10 dimensions
with d = 4, and so on.

To decide if the test is passed, we can use the following table of
percentage points when m = 220 and n = 214:

The theory underlying these probabilities is the same we used in the poker
test, Eq. (5); the probability that c collisions occur is the probability that n –
c urns are occupied, namely

Although m and n are very large, it is not difficult to compute these
probabilities using the following method:
Algorithm S (Percentage points for collision test). Given m and n, this
algorithm determines the distribution of the number of collisions that occur
when n balls are scattered into m urns. An auxiliary array A[0], A[1], . . . ,
A[n] of floating point numbers is used for the computation; actually A[j] will
be nonzero only for j0 ≤ j ≤ j1, and j1 – j0 will be at most of order log n, so it
would be possible to get by with considerably less storage.

S1. [Initialize.] Set A[j] ← 0 for 0 ≤ j ≤ n; then set A[1] ← 1 and j0 ← j1 ←
1. Then do step S2 exactly n − 1 times and go on to step S3.

S2. [Update probabilities.] (Performing this step once corresponds to
tossing a ball into an urn; A[j] represents the probability that exactly j of
the urns are occupied.) Set j1 ← j1 + 1. Then for j ← j1, j1 – 1, . . . , j0
(in this order), set A[j] ← (j/m)A[j] + ((1 + 1/m) – (j/m))A[j − 1]. If
A[j] has become very small as a result of this calculation, say A[j] <
10−20, set A[j] ← 0; and in such a case, decrease j1 by 1 if j = j1, or
increase j0 by 1 if j = j0.

S3. [Compute the answers.] In this step we make use of an auxiliary table
(T1, T2, . . . , Ttmax) = (.01, .05, .25, .50, .75, .95, .99, 1.00) containing
the specified percentage points of interest. Set p ← 0, t ← 1, and j ← j0
– 1. Do the following iteration until t = tmax: Increase j by 1, and set p
← p + A[j]; then if p > Tt, output n – j − 1 and 1 – p (meaning that with
probability 1 – p there are at most n – j − 1 collisions) and repeatedly
increase t by 1 until p ≤ Tt.

J. Birthday spacings test. George Marsaglia introduced a new kind of test
in 1984: We throw n balls into m urns, as in the collision test, but now we
think of the urns as “days of a year” and the balls as “birthdays.” Suppose the
birthdays are (Y1, . . . , Yn), where 0 ≤ Yk < m. Sort them into nondecreasing

order Y(1) ≤ ... ≤ Y(n); then define n “spacings” S1 = Y(2) – Y(1), . . . , Sn−1 =
Y(n) – Y(n−1), Sn = Y(1) + m – Y(n); finally sort the spacings into order, S(1) ≤ ...
≤ S(n). Let R be the number of equal spacings, namely the number of indices j
such that 1 < j ≤ n and S(j) = S(j−1). When m = 225 and n = 512, we should
have

(The average number of equal spacings for this choice of m and n should be
approximately 1.) Repeat the test 1000 times, say, and do a chi-square test
with 3 degrees of freedom to compare the empirical R’s with the correct
distribution; this will tell whether or not the generator produces reasonably
random birthday spacings. Exercises 28–30 develop the theory behind this
test and formulas for other values of m and n.

Such a test of birthday spacings is important primarily because of the
remarkable fact that lagged Fibonacci generators consistently fail it, although
they pass the other traditional tests quite nicely. [Dramatic examples of such
failures were reported by Marsaglia, Zaman, and Tsang in Stat. and Prob.
Letters 9 (1990), 35–39.] Consider, for example, the sequence

of Eq. 3.2.2–(7). The numbers of this sequence satisfy

because both sides are congruent to Xn−24 + Xn−55 + Xn−86. Therefore two
pairs of differences are equal:

and

Whenever Xn is reasonably close to Xn−24 or Xn−31 (as it should be in a truly
random sequence), the difference has a good chance of showing up in two of
the spacings. So we get significantly more cases of equality—typically R ≈ 2
on the average, not 1. But if we discount from R any equal spacings that arise
from the stated congruence, the resulting statistic R′ usually does pass the
birthday test. (One way to avoid failure is to discard certain elements of the
sequence, using for example only X0, X2, X4, . . . as random numbers; then we

never get all four elements of the set {Xn, Xn–24, Xn−31, Xn−86}, and the
birthday spacings are no problem. An even better way to avoid the problem
is to discard consecutive batches of numbers, as suggested by Lüscher; see
Section 3.2.2.) Similar remarks apply to the subtract-with-borrow and add-
with-carry generators of exercise 3.2.1.1–14.
K. Serial correlation test. We may also compute the following statistic:

This is the “serial correlation coefficient,” a measure of the extent to which
Uj+1 depends on Uj.

Correlation coefficients appear frequently in statistical work. If we have
n quantities U0, U1, . . . , Un−1 and n others V0, V1, . . . , Vn−1, the correlation
coefficient between them is defined to be

All summations in this formula are to be taken over the range 0 ≤ j < n; Eq.
(23) is the special case Vj = U(j+1) mod n. The denominator of (24) is zero
when U0 = U1 = ... = Un−1 or V0 = V1 = ... = Vn−1; we exclude that case from
discussion.

A correlation coefficient always lies between –1 and +1. When it is zero
or very small, it indicates that the quantities Uj and Vj are (relatively
speaking) independent of each other, whereas a value of ±1 indicates total
linear dependence. In fact, Vj = α ± βUj for all j in the latter case, for some
constants α and β. (See exercise 17.)

Therefore it is desirable to have C in Eq. (23) close to zero. In actual
fact, since U0U1 is not completely independent of U1U2, the serial correlation
coefficient is not expected to be exactly zero. (See exercise 18.) A “good”
value of C will be between μn – 2σn and μn + 2σn, where

We expect C to be between these limits about 95 percent of the time.

The formula for in (25) is an upper bound, valid for serial
correlations between independent random variables from an arbitrary
distribution. When the U’s are uniformly distributed, the true variance is
obtained by subtracting . (See exercise 20.)

Instead of simply computing the correlation coefficient between the
observations (U0, U1, . . . , Un−1) and their immediate successors (U1, . . . ,
Un−1, U0), we can also compute it between (U0, U1, . . . , Un−1) and any
cyclically shifted sequence (Uq, . . . , Un–1, U0, . . . , Uq−1); the cyclic
correlations should be small for 0 < q < n. A straightforward computation of
Eq. (24) for all q would require about n2 multiplications, but it is actually
possible to compute all the correlations in only O(n log n) steps by using
“fast Fourier transforms.” (See Section 4.6.4; see also L. P. Schmid, CACM 8
(1965), 115.)
L. Tests on subsequences. External programs often call for random numbers
in batches. For example, if a program works with three random variables X,
Y, and Z, it may consistently invoke the generation of three random numbers
at a time. In such applications it is important that the subsequences consisting
of every third term of the original sequence be random. If the program
requires q numbers at a time, the sequences

can each be put through the tests described above for the original sequence
U0, U1, U2,

Experience with linear congruential sequences has shown that these
derived sequences rarely if ever behave less randomly than the original
sequence, unless q has a large factor in common with the period length. On a
binary computer with m equal to the word size, for example, a test of the
subsequences for q = 8 will tend to give the poorest randomness for all q <
16; and on a decimal computer, q = 10 yields the subsequences most likely to
be unsatisfactory. (This can be explained somewhat on the grounds of
potency, since such values of q will tend to lower the potency. Exercise
3.2.1.2–20 provides a more detailed explanation.)
M. Historical remarks and further discussion. Statistical tests arose
naturally in the course of scientists’ efforts to “prove” or “disprove”
hypotheses about various observed data. The best-known early papers

dealing with the testing of artificially generated numbers for randomness are
two articles by M. G. Kendall and B. Babington-Smith in the Journal of the
Royal Statistical Society 101 (1938), 147–166, and in the supplement to that
journal, 6 (1939), 51–61. Those papers were concerned with the testing of
random digits between 0 and 9, rather than random real numbers; for this
purpose, the authors discussed the frequency test, serial test, gap test, and
poker test, although they misapplied the serial test. Kendall and Babington-
Smith also used a variant of the coupon collector’s test; the method described
in this section was introduced by R. E. Greenwood in Math. Comp. 9
(1955), 1–5.

The run test has a rather interesting history. Originally, tests were made
on runs up and down at once: A run up would be followed by a run down,
then another run up, and so on. Note that the run test and the permutation test
do not depend on the uniform distribution of the U’s, but only on the fact that
Ui = Uj occurs with probability zero when i ≠ j; therefore these tests can be
applied to many types of random sequences. The run test in primitive form
was originated by J. Bienaymé [Comptes Rendus Acad. Sci. 81 (Paris,
1875), 417–423]. Some sixty years later, W. O. Kermack and A. G.
McKendrick published two extensive papers on the subject [Proc. Royal
Society Edinburgh 57 (1937), 228–240, 332–376]; as an example they stated
that Edinburgh rainfall between the years 1785 and 1930 was “entirely
random in character” with respect to the run test (although they examined
only the mean and standard deviation of the run lengths). Several other
people began using the test, but it was not until 1944 that the use of the chi-
square method in connection with this test was shown to be incorrect. A
paper by H. Levene and J. Wolfowitz in Annals Math. Stat. 15 (1944), 58–
69, introduced the correct run test (for runs up and down, alternately) and
discussed the fallacies in earlier misuses of that test. Separate tests for runs
up and runs down, as proposed in the text above, are more suited to computer
application, so we have not given the more complex formulas for the
alternate-up-and-down case. See the survey paper by D. E. Barton and C. L.
Mallows, Annals Math. Stat. 36 (1965), 236–260.

Of all the tests we have discussed, the frequency test and the serial
correlation test seem to be the weakest, in the sense that nearly all random
number generators pass them. Theoretical grounds for the weakness of these
tests are discussed briefly in Section 3.5 (see exercise 3.5–26). The run test,

on the other hand, is rather strong: The results of exercises 3.3.3–23 and 24
suggest that linear congruential generators tend to have runs somewhat longer
than normal if the multiplier is not large enough, so the run test of exercise 14
is definitely to be recommended.

The collision test is also highly recommended, since it has been
specially designed to detect the deficiencies of many poor generators that
have unfortunately become widespread. Based on ideas of H. Delgas
Christiansen [Inst. Math. Stat. and Oper. Res., Tech. Univ. Denmark (October
1975), unpublished], this test was the first to be developed after the advent of
computers; it is specifically intended for computer use, and unsuitable for
hand calculation.

The reader probably wonders, “Why are there so many tests?” It has
been said that more computer time is spent testing random numbers than using
them in applications! This is untrue, although it is possible to go overboard
in testing.

The need for making several tests has been amply documented. People
have found, for example, that some numbers generated by a variant of the
middle-square method have passed the frequency test, gap test, and poker
test, yet flunked the serial test. Linear congruential sequences with small
multipliers have been known to pass many tests, yet fail on the run test
because there are too few runs of length one. The maximum-of-t test has also
been used to ferret out some bad generators that otherwise seemed to perform
respectably. A subtract-with-borrow generator fails the gap test when the
maximum gap length exceeds the largest lag; see Vattulainen, Kankaala,
Saarinen, and Ala-Nissila, Computer Physics Communications 86 (1995),
209–226, where a variety of other tests are also reported. Lagged Fibonacci
generators, which are theoretically guaranteed to have equally distributed
least-significant bits, still fail some simple variants of the 1-bit
equidistribution test (see exercises 31 and 35, also 3.6–14).

Perhaps the main reason for doing extensive testing on random number
generators is that people misusing Mr. X’s random number generator will
hardly ever admit that their programs are at fault: They will blame the
generator, until Mr. X can prove to them that his numbers are sufficiently
random. On the other hand, if the source of random numbers is only for Mr.
X’s personal use, he might decide not to bother to test them, since the

techniques recommended in this chapter have a high probability of being
satisfactory.

As computers become faster, more random numbers are consumed than
ever before, and random number generators that once were satisfactory are
no longer good enough for sophisticated applications in physics,
combinatorics, stochastic geometry, etc. George Marsaglia has therefore
introduced a number of stringent tests, which go well beyond classical
methods like the gap and poker tests, in order to meet the new challenges.
For example, he found that the sequence Xn+1 = (62605Xn + 113218009) mod
229 had a noticeable bias in the following experiment: Generate 221 random
numbers Xn and extract their 10 leading bits Yn = ⌊Xn/219⌋. Count how many
of the 220 possible pairs (y, y′) of 10-bit numbers do not occur among (Y1,
Y2), (Y2, Y3), . . . , (Y221–1, Y221). There ought to be about 141909.33
missing pairs, with standard deviation ≈ 290.46 (see exercise 34). But six
consecutive trials, starting with X1 = 1234567, produced counts that were all
between 1.5 and 3.5 standard deviations too low. The distribution was a bit
too “flat” to be random—probably because 221 numbers is a significant
fraction, 1/256, of the entire period. A similar generator with multiplier
69069 and modulus 230 proved to be better. Marsaglia and Zaman call this
procedure a “monkey test,” because it counts the number of two-character
combinations that a monkey will miss after typing randomly on a keyboard
with 1024 keys; see Computers and Math. 26, 9 (November 1993), 1–10,
for the analysis of several monkey tests.

Exercises

1. [10] Why should the serial test described in part B be applied to (Y0,
Y1), (Y2, Y3), . . . , (Y2n−2, Y2n−1) instead of to (Y0, Y1), (Y1, Y2), . . . , (Yn−1,
Yn)?

2. [10] State an appropriate way to generalize the serial test to triples,
quadruples, etc., instead of pairs.
 3. [M20] How many U’s need to be examined in the gap test (Algorithm
G) before n gaps have been found, on the average, assuming that the
sequence is random? What is the standard deviation of this quantity?

4. [M12] Prove that the probabilities in (4) are correct for the gap test.

5. [M23] The “classical” gap test used by Kendall and Babington-Smith
considers the numbers U0, U1, . . . , UN−1 to be a cyclic sequence with UN+j
identified with Uj. Here N is a fixed number of U’s that are to be subjected
to the test. If n of the numbers U0, . . . , UN−1 fall into the range α ≤ Uj < β,
there are n gaps in the cyclic sequence. Let Zr be the number of gaps of
length r, for 0 ≤ r < t, and let Zt be the number of gaps of length ≥ t; show
that the quantity V = ∑0≤r≤t(Zr – npr)2/npr should have the chi-square
distribution with t degrees of freedom, in the limit as N goes to infinity,
where pr is given in Eq. (4).

6. [40] (H. Geiringer.) A frequency count of the first 2000 decimal digits
in the representation of e = 2.71828 . . . gave a χ2 value of 1.06, indicating
that the actual frequencies of the digits 0, 1, . . . , 9 are much too close to
their expected values to be considered randomly distributed. (In fact, χ2 ≥
1.15 with probability 99.9 percent.) The same test applied to the first 10,000
digits of e gives the reasonable value χ2 = 8.61; but the fact that the first
2000 digits are so evenly distributed is still surprising. Does the same
phenomenon occur in the representation of e to other bases? [See AMM 72
(1965), 483–500.]

7. [08] Apply the coupon collector’s test procedure (Algorithm C), with d
= 3 and n = 7, to the sequence 1101221022120202001212201010201121.
What lengths do the seven subsequences have?
 8. [M22] How many U’s need to be examined in the coupon collector’s
test, on the average, before n complete sets have been found by Algorithm
C, assuming that the sequence is random? What is the standard deviation?
[Hint: See Eq. 1.2.9–(28).]

9. [M21] Generalize the coupon collector’s test so that the search stops as
soon as w distinct values have been found, where w is a fixed positive
integer less than or equal to d. What probabilities should be used in place of
(6)?

10. [M23] Solve exercise 8 for the more general coupon collector’s test
described in exercise 9.
11. [00] The “runs up” in a particular permutation are displayed in (9);
what are the “runs down” in that permutation?

12. [20] Let U0, U1, . . . , Un−1 be n distinct numbers. Write an algorithm
that determines the lengths of all ascending runs in the sequence. When
your algorithm terminates, COUNT[r] should be the number of runs of
length r, for 1 ≤ r ≤ 5, and COUNT[6] should be the number of runs of
length 6 or more.
13. [M23] Show that (16) is the number of permutations of p + q + 1
distinct elements having the pattern (15).

 14. [M15] If we “throw away” the element that immediately follows a run,
so that when Xj is greater than Xj+1 we start the next run with Xj+2, the run
lengths are independent, and a simple chi-square test may be used (instead
of the horribly complicated method derived in the text). What are the
appropriate run-length probabilities for this simple run test?
15. [M10] In the maximum-of-t test, why are supposed
to be uniformly distributed between zero and one?

 16. [15] Mr. J. H. Quick (a student) wanted to perform the maximum-of-t
test for several different values of t.

a) Letting Zjt = max(Uj, Uj+1,. . ., Uj+t−1), he found a clever way to go
from the sequence Z0(t−1), Z1(t−1), ..., to the sequence Z0t, Z1t, ..., using
very little time and space. What was his bright idea?

b) He decided to modify the maximum-of-t method so that the jth
observation would be max(Uj,. . ., Uj+t−1); in other words, he took Vj =
Zjt instead of Vj = Z(tj)t as the text says. He reasoned that all of the Z’s
should have the same distribution, so the test is even stronger if each
Zjt, 0 ≤ j < n, is used instead of just every tth one. But when he tried a
chi-square equidistribution test on the values of , he got extremely
high values of the statistic V, which got even higher as t increased. Why
did this happen?

17. [M25] Given any numbers U0,. . ., Un−1, V0,. . ., Vn−1, let their mean
values be

a) Let . Show that the correlation
coefficient C given in Eq. (24) is equal to

b) Let C = N/D, where N and D denote the numerator and denominator of
the expression in part (a). Show that N2 ≤ D2, hence −1 ≤ C ≤ 1; and
obtain a formula for the difference D2 − N2. [Hint: See exercise 1.2.3–
30.]

c) If C = ±1, show that αUk + βVk = τ, 0 ≤ k < n, for some constants α, β,
and τ, not all zero.

18. [M20] (a) Show that if n = 2, the serial correlation coefficient (23) is
always equal to −1 (unless the denominator is zero). (b) Similarly, show
that when n = 3, the serial correlation coefficient always equals − . (c)
Show that the denominator in (23) is zero if and only if U0 = U1 = · · · =
Un−1.
19. [M30] (J. P. Butler.) Let U0, ..., Un−1 be independent random variables
having the same distribution. Prove that the expected value of the serial
correlation coefficient (23), averaged over all cases with nonzero
denominator, is −1/(n − 1).
20. [HM41] Continuing the previous exercise, prove that the variance of
(23) is equal to n2/(n−1)2(n−2)− n3 E((U0 − U1)4/D2)/2(n−2), where D is
the denominator of (23) and E denotes the expected value over all cases
with D ≠ 0. What is the asymptotic value of E((U0 − U1)4/D2) when each
Uj is uniformly distributed?
21. [19] What value of f is computed by Algorithm P if it is presented with
the permutation (1, 2, 9, 8, 5, 3, 6, 7, 0, 4)?
22. [18] For what permutation of {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} will
Algorithm P produce the value f = 1024?
23. [M22] Let 〈Yn〉 and be integer sequences having period lengths
λ and λ′, respectively, with 0 ; also let
mod d, where r is chosen at random between 0 and λ′ – 1. Show that
〈Zn〉 passes the t-dimensional serial test at least as well as 〈Yn〉

does, in the following sense: Let P (x1, . . . , xt) and Q(x1, . . . , xt) be the
probabilities that the t-tuple (x1, . . . , xt) occurs in 〈Yn〉 and 〈Zn〉:

Then

24. [HM37] (G. Marsaglia.) Show that the serial test on n overlapping t-
tuples (Y1, Y2, . . . , Yt), (Y2, Y3, . . . , Yt+1), . . . , (Yn, Y1, . . . , Yt−1) can be
carried out as follows: For each string α = a1 . . . am with 0 ≤ ai < d, let
N(α) be the number of times α occurs as a substring of Y1Y2 . . . YnY1 . . .
Ym−1, and let P (α) = P (a1) . . . P (am) be the probability that α occurs at
any given position; individual digits may occur with differing probabilities
P (0), P (1), . . . , P (d − 1). Compute the statistic

Then V should have the chi-square distribution with dt –dt−1 degrees of
freedom when n is large. [Hint: Use exercise 3.3.1–25.]

25. [M46] Why is , when C1 and C2 are the
matrices defined after (22)?
26. [HM30] Let U1, U2, . . . , Un be independent uniform deviates in [0 . .
1), and let U(1) ≤ U(2) ≤ ... ≤ U(n) be their values after sorting; also define
the spacings S1 = U(2) – U(1), . . . , Sn−1 = U(n) – U(n−1), Sn = U(1) + 1 – U(n)
and sorted spacings S(1) ≤ ... ≤ S(n) as in the birthday spacings test. It is
convenient in the following calculations to use the notation as an
abbreviation for the expression xn[x ≥ 0].

a) Given any real numbers s1, s2, . . . , sn, prove that the simultaneous
inequalities S1 ≥ s1, S2 ≥ s2, . . . , Sn ≥ sn occur with probability

.
b) Consequently the smallest spacing S(1) is ≤ s with probability

.
c) What are the distribution functions Fk(s) = Pr(S(k) ≤ s), for 1 ≤ k ≤ n?
d) Calculate the mean and variance of each S(k).

 27. [HM26] (Iterated spacings.) In the notation of the previous exercise,
show that the numbers

have the same joint probability distribution as the original spacings S1, . . .
, Sn of n uniform deviates. Therefore we can sort them into order,

, and repeat this transformation to get yet another set of
random spacings , etc. Each successive set of spacings

 can be subjected to the Kolmogorov–Smirnov test, using

Examine the transformation from (S1, . . . , Sn) to in detail
in the cases n = 2 and n = 3; explain why continued repetition of this
process will break down eventually when it is applied to computer-
generated numbers with finite precision. (One way to compare random
number generators is to see how long they can continue to survive such a
torture test.)

28. [M26] Let bnrs(m) be the number of n-tuples (y1, . . . , yn) with 0 ≤ yj <
m that have exactly r equal spacings and s zero spacings. Thus, the
probability that R = r in the birthday spacings test is .
Also let pn(m) be the number of partitions of m into at most n parts
(exercise 5.1.1–15). (a) Express bn00(m) in terms of partitions. [Hint:
Consider cases with small m and n.] (b) Show that there is a simple
relation between bnrs(m) and b(n–s)(r+1–s)0(m) when s > 0. (c) Deduce an
explicit formula for the probability that no spacings are equal.

29. [M35] Continuing exercise 28, find simple expressions for the
generating functions bnr(z) = ∑m≥0 bnr0(m)zm/m, when r = 0, 1, and 2.

30. [HM41] Continuing the previous exercises, prove that if m = n3/α we
have

for fixed α as n → ∞. Find a similar formula for qn(m), the number of
partitions of m into n distinct positive parts. Deduce the asymptotic
probabilities that the birthday spacings test finds R equal to 0, 1, and 2,
to within O(1/n).

 31. [M21] The recurrence Yn = (Yn−24 + Yn−55) mod 2, which describes the
least significant bits of the lagged Fibonacci generator 3.2.2–(7) as well as
the second-least significant bits of 3.2.2–(7′), is known to have period
length 255 –1; hence every possible nonzero pattern of bits (Yn, Yn+1, . . . ,
Yn+54) occurs equally often. Nevertheless, prove that if we generate 79
consecutive random bits Yn, . . . , Yn+78 starting at a random point in the
period, the probability is more than 51% that there are more 1s than 0s. If
we use such bits to define a “random walk” that moves to the right when
the bit is 1 and to the left when the bit is 0, we’ll finish to the right of our
starting point significantly more than half of the time. [Hint: Find the
generating function .]
32. [M20] True or false: If X and Y are independent, identically distributed
random variables with mean 0, and if they are more likely to be positive
than negative, then X + Y is more likely to be positive than negative.
33. [HM32] Find the asymptotic value of the probability that k + l
consecutive bits generated by the recurrence Yn = (Yn–l + Yn–k) mod 2 have
more 1s than 0s, when k > 2l and the period length of this recurrence is 2k

– 1, assuming that k is large.
34. [HM29] Explain how to estimate the mean and variance of the number
of two-letter combinations that do not occur consecutively in a random
string of length n on an m-letter alphabet. Assume that m is large and n ≈
2m2.

 35. [HM32] (J. H. Lindholm, 1968.) Suppose we generate random bits
〈Yn〉 using the recurrence

for some choice of a1, . . . , ak such that the period length is 2k – 1; start
with Y0 = 1 and Y1 = ... = Yk−1 = 0. Let Zn = (–1)Y

n+1 = 2Yn – 1 be a
random sign, and consider the statistic Sm = Zn + Zn+1 + ... + Zn+m−1,
where n is a random point in the period.
a) Prove that E Sm = m/N, where N = 2k – 1.
b) What is ? Assume that m ≤ N. Hint: See exercise 3.2.2–16.
c) What would E Sm and be if the Z’s were truly random?
d) Assuming that m ≤ N, prove that ,

where

e) Evaluate B in the special case considered in exercise 31: m = 79 and
Yn = (Yn−24 + Yn−55) mod 2.

*3.3.3. Theoretical Tests
Although it is always possible to test a random number generator using the
methods in the previous section, it is far better to have a priori tests:
theoretical results that tell us in advance how well those tests will come out.
Such theoretical results give us much more understanding about the
generation methods than empirical, trial-and-error results do. In this section
we shall study the linear congruential sequences in more detail; if we know
what the results of certain tests will be before we actually generate the
numbers, we have a better chance of choosing a, m, and c properly.

The development of this kind of theory is quite difficult, although some
progress has been made. The results obtained so far are generally for
statistical tests made over the entire period. Not all statistical tests make
sense when they are applied over a full period—for example, the
equidistribution test will give results that are too perfect—but the serial test,
gap test, permutation test, maximum test, etc., can be fruitfully analyzed in

this way. Such studies will detect global nonrandomness of a sequence, that
is, improper behavior in very large samples.

The theory we shall discuss is quite illuminating, but it does not
eliminate the need for testing local nonrandomness by the methods of Section
3.3.2. Indeed, the task of proving anything useful about short subsequences
appears to be very hard. Only a few theoretical results are known about the
behavior of linear congruential sequences over less than a full period; they
will be discussed at the end of Section 3.3.4. (See also exercise 18.)

Let us begin with a proof of a simple a priori law, for the least
complicated case of the permutation test. The gist of our first theorem is that
we have Xn+1 < Xn about half the time, provided that the sequence has high
potency.
Theorem P. Let a, c, and m generate a linear congruential sequence with
maximum period; let b = a − 1 and let d be the greatest common divisor of
m and b. The probability that Xn+1 < Xn is equal to , where

hence |r| < d/2m.
Proof. The proof of this theorem involves some techniques that are of interest
in themselves. First we define

Thus, Xn+1 = s(Xn), and the theorem reduces to counting the number of
integers x such that 0 ≤ x < m and s(x) < x, since every such integer occurs
somewhere in the period. We want to show that this number is

The function ⌈(x – s(x))/m⌉ is equal to 1 when x > s(x), and it is 0
otherwise; hence the count we wish to obtain can be written simply as

(Recall that ⌈–y⌉ = –⌊y⌋ and b = a − 1.) Such sums can be evaluated by the
method of exercise 1.2.4–37, where we have proved that

whenever h and k are integers and k > 0. Since a is relatively prime to m,
this formula yields

and (3) follows immediately.
The proof of Theorem P indicates that a priori tests can indeed be

carried out, provided that we are able to deal satisfactorily with sums
involving the ⌊ ⌋ and ⌈ ⌉ functions. In many cases the most powerful technique
for dealing with floor and ceiling functions is to replace them by two
somewhat more symmetrical operations:

The latter function is a “sawtooth” function familiar in the study of Fourier
series; its graph is shown in Fig. 7. The reason for choosing to work with
((x)) rather than ⌊x⌋ or ⌈x⌉ is that ((x)) possesses several very useful
properties:

Fig. 7. The sawtooth function ((x)).

(See exercises 1.2.4–38 and 1.2.4–39(a,b,g).)
In order to get some practice working with these functions, let us prove

Theorem P again, this time without relying on exercise 1.2.4–37. With the
help of Eqs. (7), (8), (9), we can show that

since (x – s(x))/m is never an integer. Now

since both x and s(x) take on each value of {0, 1, . . . , m − 1} exactly once;
hence (11) yields

Let b = b0d, m = m0d, where b0 and m0 are relatively prime. We know that
(b0x) mod m0 takes on the values {0, 1, . . . , m0 – 1} in some order as x
varies from 0 to m0 – 1. By (9) and (10) and the fact that

we have

Theorem P follows immediately from (12) and (13).

One consequence of Theorem P is that practically any choice of a and c
will give a reasonable probability that Xn+1 < Xn, at least over the entire
period, except those that have large d. A large value of d corresponds to low
potency, and we already know that generators of low potency are
undesirable.

The next theorem gives us a more stringent condition for the choice of the
parameters a and c; we will consider the serial correlation test applied over
the entire period. The quantity C defined in Section 3.3.2, Eq. (23), is

Let x′ be the element such that s(x′) = 0. We have

The formulas we are about to derive can be expressed most easily in terms of
the sum

an important function that arises in several mathematical problems. It is
called a generalized Dedekind sum, since Richard Dedekind introduced the
function σ(h, k, 0) in 1876 when commenting on one of Riemann’s
incomplete manuscripts. [See B. Riemann’s Gesammelte math. Werke, 2nd
ed. (1892), 466–478.]

Using the well-known formulas

it is a straightforward matter to transform Eq. (14) into

(See exercise 5.) Since m is usually very large, we may discard terms of
order 1/m, and we have the approximation

with an error of less than 6/m in absolute value.

The serial correlation test now reduces to determining the value of the
Dedekind sum σ(a, m, c). Evaluating σ(a, m, c) directly from its definition
(16) is hardly any easier than evaluating the correlation coefficient itself
directly, but fortunately there are simple methods available for computing
Dedekind sums quite rapidly.
Lemma B (“Reciprocity law” for Dedekind sums). Let h, k, c be integers. If
0 ≤ c < k, 0 < h ≤ k, and if h is relatively prime to k, then

where

Proof. We leave it to the reader to prove that, under these hypotheses,

(See exercise 6.) The lemma now must be proved only in the case c = 0.
The proof we will give, based on complex roots of unity, is essentially

due to L. Carlitz. There is actually a simpler proof that uses only elementary
manipulations of sums (see exercise 7)—but the following method reveals
more of the mathematical tools that are available for problems of this kind
and it is therefore much more instructive.

Let f(x) and g(x) be polynomials defined as follows:

If ω is the complex kth root of unity e2πi/k, we have by Eq. 1.2.9–(13)

Set x = 1; then g(ωjx) = k/(ωj – 1) if j ≠ 0, otherwise it equals k(k − 1)/2.
Therefore

(Eq. (23) shows that the right-hand side equals r when 0 ≤ r < k, and it is
unchanged when multiples of k are added to r.) Hence

This important formula, which holds whenever r is an integer, allows us to
reduce many calculations involving ((r/k)) to sums involving kth roots of
unity, and it brings a whole new range of techniques into the picture. In
particular, we get the following formula when h ⊥ k:

The right-hand side of this formula may be simplified by carrying out the sum
on r; we have ∑0≤r<kωrs = f(ωs) = 0 if s mod k ≠ 0. Equation (25) now
reduces to

A similar formula is obtained for σ(k, h, 0), with ζ = e2πi/h replacing ω.
It is not obvious what we can do with the sum in (26), but there is an

elegant way to proceed, based on the fact that each term of the sum is a
function of ωj, where 0 < j < k; hence the sum is essentially taken over the kth
roots of unity other than 1. Whenever x1, x2, . . . , xn are distinct complex
numbers, we have the identity

which follows from the usual method of expanding the right-hand side into
partial fractions. Moreover, if q(x) = (x – y1)(x – y2) . . . (x – ym), we have

this identity may often be used to simplify expressions like those in the left-
hand side of (27). When h and k are relatively prime, the numbers ω, ω2, . . .
, ωk−1, ζ, ζ2, . . . , ζh−1 are all distinct; we can therefore consider formula (27)

in the special case of the polynomial (x – ω) . . . (x – ωk−1)(x – ζ) . . . (x –
ζh−1) = (xk − 1)(xh − 1)/(x − 1)2, obtaining the following identity in x:

This identity has many interesting consequences, and it leads to numerous
reciprocity formulas for sums of the type given in Eq. (26). For example, if
we differentiate (29) twice with respect to x and let x → 1, we find that

Replace j by h – j and by k – j in these sums and use (26) to get

which is equivalent to the desired result.
Lemma B gives us an explicit function f(h, k, c) such that

whenever 0 < h ≤ k, 0 ≤ c < k, and h is relatively prime to k. From the
definition (16) it is clear that

Therefore we can use (30) iteratively to evaluate σ(h, k, c), using a process
that reduces the parameters as in Euclid’s algorithm.

Further simplifications occur when we examine this iterative procedure
more closely. Let us set m1 = k, m2 = h, c1 = c, and form the following
tableau:

Here

and it follows that

We have assumed for convenience that Euclid’s algorithm terminates in (32)
after four iterations; this assumption will reveal the pattern that holds in the
general case. Since h and k were relatively prime to start with, we must have
m5 = 1 and c5 = 0 in (32).

Let us assume also that c3 ≠ 0 but c4 = 0, in order to get a feeling for the
effect this has on the recurrence. Equations (30) and (31) yield

The first part, h/k + k/h, of the formula for f(h, k, c) in (19) contributes

to the total, and this simplifies to

The next part of (19), 1/hk, also leads to a simple contribution; according to
Eq. 4.5.3–(9) and other formulas in Section 4.5.3, we have

where h′ is the unique integer satisfying

Adding up all the contributions, and remembering our assumption that c4 = 0
(so that e(m4, c3) = 0, see (20)), we find that

in terms of the assumed tableau (32). Similar results hold in general:
Theorem D. Let h, k, c be integers with 0 < h ≤ k, 0 ≤ c < k, and h
relatively prime to k. Form the “Euclidean tableau” as defined in (33)
above, and assume that the process stops after t steps with mt+1 = 1. Let s
be the smallest subscript such that cs = 0, and let h′ be defined by (36).
Then

Euclid’s algorithm is analyzed carefully in Section 4.5.3; the quantities
a1, a2, . . . , at are called the partial quotients of h/k. Theorem 4.5.3F tells us
that the number of iterations, t, will never exceed logφ k; hence Dedekind
sums can be evaluated rapidly. The terms can be simplified
further, and an efficient algorithm for evaluating σ(h, k, c) appears in
exercise 17.

Now that we have analyzed generalized Dedekind sums, let us apply our
knowledge to the determination of serial correlation coefficients.
Example 1. Find the serial correlation when m = 235, a = 234 + 1, c = 1.
Solution. We have

by Eq. (17). To evaluate σ(234 + 1, 235, 1), we can form the tableau

Since h′ = 234 + 1, the value according to Theorem D comes to 233 – 3 + 2−32.
Thus

Such a correlation is much, much too high for randomness. Of course, this
generator has very low potency, and we have already rejected it as
nonrandom.
Example 2. Find the approximate serial correlation when m = 1010, a =
10001, c = 2113248653.
Solution. We have C ≈ σ(a, m, c)/m, and the computation proceeds as
follows:

This is a very respectable value of C indeed. But the generator has a potency
of only 3, so it is not really a very good source of random numbers in spite
of the fact that it has low serial correlation. It is necessary to have a low
serial correlation, but not sufficient.
Example 3. Estimate the serial correlation for general a, m, and c.
Solution. If we consider just one application of (30), we have

Now |σ(m, a, c)| < a by exercise 12, and therefore

The error in this approximation is less than (a + 6)/m in absolute value.
The estimate in (39) was the first theoretical result known about the

randomness of congruential generators. R. R. Coveyou [JACM 7 (1960), 72–
74] obtained it by averaging over all real numbers x between 0 and m instead
of considering only the integer values (see exercise 21); then Martin
Greenberger [Math. Comp. 15 (1961), 383–389] gave a rigorous derivation
including an estimate of the error term.

So began one of the saddest chapters in the history of computer science!
Although the approximation above is quite correct, it has been grievously
misapplied in practice; people abandoned the perfectly good generators they
had been using and replaced them by terrible generators that looked good
from the standpoint of (39). For more than a decade, the most common
random number generators in daily use were seriously deficient, solely
because of a theoretical advance.

A little Learning is a dang’rous Thing.
— ALEXANDER POPE, An Essay on Criticism, 215 (1711)

If we are to learn by past mistakes, we had better look carefully at how
(39) has been misused. In the first place people assumed uncritically that a
small serial correlation over the whole period would be a pretty good
guarantee of randomness; but in fact it doesn’t even ensure a small serial
correlation for 1000 consecutive elements of the sequence (see exercise 14).

Secondly, (39) and its error term will ensure a relatively small value of
C only when ; therefore people suggested choosing multipliers near

. In fact, we shall see that nearly all multipliers give a value of C that is
substantially less than , hence (39) is not a very good approximation
to the true behavior. Minimizing a crude upper bound for C does not
minimize C.

In the third place, people observed that (39) yields its best estimate
when

since these values are the roots of 1 – 6x + 6x2 = 0. “In the absence of any
other criterion for choosing c, we might as well use this one.” The latter
statement is not incorrect, but it is misleading at best, since experience has
shown that the value of c has hardly any influence on the true value of the
serial correlation when a is a good multiplier; the choice (40) reduces C
substantially only in cases like Example 2 above. And we are fooling
ourselves in such cases, since the bad multiplier will reveal its deficiencies
in other ways.

Clearly we need a better estimate than (39); and such an estimate is now
available thanks to Theorem D, which stems principally from the work of
Ulrich Dieter [Math. Comp. 25 (1971), 855–883]. Theorem D implies that
σ(a, m, c) will be small if the partial quotients of a/m are small. Indeed, by
analyzing generalized Dedekind sums still more closely, it is possible to
obtain quite a sharp estimate:
Theorem K. Under the assumptions of Theorem D, we always have

Proof. See D. E. Knuth, Acta Arithmetica 33 (1977), 297–325, where it is
shown further that these bounds are essentially the best possible when large
partial quotients are present.
Example 4. Estimate the serial correlation for a = 3141592621, m = 235, c
odd.
Solution. The partial quotients of a/m are 10, 1, 14, 1, 7, 1, 1, 1, 3, 3, 3, 5, 2,
1, 8, 7, 1, 4, 1, 2, 4, 2; hence by Theorem K

and the serial correlation is guaranteed to be extremely low for all c.
Note that this bound is considerably better than we could obtain from

(39), since the error in (39) is of order a/m; our “random” multiplier has
turned out to be much better than one specifically chosen to look good on the
basis of (39). In fact, it is possible to show that the average value of

, taken over all multipliers a relatively prime to m, is

(see exercise 4.5.3–35). Therefore the probability that a random multiplier
has large , say larger than (log m)2+∊ for some fixed ∊ > 0,
approaches zero as m → ∞. This substantiates the empirical evidence that
almost all linear congruential sequences have extremely low serial
correlation over the entire period.

The exercises below show that other a priori tests, such as the serial test
over the entire period, can also be expressed in terms of a few generalized

Dedekind sums. It follows from Theorem K that linear congruential
sequences will pass those tests provided that certain specified fractions
(depending on a and m but not on c) have small partial quotients. In
particular, the result of exercise 19 implies that the serial test on pairs will
be passed satisfactorily if and only if a/m has no large partial quotients.

The book Dedekind Sums by Hans Rademacher and Emil Grosswald
(Math. Assoc. of America, Carus Monograph No. 16, 1972) discusses the
history and properties of Dedekind sums and their generalizations. Further
theoretical tests, including the serial test in higher dimensions, are discussed
in Section 3.3.4.

Exercises—First Set

1. [M10] Express x mod y in terms of the sawtooth and δ functions.
2. [HM22] What is the Fourier series expansion (in terms of sines and

cosines) of the function ((x))?
3. [M23] (N. J. Fine.) Prove that for all real

numbers x.
 4. [M19] If m = 1010, what is the highest possible value of d (in the
notation of Theorem P), given that the potency of the generator is 10?

5. [M21] Carry out the derivation of Eq. (17).
6. [M27] Assume that hh′ + kk′ = 1.
a) Show, without using Lemma B, that

for all integers c ≥ 0.

b) Show that

c) Under the assumptions of Lemma B, prove Eq. (21).
 7. [M24] Give a proof of the reciprocity law (19), when c = 0, by using
the general reciprocity law of exercise 1.2.4–45.
 8. [M34] (L. Carlitz.) Let

By generalizing the method of proof used in Lemma B, prove the
following beautiful identity due to H. Rademacher: If each of p, q, r is
relatively prime to the other two,

(The reciprocity law for Dedekind sums, with c = 0, is the special case r
= 1.)

9. [M40] Is there a simple proof of Rademacher’s identity (exercise 8)
along the lines of the proof in exercise 7 of a special case?

10. [M20] Show that when 0 < h < k it is possible to express σ(k – h, k, c)
and σ(h, k, –c) easily in terms of σ(h, k, c).
11. [M30] The formulas given in the text show us how to evaluate σ(h, k,
c) when h and k are relatively prime and c is an integer. For the general
case, prove that

a) σ(dh, dk, dc) = σ(h, k, c), for integer d > 0;
b) σ(h, k, c + θ) = σ(h, k, c) + 6((h′c/k)), for integer c, real 0 < θ < 1, h ⊥

k, and hh′ ≡ 1 (modulo k).
12. [M24] Show that if h is relatively prime to k and c is an integer, |σ(h, k,
c)| ≤ (k − 1)(k − 2)/k.
13. [M24] Generalize Eq. (26) so that it gives an expression for σ(h, k, c).

 14. [M20] The linear congruential generator that has m = 235, a = 218 + 1,
c = 1, was given the serial correlation test on three batches of 1000
consecutive numbers, and the result was a very high correlation, between
0.2 and 0.3, in each case. What is the serial correlation of this generator,
taken over all 235 numbers of the period?
15. [M21] Generalize Lemma B so that it applies to all real values of c, 0
≤ c < k.
16. [M24] Given the Euclidean tableau defined in (33), let p0 = 1, p1 = a1,
and pj = ajpj–1 + pj−2 for 1 < j ≤ t. Show that the complicated portion of the
sum in Theorem D can be rewritten as follows, making it possible to avoid
noninteger computations:

[Hint: Prove that ∑1≤j≤r(–1)j + 1/mjmj+1 = (–1)r+ 1pr−1/m1mr+1 for 1 ≤ r ≤
t.]

17. [M22] Design an algorithm that evaluates σ(h, k, c) for integers h, k, c
satisfying the hypotheses of Theorem D. Your algorithm should use only
integer arithmetic (of unlimited precision), and it should produce the
answer in the form A + B/k where A and B are integers. (See exercise 16.)
If possible, use only a finite number of variables for temporary storage,
instead of maintaining arrays such as a1, a2, . . . , at.

 18. [M23] (U. Dieter.) Given positive integers h, k, z, let

Show that this sum can be evaluated in closed form, in terms of
generalized Dedekind sums and the sawtooth function. [Hint: When z ≤
k, the quantity ⌊j/k⌋ – ⌊(j – z)/k⌋ equals 1 for 0 ≤ j < z, and it equals 0 for
z ≤ j < k, so we can introduce this factor and sum over 0 ≤ j < k.]

 19. [M23] Show that the serial test can be analyzed over the full period,
in terms of generalized Dedekind sums, by finding a formula for the
probability that α ≤ Xn < β and α′ ≤ Xn+1 < β′ when α, β, α′, β′ are given
integers with 0 ≤ α < β ≤ m and 0 ≤ α′ < β′ ≤ m. [Hint: Consider the
quantity ⌊(x – α)/m⌋ – ⌊(x – β)/m⌋.]
20. [M29] (U. Dieter.) Extend Theorem P by obtaining a formula for the
probability that Xn > Xn+1 > Xn+2, in terms of generalized Dedekind sums.

Exercises—Second Set
In many cases, exact computations with integers are quite difficult to carry
out, but we can attempt to study the probabilities that arise when we take the
average over all real values of x instead of restricting the calculation to
integer values. Although these results are only approximate, they shed some
light on the subject.

It is convenient to deal with numbers Un between zero and one; for linear
congruential sequences, Un = Xn/m, and we have Un+1 = {aUn + θ}, where θ

= c/m and {x} denotes x mod 1. For example, the formula for serial
correlation now becomes

 21. [HM23] (R. R. Coveyou.) What is the value of C in the formula just
given?

 22. [M22] Let a be an integer, and let 0 ≤ θ < 1. If x is a random real
number, uniformly distributed between 0 and 1, and if s(x) = {ax + θ},
what is the probability that s(x) < x? (This is the “real number” analog of
Theorem P.)
23. [M28] The previous exercise gives the probability that Un+1 < Un.
What is the probability that Un+2 < Un+1 < Un, assuming that Un is a
random real number between zero and one?
24. [M29] Under the assumptions of the preceding problem, except with θ
= 0, show that Un > Un+1 > ... > Un+t−1 occurs with probability

What is the average length of a descending run starting at Un, assuming
that Un is selected at random between zero and one?

 25. [M25] Let α, β, α′, β′ be real numbers with 0 ≤ α < β ≤ 1, 0 ≤ α′ < β′ ≤
1. Under the assumptions of exercise 22, what is the probability that α ≤ x
< β and α′ ≤ s(x) < β′? (This is the “real number” analog of exercise 19.)
26. [M21] Consider a “Fibonacci” generator, where Un+1 = {Un + Un−1}.
Assuming that U1 and U2 are independently chosen at random between 0
and 1, find the probability that U1 < U2 < U3, U1 < U3 < U2, U2 < U1 < U3,
etc. [Hint: Divide the unit square {(x, y) | 0 ≤ x, y < 1} into six parts,
depending on the relative order of x, y, and {x + y}, and determine the area
of each part.]
27. [M32] In the Fibonacci generator of the preceding exercise, let U0 and
U1 be chosen independently in the unit square except that U0 > U1.
Determine the probability that U1 is the beginning of an upward run of

length k, so that U0 > U1 < ... < Uk > Uk+1. Compare this with the
corresponding probabilities for a random sequence.
28. [M35] According to Eq. 3.2.1.3–(5), a linear congruential generator
with potency 2 satisfies the condition Xn−1–2Xn+Xn+1 ≡ (a−1)c (modulo
m). Consider a generator that abstracts this situation: Let Un+1 = {α + 2Un
– Un–1}. As in exercise 26, divide the unit square into parts that show the
relative order of U1, U2, and U3 for each pair (U1, U2). Are there any
values of α for which all six possible orders are achieved with probability
, assuming that U1 and U2 are chosen at random in the unit square?

3.3.4. The Spectral Test
In this section we shall study an especially important way to check the
quality of linear congruential random number generators. Not only do all
good generators pass this test, all generators now known to be bad actually
fail it. Thus it is by far the most powerful test known, and it deserves
particular attention. Our discussion will also bring out some fundamental
limitations on the degree of randomness that we can expect from linear
congruential sequences and their generalizations.

The spectral test embodies aspects of both the empirical and theoretical
tests studied in previous sections: It is like the theoretical tests because it
deals with properties of the full period of the sequence, and it is like the
empirical tests because it requires a computer program to determine the
results.
A. Ideas underlying the test. The most important randomness criteria seem
to rely on properties of the joint distribution of t consecutive elements of the
sequence, and the spectral test deals directly with this distribution. If we
have a sequence 〈Un〉 of period m, the basic idea is to analyze the set of
all m points

in t-dimensional space.
For simplicity we shall assume that we have a linear congruential

sequence (X0, a, c, m) of maximum period length m (so that c ≠ 0), or that m
is prime and c = 0 and the period length is m − 1. In the latter case we shall
add the point (0, 0, . . . , 0) to the set (1), so that there are always m points in
all; this extra point has a negligible effect when m is large, and it makes the
theory much simpler. Under these assumptions, (1) can be rewritten as

where

is the successor of x. We are considering only the set of all such points in t
dimensions, not the order in which those points are actually generated. But
the order of generation is reflected in the dependence between components of

the vectors; and the spectral test studies such dependence for various
dimensions t by dealing with the totality of all points (2).

For example, Fig. 8 shows a typical small case in 2 and 3 dimensions,
for the generator with

Fig. 8. (a) The two-dimensional grid formed by all pairs of successive
points (Xn, Xn+1), when Xn+1 = (137Xn + 187) mod 256. (b) The three-

dimensional grid of triplets (Xn, Xn+1, Xn+2).

Of course a generator with period length 256 will hardly be random, but 256
is small enough that we can draw the diagram and gain some understanding
before we turn to the larger m’s that are of practical interest.

Perhaps the most striking thing about the pattern of boxes in Fig. 8(a) is
that we can cover them all by a fairly small number of parallel lines; indeed,
there are many different families of parallel lines that will hit all the points.
For example, a set of 20 nearly vertical lines will do the job, as will a set of
21 lines that tilt upward at roughly a 30° angle. We commonly observe
similar patterns when driving past farmlands that have been planted in a
systematic manner.

If the same generator is considered in three dimensions, we obtain 256
points in a cube, obtained by appending a “height” component s(s(x)) to each
of the 256 points (x, s(x)) in the plane of Fig. 8(a), as shown in Fig. 8(b).

Let’s imagine that this 3-D crystal structure has been made into a physical
model, a cube that we can turn in our hands; as we rotate it, we will notice
various families of parallel planes that encompass all of the points. In the
words of Wallace Givens, the random numbers stay “mainly in the planes.”

At first glance we might think that such systematic behavior is so
nonrandom as to make congruential generators quite worthless; but more
careful reflection, remembering that m is quite large in practice, provides a
better insight. The regular structure in Fig. 8 is essentially the “grain” we see
when examining our random numbers under a high-power microscope. If we
take truly random numbers between 0 and 1, and round or truncate them to
finite accuracy so that each is an integer multiple of 1/ν for some given
number ν, then the t-dimensional points (1) we obtain will have an extremely
regular character when viewed through a microscope.

Let 1/ν2 be the maximum distance between lines, taken over all families
of parallel straight lines that cover the points {(x/m, s(x)/m)} in two
dimensions. We shall call ν2 the two-dimensional accuracy of the random
number generator, since the pairs of successive numbers have a fine structure
that is essentially good to one part in ν2. Similarly, let 1/ν3 be the maximum
distance between planes, taken over all families of parallel planes that cover
all points {(x/m, s(x)/m, s(s(x))/m)}; we shall call ν3 the accuracy in three
dimensions. The t-dimensional accuracy νt is the reciprocal of the maximum
distance between hyperplanes, taken over all families of parallel (t − 1)-
dimensional hyperplanes that cover all points {(x/m, s(x)/m, . . . , s[t−1]

(x)/m)}.
The essential difference between periodic sequences and truly random

sequences that have been truncated to multiples of 1/ν is that the accuracy of
truly random sequences is the same in all dimensions, while that of periodic
sequences decreases as t increases. Indeed, since there are only m points in
the t-dimensional cube when m is the period length, we can’t achieve a t-
dimensional accuracy of more than about m1/t.

When the independence of t consecutive values is considered, computer-
generated random numbers will behave essentially as if we took truly
random numbers and truncated them to lg νt bits, where νt decreases with
increasing t. In practice, such varying accuracy is usually all we need. We
don’t insist that the 10-dimensional accuracy be 232, in the sense that all

(232)10 possible 10-tuples (Un, Un+1, . . . , Un+9) should be equally likely on a
32-bit machine; for such large values of t we want only a few of the leading
bits of (Un, Un+1, . . . , Un+t−1) to behave as if they were independently
random.

On the other hand when an application demands high resolution of the
random number sequence, simple linear congruential sequences will
necessarily be inadequate. A generator with longer period should be used
instead, even though only a small fraction of the period will actually be
generated. Squaring the period length will essentially square the accuracy in
higher dimensions; that is, it will double the effective number of bits of
precision.

The spectral test is based on the values of νt for small t, say 2 ≤ t ≤ 6.
Dimensions 2, 3, and 4 seem to be adequate to detect important deficiencies
in a sequence, but since we are considering the entire period it is wise to be
somewhat cautious and go up into another dimension or two; on the other
hand the values of νt for t ≥ 10 seem to be of no practical significance
whatever. (This is fortunate, because it appears to be rather difficult to
calculate the accuracy νt precisely when t ≥ 10.)

There is a vague relation between the spectral test and the serial test; for
example, a special case of the serial test, taken over the entire period as in
exercise 3.3.3–19, counts the number of boxes in each of 64 subsquares of
Fig. 8(a). The main difference is that the spectral test rotates the dots so as to
discover the least favorable orientation. We shall return to the serial test later
in this section.

It may appear at first that we should apply the spectral test only for one
suitably high value of t; if a generator passes the test in three dimensions, it
seems plausible that it should also pass the 2-D test, hence we might as well
omit the latter. The fallacy in this reasoning occurs because we apply more
stringent conditions in lower dimensions. A similar situation occurs with the
serial test: Consider a generator that (quite properly) has almost the same
number of points in each subcube of the unit cube, when the unit cube has
been divided into 64 subcubes of size ; this same generator might
yield completely empty subsquares of the unit square, when the unit square
has been divided into 64 subsquares of size . Since we increase our

expectations in lower dimensions, a separate test for each dimension is
required.

It is not always true that νt ≤ m1/t, although this upper bound is valid
when the points form a rectangular grid. For example, it turns out that

 in Fig. 8, because a nearly hexagonal structure brings
the m points closer together than would be possible in a strictly rectangular
arrangement.

In order to develop an algorithm that computes νt efficiently, we must
look more deeply at the associated mathematical theory. Therefore a reader
who is not mathematically inclined is advised to skip to part D of this
section, where the spectral test is presented as a “plug-in” method
accompanied by several examples. But the mathematics behind the spectral
test requires only some elementary manipulations of vectors.

Some authors have suggested using the minimum number Nt of parallel
covering lines or hyperplanes as the criterion, instead of the maximum
distance 1/νt between them. However, this number Nt does not appear to be
as important as the concept of accuracy defined above, because it is biased
by how nearly the slope of the lines or hyperplanes matches the coordinate
axes of the cube. For example, the 20 nearly vertical lines that cover all the
points of Fig. 8(a) are actually units apart, according to Eq. (14)
below with (u1, u2) = (18, –2); this might falsely imply an accuracy of one
part in or perhaps even an accuracy of one part in 20. The true
accuracy of only one part in is realized only for the larger family of
21 lines with a slope of 7/15; another family of 24 lines, with a slope of –
11/13, also has a greater inter-line distance than the 20-line family, since

. The precise way in which families of lines act at the
boundaries of the unit hypercube does not seem to be an especially “clean”
or significant criterion. However, for those people who prefer to count
hyperplanes, it is possible to compute Nt using a method quite similar to the
way in which we shall calculate νt (see exercise 16).
*B. Theory behind the test. In order to analyze the basic set (2), we start
with the observation that

We can get rid of the “mod 1” operation by extending the set periodically,
making infinitely many copies of the original t-dimensional hypercube,
proceeding in all directions. This gives us the set

where

is a constant vector. The variable k1 is redundant in this representation of L,
because we can change (x, k1, k2, . . . , kt) to (x+k1m, 0, k2–ak1, . . . , kt–at–

1k1), reducing k1 to zero without loss of generality. Therefore we obtain the
comparatively simple formula

where

The points (x1, x2, . . . , xt) of L that satisfy 0 ≤ xj < 1 for all j are precisely
the m points of our original set (2).

Notice that the increment c appears only in V0, and the effect of V0 is
merely to shift all elements of L without changing their relative distances;
hence c does not affect the spectral test in any way, and we might as well
assume that V0 = (0, 0, . . . , 0) when we are calculating νt. When V0 is the
zero vector we have a lattice of points

and our goal is to study the distances between adjacent (t − 1)-dimensional
hyperplanes, in families of parallel hyperplanes that cover all the points of
L0.

A family of parallel (t − 1)-dimensional hyperplanes can be defined by a
nonzero vector U = (u1, . . . , ut) that is perpendicular to all of them; and the
set of points on a particular hyperplane is then

where q is a different constant for each hyperplane in the family. In other
words, each hyperplane is the set of all vectors X for which the dot product
X · U has a given value q. In our case the hyperplanes are all separated by a
fixed distance, and one of them contains (0, 0, . . . , 0); hence we can adjust
the magnitude of U so that the set of all integer values q gives all the
hyperplanes in the family. Then the distance between neighboring
hyperplanes is the minimum distance from (0, 0, . . . , 0) to the hyperplane for
q = 1, namely

Cauchy’s inequality (see exercise 1.2.3–30) tells us that

hence the minimum in (12) occurs when each ; the
distance between neighboring hyperplanes is

In other words, the quantity νt that we seek is precisely the length of the
shortest vector U that defines a family of hyperplanes {X · U = q | integer q}
containing all the elements of L0.

Such a vector U = (u1, . . . , ut) must be nonzero, and it must satisfy V · U
= integer for all V in L0. In particular, since the points (1, 0, . . . , 0), (0, 1, . .
. , 0), . . . , (0, 0, . . . , 1) are all in L0, all of the uj must be integers.
Furthermore since V1 is in L0, we must have

, i.e.,

Conversely, any nonzero integer vector U = (u1, . . . , ut) satisfying (15)
defines a family of hyperplanes with the required properties, since all of L0
will be covered: The dot product (y1V1+ ... +ytVt) · U will be an integer for
all integers y1, . . . , yt. We have proved that

C. Deriving a computational method. We have now reduced the spectral
test to the problem of finding the minimum value (16); but how on earth can
we determine that minimum value in a reasonable amount of time? A brute-
force search is out of the question, since m is very large in cases of practical
interest.

It will be interesting and probably more useful if we develop a
computational method for solving an even more general problem: Find the
minimum value of the quantity

over all nonzero integer vectors (x1, . . . , xt), given any nonsingular matrix
of coefficients U = (uij). The expression (17) is called a “positive definite
quadratic form” in t variables. Since U is nonsingular, (17) cannot be zero
unless the xj are all zero.

Let us write U1, . . . , Ut for the rows of U. Then (17) may be written

the square of the length of the vector x1U1 + ... + xtUt. The nonsingular matrix
U has an inverse, which means that we can find uniquely determined vectors
V1, . . . , Vt such that

For example, in the special form (16) that arises in the spectral test, we have

These Vj are precisely the vectors (8), (9) that we used to define our original
lattice L0. As the reader may well suspect, this is not a coincidence—indeed,
if we had begun with an arbitrary lattice L0, defined by any set of linearly

independent vectors V1, . . . , Vt, the argument we have used above can be
generalized to show that the maximum separation between hyperplanes in a
covering family is equivalent to minimizing (17), where the coefficients uij
are defined by (19). (See exercise 2.)

Our first step in minimizing (18) is to reduce it to a finite problem,
namely to show that we won’t need to test infinitely many vectors (x1, . . . ,
xt) when finding the minimum. This is where the vectors V1, . . . , Vt come in
handy; we have

and Cauchy’s inequality tells us that

Hence we have derived a useful upper bound on each coordinate xk:

Lemma A. Let (x1, . . . , xt) be a nonzero vector that minimizes (18) and let
(y1, . . . , yt) be any nonzero integer vector. Then

In particular, letting yi = δij for all i,

Lemma A reduces the problem to a finite search, but the right-hand side
of (21) is usually much too large to make an exhaustive search feasible; we
need at least one more idea. On such occasions, an old maxim provides
sound advice: “If you can’t solve a problem as it is stated, change it into a
simpler problem that has the same answer.” For example, Euclid’s algorithm
has this form; if we don’t know the gcd of the input numbers, we change them
into smaller numbers having the same gcd. (In fact, a slightly more general
approach probably underlies the discovery of nearly all algorithms: “If you
can’t solve a problem directly, change it into one or more simpler problems,
from whose solution you can solve the original one.”)

In our case, a simpler problem is one that requires less searching
because the right-hand side of (22) is smaller. The key idea we shall use is
that it is possible to change one quadratic form into another one that is
equivalent for all practical purposes. Let j be any fixed subscript, 1 ≤ j ≤ t;

let (q1, . . . , qj−1, qj+1, . . . , qt) be any sequence of t − 1 integers; and
consider the following transformation of the vectors:

It is easy to see that the new vectors define a quadratic form f′
for which ; furthermore the basic
orthogonality condition (19) remains valid, because it is easy to check that

. As (x1, . . . , xt) runs through all nonzero integer vectors, so
does ; hence the new form f′ has the same minimum as f.

Our goal is to use transformation (23), replacing Ui by and Vi by
for all i, in order to make the right-hand side of (22) small; and the right-hand
side of (22) will be small when both Uj · Uj and Vk · Vk are small. Therefore
it is natural to ask the following two questions about the transformation (23):

a) What choice of qi makes as small as possible?
b) What choice of q1, . . . , qj−1, qj+1, . . . , qt makes as small as

possible?
It is easiest to solve these questions first for real values of the qi.

Question (a) is quite simple, since

and the minimum occurs when

Geometrically, we are asking what multiple of Vj should be subtracted from
Vi so that the resulting vector has minimum length, and the answer is to
choose qi so that is perpendicular to Vj (that is, to make); the
following diagram makes this plain.

Turning to question (b), we want to choose the qi so that
 has minimum length; geometrically, we want to start with

Uj and add some vector in the (t − 1)-dimensional hyperplane whose points
are the sums of multiples of {Ui | i ≠ j}. Again the best solution is to choose
things so that is perpendicular to the hyperplane, making for
all k ≠ j:

(See exercise 12 for a rigorous proof that a solution to question (b) must
satisfy these t − 1 equations.)

Now that we have answered questions (a) and (b), we are in a bit of a
quandary; should we choose the qi according to (24), so that the are
minimized, or according to (26), so that is minimized? Either of
these alternatives makes an improvement in the right-hand side of (22), so it
is not immediately clear which choice should get priority. Fortunately, there
is a very simple answer to this dilemma: Conditions (24) and (26) are
exactly the same! (See exercise 7.) Therefore questions (a) and (b) have the
same answer; we have a happy state of affairs in which we can reduce the
length of both the U’s and the V’s simultaneously. Indeed, we have just
rediscovered the Gram–Schmidt orthogonalization process [see Crelle 94
(1883), 41–73].

Our joy must be tempered with the realization that we have dealt with
questions (a) and (b) only for real values of the qi. Our application restricts
us to integer values, so we cannot make exactly perpendicular to Vj. The
best we can do for question (a) is to let qi be the nearest integer to Vi · Vj /
Vj · Vj (see (25)). It turns out that this is not always the best solution to
question (b); in fact may at times be longer than Uj. However, the bound

(21) is never increased, since we can remember the smallest value of f(y1, . .
. , yt) found so far. Thus a choice of qi based solely on question (a) is quite
satisfactory.

If we apply transformation (23) repeatedly in such a way that none of the
vectors Vi gets longer and at least one gets shorter, we can never get into a
loop; that is, we will never be considering the same quadratic form again
after a sequence of nontrivial transformations of this kind. But eventually we
will get stuck, in the sense that none of the transformations (23) for 1 ≤ j ≤ t
will be able to shorten any of the vectors V1, . . . , Vt. At that point we can
revert to an exhaustive search, using the bounds of Lemma A, which will
now be quite small in most cases. Occasionally these bounds (21) will be
poor, and another type of transformation will usually get the algorithm
unstuck again and reduce the bounds (see exercise 18). However,
transformation (23) by itself has proved to be quite adequate for the spectral
test; in fact, it has proved to be amazingly powerful when the computations
are arranged as in the algorithm discussed below.
*D. How to perform the spectral test. Here now is an efficient
computational procedure that follows from our considerations. R. W. Gosper
and U. Dieter have observed that it is possible to use the results of lower
dimensions to make the spectral test significantly faster in higher dimensions.
This refinement has been incorporated into the following algorithm, together
with Gauss’s significant simplification of the two-dimensional case (exercise
5).
Algorithm S (The spectral test). This algorithm determines the value of

for 2 ≤ t ≤ T, given a, m, and T, where 0 < a < m and a is relatively prime to
m. (The minimum is taken over all nonzero integer vectors (x1, . . . , xt), and
the number νt measures the t-dimensional accuracy of random number
generators, as discussed in the text above.) All arithmetic within this
algorithm is done on integers whose magnitudes rarely if ever exceed m2,
except in step S7; in fact, nearly all of the integer variables will be less than
m in absolute value during the computation.

When νt is being calculated for t ≥ 3, the algorithm works with two t × t
matrices U and V, whose row vectors are denoted by Ui = (ui1, . . . , uit) and
Vi = (vi1, . . . , vit) for 1 ≤ i ≤ t. These vectors satisfy the conditions

(Thus the Vj of our previous discussion have been multiplied by m, to ensure
that their components are integers.) There are three other auxiliary vectors, X
= (x1, . . . , xt), Y = (y1, . . . , yt), and Z = (z1, . . . , zt). During the entire
algorithm, r will denote at−1 mod m and s will denote the smallest upper
bound for that has been discovered so far.

S1. [Initialize.] Set t ← 2, h ← a, h′ ← m, p ← 1, p′ ← 0, r ← a, s ← 1 +
a2. (The first steps of this algorithm handle the case t = 2 by a special
method, very much like Euclid’s algorithm; we will have

during this phase of the calculation.)
S2. [Euclidean step.] Set q ← ⌊h′/h⌋, u ← h′ – qh, v ← p′ – qp. If u2 + v2 <

s, set s ← u2 + v2, h′ ← h, h ← u, p′ ← p, p ← v, and repeat step S2.
S3. [Compute ν2.] Set u ← u–h, v ← v –p; and if u2 +v2 < s, set s ← u2 +v2,

h′ ← u, p′ ← v. Then output . (The validity of this calculation
for the two-dimensional case is proved in exercise 5. Now we will set
up the U and V matrices satisfying (28) and (29), in preparation for
calculations in higher dimensions.) Set

where the – sign is chosen for V if and only if p′ > 0.
S4. [Advance t.] If t = T, the algorithm terminates. (Otherwise we want to

increase t by 1. At this point U and V are t × t matrices satisfying (28)
and (29), and we must enlarge them by adding an appropriate new row
and column.) Set t ← t + 1 and r ← (ar) mod m. Set Ut to the new row
(–r, 0, 0, . . . , 0, 1) of t elements, and set uit ← 0 for 1 ≤ i < t. Set Vt to
the new row (0, 0, 0, . . . , 0, m). Finally, for 1 ≤ i < t, set q ←
round(vi1r/m), vit ← vi1r – qm, and Ut ← Ut + qUi. (Here “round(x)”

denotes the nearest integer to x, e.g., ⌊x + 1/2⌋. We are essentially
setting vit ← vi1r and immediately applying transformation (23) with j =
t, since the numbers |vi1r| are so large they ought to be reduced at once.)
Finally set s ← min(s, Ut · Ut), k ← t, and j ← 1. (In the following
steps, j denotes the current row index for transformation (23), and k
denotes the last such index where the transformation shortened at least
one of the Vi.)

S5. [Transform.] For 1 ≤ i ≤ t, do the following operations: If i ≠ j and 2|Vi
· Vj| > Vj · Vj, set q ← round(Vi · Vj / Vj · Vj), Vi ← Vi – qVj, Uj ← Uj +
qUi, s ← min(s, Uj · Uj), and k ← j. (We omit the transformation when
2|Vi · Vj| exactly equals Vj · Vj; exercise 19 shows that this precaution
keeps the algorithm from looping endlessly.)

S6. [Advance j.] If j = t, set j ← 1; otherwise set j ← j + 1. Now if j ≠ k,
return to step S5. (If j = k, we have gone through t − 1 consecutive
cycles of no transformation, so the transformation process is stuck.)

S7. [Prepare for search.] (Now the absolute minimum will be determined,
using an exhaustive search over all (x1, . . . , xt) satisfying condition
(21) of Lemma A.) Set X ← Y ← (0, . . . , 0), set k ← t, and set

(We will examine all X = (x1, . . . , xt) with |xj| ≤ zj for 1 ≤ j ≤ t. Usually
|zj| ≤ 1, but L. C. Killingbeck noticed in 1999 that larger values occur
for about 0.00001 of all multipliers when m = 264. During the exhaustive
search, the vector Y will always be equal to x1U1 + ... + xtUt, so that
f(x1, . . . , xt) = Y · Y . Since f(–x1, . . . , –xt) = f(x1, . . . , xt), we shall
examine only vectors whose first nonzero component is positive. The
method is essentially that of counting in steps of one, regarding (x1, . . . ,
xt) as the digits in a balanced number system with mixed radices (2z1+1,
. . . , 2zt+1); see Section 4.1.)

S8. [Advance xk.] If xk = zk, go to S10. Otherwise increase xk by 1 and set
Y ← Y + Uk.

S9. [Advance k.] Set k ← k + 1. Then if k ≤ t, set xk ← –zk, Y ← Y –
2zkUk, and repeat step S9. But if k > t, set s ← min(s, Y · Y).

S10. [Decrease k.] Set k ← k − 1. If k ≥ 1, return to S8. Otherwise output
 (the exhaustive search is completed) and return to S4.

In practice Algorithm S is applied for T = 5 or 6, say; it usually works
reasonably well when T = 7 or 8, but it can be terribly slow when T ≥ 9
since the exhaustive search tends to make the running time grow as 3T. (If the
minimum value νt occurs at many different points, the exhaustive search will
hit them all; hence we typically find that all zk = 1 for large t. As remarked
above, the values of νt are generally irrelevant for practical purposes when t
is large.)

An example will help to make Algorithm S clear. Consider the linear
congruential sequence defined by

Six cycles of the Euclidean algorithm in steps S2 and S3 suffice to prove that
the minimum nonzero value of with

occurs for x1 = 67654, x2 = 226; hence the two-dimensional accuracy of this
generator is

Passing to three dimensions, we seek the minimum nonzero value of
 such that

Step S4 sets up the matrices

The first iteration of step S5, with q = 1 for i = 2 and q = 4 for i = 3, changes
them to

(The first row U1 has actually gotten longer in this transformation, although
eventually the rows of U should get shorter.)

The next fourteen iterations of step S5 have (j, q1, q2, q3) = (2, –2, *, 0),
(3, 0, 3, *), (1, *, –10, – 1), (2, –1, *, –6), (3, –1, 0, *), (1, *, 0, 2), (2, 0, *, –
1), (3, 3, 4, *), (1, *, 0, 0), (2, –5, *, 0), (3, 1, 0, *), (1, *, –3, – 1), (2, 0, *,
0), (3, 0, 0, *). Now the transformation process is stuck, but the rows of the
matrices have become significantly shorter:

The search limits (z1, z2, z3) in step S7 turn out to be (0, 0, 1), so U3 is the
shortest solution to (33); we have

Only a few iterations were needed to find this value, although condition (33)
looks quite formidable at first glance. Our computation has proved that all
points (Un, Un+1, Un+2) produced by the random number generator (32) lie on
a family of parallel planes about 0.001 units apart, but not on any family of
planes that differ by more than 0.001 units.

The exhaustive search in steps S8–S10 reduces the value of s only rarely.
One such case, found in 1982 by R. Carling and K. Levine, occurs when a =
464680339, m = 229, and t = 5; another case arose when the author calculated

 for line 21 of Table 1, later in this section.
E. Ratings for various generators. So far we haven’t really given a
criterion that tells us whether or not a particular random number generator
passes or flunks the spectral test. In fact, spectral success depends on the
application, since some applications demand higher resolution than others. It
appears that νt ≥ 230/t for 2 ≤ t ≤ 6 will be quite adequate for most purposes
(although the author must admit choosing this criterion partly because 30 is
conveniently divisible by 2, 3, 5, and 6).

For some purposes we would like a criterion that is relatively
independent of m, so we can say that a particular multiplier is good or bad
with respect to the set of all other multipliers for the given m, without
examining any others. A reasonable figure of merit for rating the goodness of

a particular multiplier seems to be the volume of the ellipsoid in t-space
defined by the relation

since this volume tends to indicate how likely it is that nonzero integer
points (x1, . . . , xt)—corresponding to solutions of (15)—are in the ellipsoid.
We therefore propose to calculate this volume, namely

as an indication of the effectiveness of the multiplier a for the given m. In this
formula,

Thus, in six or fewer dimensions the merit is computed as follows:

We might say that the multiplier a passes the spectral test if μt is 0.1 or more
for 2 ≤ t ≤ 6, and it “passes with flying colors” if μt ≥ 1 for all these t. A low
value of μt means that we have probably picked a very unfortunate multiplier,
since very few lattices will have integer points so close to the origin.
Conversely, a high value of μt means that we have found an unusually good
multiplier for the given m; but it does not mean that the random numbers are
necessarily very good, since m might be too small. Only the values νt truly
indicate the degree of randomness.

Table 1 shows what sorts of values occur in typical sequences. Each line
of the table considers a particular generator, and lists , μt, and the “number
of bits of accuracy” lg νt. Lines 1 through 4 show the generators that were the
subject of Figs. 2 and 5 in Section 3.3.1. The generators in lines 1 and 2
suffer from too small a multiplier; a diagram like Fig. 8 will have a nearly
vertical “stripes” when a is small. The terrible generator in line 3 has a good
μ2 but very poor μ3 and μ4; like nearly all generators of potency 2, it has

 and ν4 = 2 (see exercise 3). Line 4 shows a “random” multiplier;
this generator has satisfactorily passed numerous empirical tests for

randomness, but it does not have especially high values of μ2, . . . , μ6. In fact,
the value of μ5 flunks our criterion.

Table 1 Sample Results of the Spectral Test

Line 5 shows the generator of Fig. 8. It passes the spectral test with very
high-flying colors, when μ2 through μ6 are considered, but of course m is so
small that the numbers can hardly be called random; the νt values are terribly
low.

Line 6 is the generator discussed in (32) above. Line 7 is a similar
example, having an abnormally low value of μ3. Line 8 shows a nonrandom
multiplier for the same modulus m; all of its partial quotients are 1, 2, or 3.
Such multipliers have been suggested by I. Borosh and H. Niederreiter

because the Dedekind sums are likely to be especially small and because
they produce best results in the two-dimensional serial test (see Section 3.3.3
and exercise 30). The particular example in line 8 has only one ‘3’ as a
partial quotient; there is no multiplier congruent to 1 modulo 20 whose
partial quotients with respect to 1010 are only 1s and 2s. The generator in
line 9 shows another multiplier chosen with malice aforethought, following a
suggestion by A. G. Waterman that guarantees a reasonably high value of μ2
(see exercise 11). Line 10 is interesting because it has high μ3 in spite of very
low μ2 (see exercise 8).

Line 11 of Table 1 is a reminder of the good old days—it once was used
extensively, following a suggestion of O. Taussky in the early 1950s. But
computers for which 235 was an appropriate modulus began to fade in
importance during the late 60s, and they disappeared almost completely in
the 80s, as machines

with 32-bit arithmetic began to proliferate. This switch to a comparatively
small word size called for comparatively greater care. Line 12 was, alas, the
generator actually used on such machines in most of the world’s scientific
computing centers for more than a decade; its very name RANDU is enough to

bring dismay into the eyes and stomachs of many computer scientists! The
actual generator is defined by

and exercise 20 indicates that 229 is the appropriate modulus for the spectral
test. Since 9Xn – 6Xn+1 + Xn+2 ≡ 0 (modulo 231), the generator fails most
three-dimensional criteria for randomness, and it should never have been
used. Almost any multiplier ≡ 5 (modulo 8) would be better. (A curious fact
about RANDU, noticed by R. W. Gosper, is that

, hence μ9 is a spectacular
11.98.) Lines 13 and 14 are the Borosh–Niederreiter and Waterman
multipliers for modulus 232. Line 16 was found by L. C. Killingbeck, who
carried out an exhaustive search of all multipliers a ≡ 1 mod 4 when m = 232.
Line 23, similarly, was found by M. Lavaux and F. Janssens in a
(nonexhaustive) computer search for spectrally good multipliers having a
very high μ2. Line 22 is for the multiplier used with c = 0 and m = 248 in the
Cray XMP library; line 26 (whose excellent multiplier
6364136223846793005 is too big to fit in the column) is due to C. E.
Haynes. Line 15 was nominated by George Marsaglia as “a candidate for the
best of all multipliers,” after a computer search for nearly cubical lattices in
dimensions 2 through 5, partly because it is easy to remember [Applications
of Number Theory to Numerical Analysis, edited by S. K. Zaremba (New
York: Academic Press, 1972), 275].

Line 17 uses a random primitive root, modulo the prime 231–1, as
multiplier. Line 18 shows the spectrally best primitive root for 231–1, found
in an exhaustive search by G. S. Fishman and L. R. Moore III [SIAM J. Sci.
Stat. Comput. 7 (1986), 24–45]. The adequate but less outstanding multiplier
16807 = 75 in line 19 is actually used most often for that modulus, after being
proposed by Lewis, Goodman, and Miller in IBM Systems J. 8 (1969), 136–
146; it has been one of the main generators in the popular IMSL subroutine
library since 1971. The main reason for continued use of a = 16807 is that a2

is less than the modulus m, hence ax mod m can be implemented with
reasonable efficiency in high-level languages using the technique of exercise
3.2.1.1–9. However, such small multipliers have known defects. S. K. Park
and K. W. Miller noticed that the same implementation technique applies also

to certain multipliers greater than , so they asked G. S. Fishman to find
the best “efficiently portable” multiplier in this wider class; the result
appears in line 20 [CACM 31 (1988), 1192–1201]. Line 21 shows another
good multiplier, due to P. L’Ecuyer [CACM 31 (1988), 742–749, 774]; this
one uses a slightly smaller prime modulus.

When the generators of lines 20 and 21 are combined by subtraction as
suggested in Eq. 3.2.2–(15), so that the generated numbers 〈Zn〉 satisfy

exercise 32 shows that it is reasonable to rate 〈Zn〉 with the spectral test
for m = (231 – 1)(231 –249) and a = 1431853894371298687. (This value of a
satisfies a mod (231 – 1) = 48271 and a mod (231 – 249) = 40692.) The
results appear on line 24. We needn’t worry too much about the low value of
μ5, since ν5 > 1000. Generator (38) has a period of length (231 – 2)(231 –
250)/62 ≈ 7 × 1016.

Line 25 of the table represents the sequence

which can be shown to have period length (231 – 1)2 – 1; it has been analyzed
with the generalized spectral test of exercise 24.

The last three lines of Table 1 are based on add-with-carry and subtract-
with-borrow methods, which simulate linear congruential sequences that
have extremely large moduli (see exercise 3.2.1.1–14). Line 27 is for the
generator

which corresponds to χn+1 = (65430 · 231 + 1)χn mod (65430 · 262 + 231 – 1);
the numbers in the table refer to the “super-values”

rather than to the values Xn actually computed and used as random numbers.
Line 28 represents a more typical subtract-with-borrow generator

but modified by generating 389 elements of the sequence and then using only
the first (or last) 24. This generator, called RANLUX, was recommended by
Martin Lüscher after it passed many stringent tests that previous generators
failed [Computer Physics Communications 79 (1994), 100–110]. A similar
sequence,

with 43 elements used after 400 are generated, appears in line 29; this
sequence is discussed in the answer to exercise 3.2.1.2–22. In both cases the
table entries refer to the spectral test on multiprecision numbers χn instead of
to the individual “digits” Xn, but the high μ values indicate that the process of
generating 389 or 400 numbers before selecting 24 or 43 is an excellent way
to remove biases due to the extreme simplicity of the generation scheme.

Theoretical upper bounds on μt, which can never be transcended for any
m, are shown just below Table 1; it is known that every lattice with m points
per unit volume has

where γt takes the respective values

for t = 2, . . . , 8. [See exercise 9 and J. W. S. Cassels, Introduction to
the Geometry of Numbers (Berlin: Springer, 1959), 332; J. H. Conway and
N. J. A. Sloane, Sphere Packings, Lattices and Groups (New York:
Springer, 1988), 20.] These bounds hold for lattices generated by vectors
with arbitrary real coordinates. For example, the optimum lattice for t = 2 is
hexagonal, and it is generated by vectors of length that form two
sides of an equilateral triangle. In three dimensions the optimum lattice is
generated by vectors V1, V2, V3 that can be rotated into the form (v, v, –v), (v,
–v, v), (–v, v, v), where .

*F. Relation to the serial test. In a series of important papers published
during the 1970s, Harald Niederreiter showed how to analyze the
distribution of the t-dimensional vectors (1) by means of exponential sums.
One of the main consequences of his theory is that the serial test in several
dimensions will be passed by any generator that passes the spectral test, even
when we consider only a sufficiently large part of the period instead of the

whole period. We shall now turn briefly to a study of his interesting methods,
in the case of linear congruential sequences (X0, a, c, m) of period length m.

The first idea we need is the notion of discrepancy in t dimensions, a
quantity that we shall define as the difference between the expected number
and the actual number of t-dimensional vectors (xn, xn+1, . . . , xn+t−1) falling
into a hyper-rectangular region, maximized over all such regions. To be
precise, let 〈xn〉 be a sequence of integers in the range 0 ≤ xn < m. We
define

where R ranges over all sets of points of the form

here αj and βj are integers in the range 0 ≤ αj < βj ≤ m, for 1 ≤ j ≤ t. The
volume of R is clearly (β1 – α1) . . . (βt – αt). To get the discrepancy , we
imagine looking at all these sets R and finding the one with the greatest
excess or deficiency of points (xn, . . . , xn+t−1).

An upper bound for the discrepancy can be found by using exponential
sums. Let ω = e2πi/m be a primitive mth root of unity. If (x1, . . . , xt) and (y1, .
. . , yt) are two vectors with all components in the range 0 ≤ xj, yj < m, we
have

Therefore the number of vectors (xn, . . . , xn+t−1) in R for 0 ≤ n < N, when R
is defined by (43), can be expressed as

When u1 = ... = ut = 0 in this sum, we get N/mt times the volume of R; hence
we can express as the maximum over R of

Since complex numbers satisfy |w + z| ≤ |w| + |z| and |wz| = |w||z|, it follows
that

where

Both f and g can be simplified further in order to get a good upper bound on
. We have

when u ≠ 0, and the sum is ≤ 1 when u = 0; hence

where

Furthermore, when 〈xn〉 is generated modulo m by a linear congruential
sequence, we have

where h(u1, . . . , ut) is independent of n; hence

where

Now here is where the connection to the spectral test comes in: We will
show that the sum g(u1, . . . , ut) is rather small unless q(u1, . . . , ut) ≡ 0
(modulo m); in other words, the contributions to (44) arise mainly from the
solutions to (15). Furthermore exercise 27 shows that r(u1, . . . , ut) is rather
small when (u1, . . . , ut) is a “large” solution to (15). Hence the discrepancy

 will be rather small when (15) has only “large” solutions, namely when
the spectral test is passed. Our remaining task is to quantify these qualitative
statements by making careful calculations.

In the first place, let’s consider the size of g(u1, . . . , ut). When N = m, so
that the sum (47) is over an entire period, we have g(u1, . . . , ut) = 0 except
when (u1, . . . , ut) satisfies (15), so the discrepancy is bounded above in this
case by the sum of r(u1, . . . , ut) taken over all the nonzero solutions of (15).
But let’s consider also what happens in a sum like (47) when N is less than m
and q(u1, . . . , ut) is not a multiple of m. We have

where

Now Skl = ω−lkSk0, so |Skl| = |Sk0| for all l, and we can calculate this common
value by further exponential-summery:

Let s be minimum such that as ≡ 1 (modulo m), and let

Then s is a divisor of m (see Lemma 3.2.1.2P), and xn+js ≡ xn+js′ (modulo
m). The sum on l vanishes unless j – i is a multiple of s, so we find that

We have s′ = q′s where q′ is relatively prime to m (see exercise 3.2.1.2–21),
so it turns out that

Putting this information back into (49), and recalling the derivation of (45),
shows that

where the sum is over 0 ≤ k < m such that k +q′ ≡ 0 (modulo m/s). Exercise
25 can now be used to estimate the remaining sum, and we find that

The same upper bound applies also to for any q ≢ 0
(modulo m), since the effect is to replace m in this derivation by a divisor of
m. In fact, the upper bound gets even smaller when q has a factor in common
with m, since s and generally become smaller. (See exercise 26.)

We have now proved that the g(u1, . . . , ut) part of our upper bound (44)
on the discrepancy is small, if N is large enough and if (u1, . . . , ut) does not
satisfy the spectral test congruence (15). Exercise 27 proves that the f(u1, . . .
, ut) part of our upper bound is small, when summed over all the nonzero
vectors (u1, . . . , ut) satisfying (15), provided that all such vectors are far
away from (0, . . . , 0). Putting these results together leads to the following
theorem of Niederreiter:
Theorem N. Let 〈Xn〉 be a linear congruential sequence (X0, a, c, m) of
period length m > 1, and let s be the least positive integer such that as ≡ 1
(modulo m). Then the t-dimensional discrepancy corresponding to the
first N values of 〈Xn〉, as defined in (42), satisfies

Here rmax is the maximum value of the quantity r(u1, . . . , ut) defined in
(46), taken over all nonzero integer vectors (u1, . . . , ut) satisfying (15).

Proof. The first two O-terms in (54) come from vectors (u1, . . . , ut) in (44)
that do not satisfy (15), since exercise 25 proves that f(u1, . . . , ut) summed
over all (u1, . . . , ut) is O (((2/π) ln m)t) and exercise 26 bounds each g(u1, .
. . , ut). (These terms are missing from (55) since g(u1, . . . , ut) = 0 in that
case.) The remaining O-term in (54) and (55) comes from nonzero vectors
(u1, . . . , ut) that do satisfy (15), using the bound derived in exercise 27. (By
examining this proof carefully, we could replace each O in these formulas by
an explicit function of t.)

Eq. (55) relates to the serial test in t dimensions over the entire period,
while Eq. (54) gives us useful information about the distribution of the first N
generated values when N is less than m, provided that N is not too small.
Notice that (54) will guarantee low discrepancy only when s is sufficiently
large, otherwise the term will dominate. If and
gcd(a − 1, m) = , then s equals by Lemma
3.2.1.2P; thus, the largest values of s correspond to high potency. In the
common case m = 2e and a ≡ 5 (modulo 8), we have m, so is

. It is not difficult to prove
that

(see exercise 29). Therefore Eq. (54) says in particular that the discrepancy
will be low in t dimensions if the spectral test is passed and if N is
somewhat larger than .

In a sense Theorem N is almost too strong, for the result in exercise 30
shows that linear congruential sequences like those in lines 8 and 13 of Table
1 have a discrepancy of order (log m)2/m in two dimensions. The
discrepancy in this case is extremely small in spite of the fact that there are
parallelogram-shaped regions of area containing no points (Un,
Un+1). The fact that discrepancy can change so drastically when the points
are rotated warns us that the serial test may not be as meaningful a measure
of randomness as the rotation-invariant spectral test.
G. Historical remarks. In 1959, while deriving upper bounds for the error
in the evaluation of t-dimensional integrals by the Monte Carlo method, N.

M. Korobov devised a way to rate the multiplier of a linear congruential
sequence. His rather complicated formula is related to the spectral test, since
it is strongly influenced by “small” solutions to (15); but it is not quite the
same. Korobov’s test has been the subject of an extensive literature, surveyed
by Kuipers and Niederreiter in Uniform Distribution of Sequences (New
York: Wiley, 1974), §2.5.

The spectral test was originally formulated by R. R. Coveyou and R. D.
MacPherson [JACM 14 (1967), 100–119], who introduced it in an interesting
indirect way. Instead of working with the grid structure of successive points,
they considered random number generators as sources of t-dimensional
“waves.” The numbers such that x1 + ... + at– 1xt ≡ 0
(modulo m) in their original treatment were the wave “frequencies,” or
points in the “spectrum” defined by the random number generator, with low-
frequency waves being the most damaging to randomness; hence the name
spectral test. Coveyou and MacPherson introduced a procedure analogous to
Algorithm S for performing their test, based on the principle of Lemma A.
However, their original procedure (which used matrices UU T and VV T
instead of U and V) dealt with extremely large numbers; the idea of working
directly with U and V was independently suggested by F. Janssens and by U.
Dieter. [See Math. Comp. 29 (1975), 827–833.]

Several other authors pointed out that the spectral test could be
understood in far more concrete terms; by introducing the study of the grid
and lattice structures corresponding to linear congruential sequences, the
fundamental limitations on randomness became graphically clear. See G.
Marsaglia, Proc. Nat. Acad. Sci. 61 (1968), 25–28; W. W. Wood, J. Chem.
Phys. 48 (1968), 427; R. R. Coveyou, Studies in Applied Math. 3
(Philadelphia: SIAM, 1969), 70–111; W. A. Beyer, R. B. Roof, and D.
Williamson, Math. Comp. 25 (1971), 345–360; G. Marsaglia and W. A.
Beyer, Applications of Number Theory to Numerical Analysis, edited by S.
K. Zaremba (New York: Academic Press, 1972), 249–285, 361–370.

R. G. Stoneham showed, by using estimates of exponential sums, that
p1/2+ε or more elements of the sequence akX0 mod p have asymptotically
small discrepancy, when a is a primitive root modulo the prime p [Acta
Arithmetica 22 (1973), 371–389]. This work was extended as explained
above in a number of papers by Harald Niederreiter [Math. Comp. 28

(1974), 1117–1132; 30 (1976), 571–597; Advances in Math. 26 (1977), 99–
181; Bull. Amer. Math. Soc. 84 (1978), 957–1041]. See also Niederreiter’s
book Random Number Generation and Quasi-Monte Carlo Methods
(Philadelphia: SIAM, 1992).

Exercises

1. [M10] To what does the spectral test reduce in one dimension? (In
other words, what happens when t = 1?)

2. [HM20] Let V1, . . . , Vt be linearly independent vectors in t-space, let
L0 be the lattice of points defined by (10), and let U1, . . . , Ut be defined by
(19). Prove that the maximum distance between (t−1)-dimensional
hyperplanes, over all families of parallel hyperplanes that cover L0, is
1/min{f(x1, . . . , xt)1/2 | (x1, . . . , xt) ≠ (0, . . . , 0)}, where f is defined in
(17).

3. [M24] Determine ν3 and ν4 for all linear congruential generators of
potency 2 and period length m.
 4. [M23] Let u11, u12, u21, u22 be elements of a 2 × 2 integer matrix such
that u11 + au12 ≡ u21 + au22 ≡ 0 (modulo m) and u11u22 – u21u12 = m.

a) Prove that all integer solutions (y1, y2) to the congruence y1 +ay2 ≡ 0
(modulo m) have the form (y1, y2) = (x1u11 +x2u21, x1u12 +x2u22) for
integer x1, x2.

b) If, in addition, ,
prove that (y1, y2) = (u11, u12) minimizes over all nonzero
solutions to the congruence.

5. [M30] Prove that steps S1 through S3 of Algorithm S correctly perform the
spectral test in two dimensions. [Hint: See exercise 4, and prove that (h′
+h)2 +(p′ + p)2 ≥ h2 + p2 at the beginning of step S2.]

6. [M30] Let a0, a1, . . . , at−1 be the partial quotients of a/m as defined in
Section 3.3.3, and let A = max0≤j<t aj. Prove that μ2 > 2π/(A + 1 + 1/A).

7. [HM22] Prove that questions (a) and (b) following Eq. (23) have the
same solution for real values of q1, . . . , qj−1, qj+1, . . . , qt (see (24) and
(26)).

8. [M18] Line 10 of Table 1 has a very low value of μ2, yet μ3 is quite
satisfactory. What is the highest possible value of μ3 when μ2 = 10−6 and m =
1010?

9. [HM32] (C. Hermite, 1846.) Let f(x1, . . . , xt) be a positive definite
quadratic form, defined by the matrix U as in (17), and let θ be the minimum
value of f at nonzero integer points. Prove that .
[Hints: If W is any integer matrix of determinant 1, the matrix W U defines a
form equivalent to f; and if S is any orthogonal matrix (that is, if S−1 = ST),
the matrix US defines a form identically equal to f. Show that there is an
equivalent form g whose minimum θ occurs at (1, 0, . . . , 0). Then prove the
general result by induction on t, writing g(x1, . . . , xt) = θ(x1 + β2x2 + ... +
βtxt)2 + h(x2, . . . , xt) where h is a positive definite quadratic form in t − 1
variables.]

10. [M28] Let y1 and y2 be relatively prime integers such that y1 + ay2 ≡ 0
(modulo m) and . Show that there exist integers u1 and
u2 such that u1 +au2 ≡ 0 (modulo m), u1y2 – u2y1 = m, 2 |u1y1 + u2y2| ≤ min

, and . (Hence
 by exercise 4.)

 11. [HM30] (Alan G. Waterman, 1974.) Invent a reasonably efficient
procedure that computes multipliers a ≡ 1 (modulo 4) for which there
exists a relatively prime solution to the congruence y1 + ay2 ≡ 0 (modulo
m) with where ε > 0 is as small as possible,
given m = 2e. (By exercise 10, this choice of a will guarantee that

m, and there is a chance that will be near
its optimum value In practice we will compute several such
multipliers having small ε, choosing the one with best spectral values ν2,
ν3,)

12. [HM23] Prove, without geometrical handwaving, that any solution to
question (b) following Eq. (23) must also satisfy the set of equations (26).
13. [HM22] Lemma A uses the fact that U is nonsingular to prove that a
positive definite quadratic form attains a definite, nonzero minimum value
at nonzero integer points. Show that this hypothesis is necessary, by

exhibiting a quadratic form (19) whose matrix of coefficients is singular,
and for which the values of f(x1, . . . , xt) get arbitrarily near zero (but
never reach it) at nonzero integer points (x1, . . . , xt).
14. [24] Perform Algorithm S by hand, for m = 100, a = 41, T = 3.

 15. [M20] Let U be an integer vector satisfying (15). How many of the (t −
1)-dimensional hyperplanes defined by U intersect the unit hypercube {(x1,
. . . , xt) | 0 ≤ xj < 1 for 1 ≤ j ≤ t}? (This is approximately the number of
hyperplanes in the family that will suffice to cover L0.)
16. [M30] (U. Dieter.) Show how to modify Algorithm S in order to
calculate the minimum number Nt of parallel hyperplanes intersecting the
unit hypercube as in exercise 15, over all U satisfying (15). [Hint: What
are appropriate analogs to positive definite quadratic forms and to Lemma
A?]
17. [20] Modify Algorithm S so that, in addition to computing the quantities
νt, it outputs all integer vectors (u1, . . . , ut) satisfying (15) such that

, for 2 ≤ t ≤ T.
18. [M30] This exercise is about the worst case of Algorithm S.

a) By considering “combinatorial matrices,” whose elements have the
form y + xδij (see exercise 1.2.3–39), find 3 × 3 matrices of integers U
and V satisfying (29) such that the transformation of step S5 does
nothing for any j, but the corresponding values of zk in (31) are so huge
that exhaustive search is out of the question. (The matrix U need not
satisfy (28); we are interested here in arbitrary positive definite
quadratic forms of determinant m.)

b) Although transformation (23) is of no use for the matrices constructed
in (a), find another transformation that does produce a substantial
reduction.

 19. [HM25] Suppose step S5 were changed slightly, so that a
transformation with q = 1 would be performed when 2Vi · Vj = Vj · Vj.
(Thus, whenever i ≠ j.) Would it be possible
for Algorithm S to get into an infinite loop?

20. [M23] Discuss how to carry out an appropriate spectral test for linear
congruential sequences having c = 0, X0 odd, m = 2e, a mod 8 = 3 or 5.
(See exercise 3.2.1.2–9.)
21. [M20] (R. W. Gosper.) A certain application uses random numbers in
batches of four, but “throws away” the second of each set. How can we
study the grid structure of , given a linear
congruential generator of period m = 2e?
22. [M46] What is the best upper bound on μ3, given that μ2 is very near its
maximum value What is the best upper bound on μ2, given that
μ3 is very near its maximum value
23. [M46] Let Ui, Vj be vectors of real numbers with Ui · Vj = δij for 1 ≤ i,
j ≤ t, and such that Ui · Ui = 1, 2 |Ui · Uj| ≤ 1, 2 |Vi · Vj| ≤ Vj · Vj for i ≠ j.
How large can V1 · V1 be? (This question relates to the bounds in step S7,
if both (23) and the transformation of exercise 18(b) fail to make any
reductions. The maximum value known to be achievable is (t + 2)/3, which
occurs when ,

, , for 2 ≤ j ≤ t, where (I1,
. . . , It) is the identity matrix; this construction is due to B. V. Alexeev.)

 24. [M28] Generalize the spectral test to second-order sequences of the
form Xn = (aXn−1 + bXn−2) mod p, having period length p2 – 1. (See Eq.
3.2.2–(8).) How should Algorithm S be modified?
25. [HM24] Let d be a divisor of m and let 0 ≤ q < d. Prove that ∑ r(k),
summed over all 0 ≤ k < m such that k mod d = q, is at most (2/dπ) ln(m/d)
+ O(1). (Here r(k) is defined in Eq. (46) when t = 1.)
26. [M22] Explain why the derivation of (53) leads to a similar bound on

for 0 < q < m.
27. [HM39] (E. Hlawka, H. Niederreiter.) Let r(u1, . . . , ut) be the function
defined in (46). Prove that ∑r(u1, . . . , ut), summed over all 0 ≤ u1, . . . , ut

< m such that (u1, . . . , ut) ≠ (0, . . . , 0) and (15) holds, is at most 2((π +
2π lg m)t rmax), where rmax is the maximum term r(u1, . . . , ut) in the sum.

 28. [M28] (H. Niederreiter.) Find an analog of Theorem N for the case m
= prime, c = 0, a = primitive root modulo m, X0 ≢ 0 (modulo m). [Hint:
Your exponential sums should involve ζ = e2πi/(m − 1) as well as ω.] Prove
that in this case the “average” primitive root has discrepancy

, hence good primitive roots exist for
all m.
29. [HM22] Prove that the quantity rmax of exercise 27 is never larger than

.
30. [M33] (S. K. Zaremba.) Prove that rmax = O(max(a1, . . . , as)/m) in
two dimensions, where a1, . . . , as are the partial quotients obtained when
Euclid’s algorithm is applied to m and a. [Hint: We have a/m = //a1, . . . ,
as//, in the notation of Section 4.5.3; apply exercise 4.5.3–42.]
31. [HM48] (I. Borosh and H. Niederreiter.) Prove that for all sufficiently
large m there exists a number a relatively prime to m such that all partial
quotients of a/m are ≤ 3. Furthermore the set of all m satisfying this
condition but with all partial quotients ≤ 2 has positive density.

 32. [M21] Let m1 = 231 – 1 and m2 = 231 – 249 be the moduli of generator
(38).

a) Show that if Un = (Xn/m1 – Yn/m2) mod 1, we have Un ≈ Zn/m1.
b) Let W0 = (X0m2 – Y0m1) mod m and Wn+1 = aWn mod m, where a and

m have the values stated in the text following (38). Prove that there is a
simple relation between Wn and Un.

In the next edition of this book, I plan to introduce a new Section

3.3.5, entitled “The L3 Algorithm.” It will be a digression from the general
topic of Random Numbers, but it will continue the discussion of lattice
basis reduction in Section 3.3.4. Its main topic will be the now-classic
algorithm of A. K. Lenstra, H. W. Lenstra, Jr., and L. Lovász [Math.
Annalen 261 (1982), 515–534] for finding a near-optimum set of basis
vectors, and improvements to that algorithm made subsequently by other

researchers. Examples of the latter can be found in the following papers
and their bibliographies: M. Seysen, Combinatorica 13 (1993), 363–375;
C. P. Schnorr and H. H. Hörner, Lecture Notes in Comp. Sci. 921 (1995), 1–
12.

3.4. Other Types of Random Quantities
We have now seen how to make a computer generate a sequence of numbers
U0, U1, U2, . . . that behaves as if each number were independently selected
at random between zero and one with the uniform distribution. Applications
of random numbers often call for other kinds of distributions, however; for
example, if we want to make a random choice from among k alternatives, we
want a random integer between 1 and k. If some simulation process calls for
a random waiting time between occurrences of independent events, a random
number with the exponential distribution is desired. Sometimes we don’t
even want random numbers—we want a random permutation (a random
arrangement of n objects) or a random combination (a random choice of k
objects from a collection of n).

In principle, any of these other random quantities can be obtained from
the uniform deviates U0, U1, U2, . . . ; people have devised a number of
important “random tricks” for the efficient transformation of uniform
deviates. A study of these techniques also gives us insight into the proper use
of random numbers in any Monte Carlo application.

It is conceivable that someday somebody will invent a random number
generator that produces one of these other random quantities directly, instead
of getting it indirectly via the uniform distribution. But no direct methods
have as yet proved to be practical, except for the “random bit” generator
described in Section 3.2.2. (See also exercise 3.4.1–31, where the uniform
distribution is used primarily for initialization, after which the method is
almost entirely direct.)

The discussion in the following section assumes the existence of a
random sequence of uniformly distributed real numbers between zero and
one. A new uniform deviate U is generated whenever we need it. These
numbers are usually represented in a computer word with the radix point
assumed at the left.

3.4.1. Numerical Distributions
This section summarizes the best techniques known for producing numbers
from various important distributions. Many of the methods were originally
suggested by John von Neumann in the early 1950s, and they have gradually
been improved upon by other people, notably George Marsaglia, J. H.
Ahrens, and U. Dieter.
A. Random choices from a finite set. The simplest and most common type
of distribution required in practice is a random integer. An integer between
0 and 7 can be extracted from three bits of U on a binary computer; in such a
case, these bits should be extracted from the most significant (left-hand) part
of the computer word, since the least significant bits produced by many
random number generators are not sufficiently random. (See the discussion in
Section 3.2.1.1.)

In general, to get a random integer X between 0 and k − 1, we can
multiply by k, and let X = ⌊kU⌋. On MIX, we would write

and after these two instructions have been executed the desired integer will
appear in register A. If a random integer between 1 and k is desired, we add
one to this result. (The instruction ‘INCA 1’ would follow (1).)

This method gives each integer with nearly equal probability. There is a
slight error because the computer word size is finite (see exercise 2); but the
error is quite negligible if k is small, for example if k/m < 1/10000.

In a more general situation we might want to give different weights to
different integers. Suppose that the value X = x1 is to be obtained with
probability p1, and X = x2 with probability p2, . . . , X = xk with probability
pk. We can generate a uniform number U and let

(Note that p1 + p2 + ... + pk = 1.)

There is a “best possible” way to do the comparisons of U against
various values of p1 + p2 + ... + ps, as implied in (2); this situation is
discussed in Section 2.3.4.5. Special cases can be handled by more efficient
methods; for example, to obtain one of the eleven values 2, 3, . . . , 12 with
the respective “dice” probabilities , we
could compute two independent random integers between 1 and 6 and add
them together.

However, there is actually a faster way to select x1, . . . , xk with
arbitrarily given probabilities, based on an ingenious approach introduced by
A. J. Walker [Electronics Letters 10, 8 (1974), 127–128; ACM Trans. Math.
Software 3 (1977), 253–256]. Suppose we form kU and consider the integer
part K = ⌊kU⌋ and fraction part V = (kU) mod 1 separately; for example,
after the code (1) we will have K in register A and V in register X. Then we
can always obtain the desired distribution by doing the operations

for some appropriate tables (P0, . . . , Pk−1) and (Y0, . . . , Yk−1). Exercise 7
shows how such tables can be computed in general. Walker’s method is
sometimes called the method of “aliases.”

On a binary computer it is usually helpful to assume that k is a power of
2, so that multiplication can be replaced by shifting; this can be done without
loss of generality by introducing additional x’s that occur with probability
zero. For example, let’s consider dice again; suppose we want X = j to occur
with the following 16 probabilities:

We can do this using (3), if k = 16 and xj+1 = j for 0 ≤ j < 16, and if the P and
Y tables are set up as follows:

(When Pj = 1, Yj is not used.) For example, the value 7 occurs with
probability . as

required. It is a peculiar way to throw dice, but the results are
indistinguishable from the real thing.

The probabilities pj can be represented implicitly by nonnegative
weights w1, w2, . . . , wk; if we denote the sum of the weights by W,then pj =
wj/W . In many applications the individual weights vary dynamically. Matias,
Vitter, and Ni [SODA 4 (1993), 361–370] have shown how to update a
weight and generate X in constant expected time.
B. General methods for continuous distributions. The most general real-
valued distribution can be expressed in terms of its “distribution function”
F(x), which specifies the probability that a random quantity X will not
exceed x:

This function always increases monotonically from zero to one; that is,

Examples of distribution functions are given in Section 3.3.1, Fig. 3. If F(x)
is continuous and strictly increasing (so that F(x1) < F(x2) when x1 < x2), it
takes on all values between zero and one, and there is an inverse function
F[−1](y) such that, for 0 < y < 1,

In general, when F(x) is continuous and strictly increasing, we can compute a
random quantity X with distribution F(x) by setting

where U is uniform. This works because the probability that X ≤ x is the
probability that F[−1](U) ≤ x, namely the probability that U ≤ F (x), namely
F(x).

The problem now reduces to one of numerical analysis, namely to find
good methods for evaluating F[−1](U) to the desired accuracy. Numerical
analysis lies outside the scope of this seminumerical book; yet a number of
important shortcuts are available to speed up the general approach of (7),
and we will consider them here.

In the first place, if X1 is a random variable having the distribution F1(x)
and if X2 is an independent random variable with the distribution F2(x), then

(See exercise 4.) For example, a uniform deviate U has the distribution F(x)
= x, for 0 ≤ x ≤ 1; if U1, U2, . . . , Ut are independent uniform deviates, then
max(U1, U2, . . . , Ut) has the distribution function F(x) = xt, for 0 ≤ x ≤ 1.
This formula is the basis of the “maximum-of-t test” given in Section 3.3.2;
the inverse function is . In the special case t = 2, we see
therefore that the two formulas

will give equivalent distributions to the random variable X, although this is
not obvious at first glance. We need not take the square root of a uniform
deviate.

The number of tricks like this is endless: Any algorithm that employs
random numbers as input will give a random quantity with some distribution
as output. The problem is to find general methods for constructing the
algorithm, given the distribution function of the output. Instead of discussing
such methods in purely abstract terms, we shall study how they can be
applied in important cases.
C. The normal distribution. Perhaps the most important nonuniform,
continuous distribution is the normal distribution with mean zero and
standard deviation one:

The significance of this distribution was indicated in Section 1.2.10. In this
case the inverse function F[−1] is not especially easy to compute; but we shall
see that several other techniques are available.

1) The polar method, due to G. E. P. Box, M. E. Muller, and G. Marsaglia.
(See Annals Math. Stat. 29 (1958), 610–611; and Boeing Scientific
Res. Lab. report D1-82-0203 (1962).)

Algorithm P (Polar method for normal deviates). This algorithm calculates
two independent normally distributed variables, X1 and X2.

P1. [Get uniform variables.] Generate two independent random variables,
U1 and U2, uniformly distributed between zero and one. Set V1 ← 2U1 –

1, V2 ← 2U2 – 1. (Now V1 and V2 are uniformly distributed between –1
and +1. On most computers it will be preferable to have V1 and V2
represented in floating point form.)

P2. [Compute S.] Set .
P3. [Is S ≥ 1?] If S ≥ 1, return to step P1. (Steps P1 through P3 are executed

1.27 times on the average, with a standard deviation of 0.59; see
exercise 6.)

P4. [Compute X1, X2.] If S = 0, set X1 ← X2 ← 0; otherwise set

These are the normally distributed variables desired.
To prove the validity of this method, we use elementary analytic

geometry and calculus: If S < 1 in step P3, the point in the plane with
Cartesian coordinates (V1, V2) is a random point uniformly distributed
inside the unit circle. Transforming to polar coordinates V1 = R cos Θ, V2 =
R sin Θ, we find

Using also the polar coordinates X1 = R′ cos Θ′, X2 = R′ sin Θ′, we find that
Θ′ = Θ and . It is clear that R′ and Θ′ are independent,
since R and Θ are independent inside the unit circle. Also, Θ′ is uniformly
distributed between 0 and 2π; and the probability that R′ ≤ r is the
probability that –2 ln S ≤ r2, namely the probability that S ≥ e−r2/2. This
equals 1 – e−r2/2, since S = R2 is uniformly distributed between zero and one.
The probability that R′ lies between r and r + dr is therefore the differential
of 1 – e−r2/2, namely re−r2/2 dr. Similarly, the probability that Θ′ lies between
θ and θ + dθ is (1/2π) dθ. The joint probability that X1 ≤ x1 and that X2 ≤ x2
now can be computed; it is

This calculation proves that X1 and X2 are independent and normally
distributed, as desired.

2) The rectangle-wedge-tail method, introduced by G. Marsaglia. Here
we use the function

which gives the distribution of the absolute value of a normal deviate. After
X has been computed according to distribution (12), we will attach a random
sign to its value, and this will make it a true normal deviate.

The rectangle-wedge-tail approach is based on several important general
techniques that we shall explore as we develop the algorithm. The first key
idea is to regard F(x) as a mixture of several other functions, namely to write

where F1, F2, . . . , Fn are appropriate distributions and p1, p2, . . . , pn are
nonnegative probabilities that sum to 1. If we generate a random variable X
by choosing distribution Fj with probability pj, it is easy to see that X will
have distribution F overall. Some of the distributions Fj(x) may be rather
difficult to handle, even harder than F itself, but we can usually arrange
things so that the probability pj is very small in that case. Most of the
distributions Fj(x) will be quite easy to accommodate, since they will be
trivial modifications of the uniform distribution. The resulting method yields
an extremely efficient program, since its average running time is very small.

It is easier to understand the method if we work with the derivatives of
the distributions instead of the distributions themselves. Let

be the density functions of the probability distributions. Equation (13)
becomes

Each fj(x) is ≥ 0, and the total area under the graph of fj(x) is 1; so there is a
convenient graphical way to display the relation (14): The area under f(x) is
divided into n parts, with the part corresponding to fj(x) having area pj. See
Fig. 9, which illustrates the situation in the case of interest to us here, with

; the area under this curve has been
divided into n = 31 parts. There are 15 rectangles, which represent p1f1(x), .
. . , p15f15(x); there are 15 wedge-shaped pieces, which represent p16f16(x), . .
. , p30f30(x); and the remaining part p31f31(x) is the “tail,” namely the entire
graph of f(x) for x ≥ 3.

Fig. 9. The density function divided into 31 parts. The area of each part
represents the average number of times a random number with that density

is to be computed.

The rectangular parts f1(x), . . . , f15(x) represent uniform distributions.
For example, f3(x) represents a random variable uniformly distributed
between and . The altitude of pjfj(x) is f(j/5), hence the area of the j th
rectangle is

In order to generate such rectangular portions of the distribution, we simply
compute

where U is uniform and S takes the value (j − 1)/5 with probability pj. Since
p1 + ... + p15 = .9183, we can use simple uniform deviates like this about 92
percent of the time.

In the remaining 8 percent, we will usually have to generate one of the
wedge-shaped distributions F16, . . . , F30. Typical examples of what we need
to do are shown in Fig. 10. When x < 1, the curved part is concave, and when
x > 1 it is convex, but in each case the curved part is reasonably close to a
straight line, and it can be enclosed in two parallel lines as shown.

Fig. 10. Density functions for which Algorithm L may be used to generate
random numbers.

To handle these wedge-shaped distributions, we will rely on yet another
general technique, von Neumann’s rejection method for obtaining a
complicated density from another one that “encloses” it. The polar method
described above is a simple example of such an approach: Steps P1–P3
obtain a random point inside the unit circle by first generating a random point
in a larger square, rejecting it and starting over again if the point was outside
the circle.

The general rejection method is even more powerful than this. To
generate a random variable X with density f, let g be another probability
density function such that

for all t, where c is a constant. Now generate X according to density g, and
also generate an independent uniform deviate U. If U ≥ f(X)/cg(X), reject X
and start again with another X and U. When the condition U < f(X)/cg(X)
finally occurs, the resulting X will have density f as desired. [Proof: X ≤ x
will occur with probability

, where the quantity
 is the probability of

rejection; hence
The rejection technique is most efficient when c is small, since there will

be c iterations on the average before a value is accepted. (See exercise 6.) In
some cases f(x)/cg(x) is always 0 or 1; then U need not be generated. In other
cases if f(x)/cg(x) is hard to compute, we may be able to “squeeze” it
between two bounding functions

that are much simpler, and the exact value of f(x)/cg(x) need not be
calculated unless r(x) ≤ U < s(x). The following algorithm solves the wedge
problem by developing the rejection method still further.
Algorithm L (Nearly linear densities). This algorithm may be used to
generate a random variable X for any distribution whose density f(x) satisfies
the following conditions (see Fig. 10):

L1. [Get U ≤ V.] Generate two independent random variables U and V,
uniformly distributed between zero and one. If U > V, exchange U ↔ V.

L2. [Easy case?] If V ≤ a/b, go to L4.
L3. [Try again?] If V > U + (1/b)f(s + hU), go back to step L1. (If a/b is

close to 1, this step of the algorithm will not be necessary very often.)
L4. [Compute X.] Set X ← s + hU.

When step L4 is reached, the point (U, V) is a random point in the area
shaded in Fig. 11, namely, 0 ≤ U ≤ V ≤ U + (1/b)f(s + hU). Conditions (19)
ensure that

Fig. 11. Region of “acceptance” in Algorithm L.

Now the probability that X ≤ s + hx, for 0 ≤ x ≤ 1, is the area that lies to the
left of the vertical line U = x in Fig. 11, divided by the total area, namely

therefore X has the correct distribution.
With appropriate constants aj, bj, sj, Algorithm L will take care of the

wedge-shaped densities fj+15 of Fig. 9, for 1 ≤ j ≤ 15. The final distribution,
F31, needs to be treated only about one time in 370; it is used whenever a
result X ≥ 3 is to be computed. Exercise 11 shows that a standard rejection
scheme can be used for this “tail.” We are ready to consider the procedure in
its entirety:

Fig. 12. The “rectangle-wedge-tail” algorithm for generating normal
deviates.

Algorithm M (Rectangle-wedge-tail method for normal deviates). For this
algorithm we use auxiliary tables (P0, . . . , P31), (Q1, . . . , Q15), (Y0, . . . ,
Y31), (Z0, . . . , Z31), (S1, . . . , S16), (D16, . . . , D30), (E16, . . . , E30),
constructed as explained in exercise 10; examples appear in Table 1. We
assume that a binary computer is being used; a similar procedure could be
worked out for decimal machines.

M1. [Get U.] Generate a uniform random number U = (.b0b1b2 . . . bt)2.
(Here the b’s are the bits in the binary representation of U. For
reasonable accuracy, t should be at least 24.) Set Ψ ← b0. (Later, Ψ
will be used to determine the sign of the result.)

M2. [Rectangle?] Set j ← (b1b2b3b4b5)2, a binary number determined by
the leading bits of U, and set f ← (.b6b7 . . . bt)2, the fraction determined
by the remaining bits. If f ≥ Pj, set X ← Yj + fZj and go to M9.
Otherwise if j ≤ 15 (that is, b1 = 0), set X ← Sj + fQj and go to M9.
(This is an adaptation of Walker’s alias method (3).)

M3. [Wedge or tail?] (Now 16 ≤ j ≤ 31, and each particular value j occurs
with probability pj.) If j = 31, go to M7.

M4. [Get U ≤ V.] Generate two new uniform deviates, U and V; if U > V,
exchange U ↔ V. (We are now performing a special case of Algorithm
L.) Set X ← Sj−15 + U.

M5. [Easy case?] If V ≤ Dj, go to M9.

*In practice, this data would be given with much greater precision; the
table shows only enough figures so that interested readers will be able to
test their own algorithms for computing the values more accurately. The

values of Q0, Y9, Z9, D15, and E15 are not used.

Table 1 Example of Tables Used with Algorithm M*

M6. [Another try?] If , go back to
step M4; otherwise go to M9. (This step is executed with low
probability.)

M7. [Get supertail deviate.] Generate two new independent uniform
deviates, U and V, and set .

M8. [Reject?] If UX ≥ 3, go back to step M7. (This will occur only about
one-twelfth as often as we reach step M8.)

M9. [Attach sign.] If Ψ = 1, set X ← –X.
This algorithm is a very pretty example of mathematical theory intimately

interwoven with programming ingenuity—a fine illustration of the art of

computer programming! Only steps M1, M2, and M9 need to be performed
most of the time, and the other steps aren’t terribly slow either. The first
publications of the rectangle-wedge-tail method were by G. Marsaglia,
Annals Math. Stat. 32 (1961), 894–899; G. Marsaglia, M. D. MacLaren, and
T. A. Bray, CACM 7 (1964), 4–10. Further refinements of Algorithm M have
been developed by G. Marsaglia, K. Ananthanarayanan, and N. J. Paul, Inf.
Proc. Letters 5 (1976), 27–30.

3) The odd-even method, due to G. E. Forsythe. An amazingly simple
technique for generating random deviates with a density of the general
exponential form

when

was discovered by John von Neumann and G. E. Forsythe about 1950. The
idea is based on the rejection method described earlier, letting g(x) be the
uniform distribution on [a . . b): We set X ← a + (b – a)U, where U is a
uniform deviate, and then we want to accept X with probability e−h(X). The
latter operation could be done by comparing e−h(X) to V, or h(X) to – ln V,
when V is another uniform deviate, but the job can be done without applying
any transcendental functions in the following interesting way. Set V0 ← h(X),
then generate uniform deviates V1, V2, . . . until finding some K ≥ 1 with VK−1
< VK. For fixed X and k, the probability that h(X) ≥ V1 ≥ ... ≥ Vk is 1/k! times
the probability that max(V1, . . . , Vk) ≤ h(X), namely h(X)k/k!; hence the
probability that K = k is h(X)k−1/(k − 1)! – h(X)k/k!, and the probability that
K is odd is

Therefore we reject X and try again if K is even; we accept X as a random
variable with density (20) if K is odd. We usually won’t have to generate
many V’s in order to determine K, since the average value of K (given X) is
∑k≥0 Pr(K > k) = ∑k≥0 h(X)k/k! = eh(X) ≤ e.

Forsythe realized some years later that this approach leads to an efficient
method for calculating normal deviates, without the need for any auxiliary

routines to calculate square roots or logarithms as in Algorithms P and M.
His procedure, with an improved choice of intervals [a . . b) due to J. H.
Ahrens and U. Dieter, can be summarized as follows.
Algorithm F (Odd-even method for normal deviates). This algorithm
generates normal deviates on a binary computer, assuming approximately t +
1 bits of accuracy. It requires a table of values dj = aj – aj–1, for 1 ≤ j ≤ t + 1,
where aj is defined by the relation

F1. [Get U.] Generate a uniform random number U = (.b0b1 . . . bt)2, where
b0, b1, . . . , bt denote the bits in binary notation. Set Ψ ← b0, j ← 1, and
a ← 0.

F2. [Find first zero bj.] If bj = 1, set a ← a + dj, j ← j + 1, and repeat this
step. (If j = t + 1, treat bj as zero.)

F3. [Generate candidate.] (Now a = aj−1, and the current value of j occurs
with probability ≈ 2−j. We will generate X in the range [aj−1 . . aj),
using the rejection method above, with h(x) = x2/2–a2/2 = y2/2+ay
where y = x–a. Exercise 12 proves that h(x) ≤ 1 as required in (21).)
Set Y ← dj times (.bj+1 . . . bt)2 and . (Since the
average value of j is 2, there will usually be enough significant bits in
(.bj+1 . . . bt)2 to provide decent accuracy. The calculations are readily
done in fixed point arithmetic.)

F4. [Reject?] Generate a uniform deviate U. If V < U, go on to step F5.
Otherwise set V to a new uniform deviate; and repeat step F4 if the new
V is ≤ U. Otherwise (that is, if K is even, in the discussion above),
replace U by a new uniform deviate (.b0b1 . . . bt)2 and go back to F3.

F5. [Return X.] Set X ← a + Y. If Ψ = 1, set X ← –X.
Values of dj for 1 ≤ j ≤ 47 appear in a paper by Ahrens and Dieter, Math.

Comp. 27 (1973), 927–937; their paper discusses refinements of the
algorithm that improve its speed at the expense of more tables. Algorithm F
is attractive since it is almost as fast as Algorithm M and it is easier to
implement. The average number of uniform deviates per normal deviate is

2.53947; R. P. Brent [CACM 17 (1974), 704–705] has shown how to reduce
this number to 1.37446 at the expense of two subtractions and one division
per uniform deviate saved.

4) Ratios of uniform deviates. There is yet another good way to generate
normal deviates, discovered by A. J. Kinderman and J. F. Monahan in 1976.
Their idea is to generate a random point (U, V) in the region defined by

and then to output the ratio X ← V/U. The shaded area of Fig. 13 is the magic
region (24) that makes this all work. Before we study the associated theory,
let us first state the algorithm so that its efficiency and simplicity are
manifest:
Algorithm R (Ratio method for normal deviates). This algorithm generates
normal deviates X.

R1. [Get U, V.] Generate two independent uniform deviates U and V,
where U is nonzero, and set . (Now X is
the ratio of the coordinates of a random point in
the rectangle that encloses the shaded region in Fig. 13. We will accept
X if the corresponding point actually lies “in the shade,” otherwise we
will try again.)

R2. [Optional upper bound test.] If X2 ≤ 5 – 4e1/4U, output X and terminate
the algorithm. (This step can be omitted if desired; it tests whether or
not the selected point is in the interior region of Fig. 13, making it
unnecessary to calculate a logarithm.)

R3. [Optional lower bound test.] If X2 ≥ 4e−1.35/U + 1.4, go back to R1.
(This step could also be omitted; it tests whether or not the selected
point is outside the exterior region of Fig. 13, making it unnecessary to
calculate a logarithm.)

R4. [Final test.] If X2 ≤ –4 ln U, output X and terminate the algorithm.
Otherwise go back to R1.

Fig. 13. Region of “acceptance” in the ratio-of-uniforms method for
normal deviates. Lengths of lines with coordinate ratio x have the normal

distribution.
Exercises 20 and 21 work out the timing analysis; four different

algorithms are analyzed, since steps R2 and R3 can be included or omitted
depending on one’s preference. The following table shows how many times
each step will be performed, on the average, depending on which of the
optional tests is applied:

Thus it pays to omit the optional tests if there is a very fast logarithm
operation, but if the log routine is rather slow it pays to include them.
But why does it work? One reason is that we can calculate the probability
that X ≤ x, and it turns out to be the correct value (10). But such a calculation
isn’t very easy unless one happens to hit on the right trick, and anyway it is
better to understand how the algorithm might have been discovered in the
first place. Kinderman and Monahan derived it by working out the following
theory that can be used with any well-behaved density function f(x) [see
ACM Trans. Math. Software 3 (1977), 257–260].

In general, suppose that a point (U, V) has been generated uniformly over
the region of the (u, v)-plane defined by

for some nonnegative integrable function g. If we set X ← V/U, the
probability that X ≤ x can be calculated by integrating du dv over the region
defined by the two relations in (26) plus the auxiliary condition v/u ≤ x, then
dividing by the same integral without this extra condition. Letting v = tu, so
that dv = u dt, the integral becomes

Hence the probability that X ≤ x is

The normal distribution comes out when g(t) = e−t2/2; and the condition u2 ≤
g(v/u) simplifies in this case to (v/u)2 ≤ –4 ln u. It is easy to see that the set
of all such pairs (u, v) is entirely contained in the rectangle of Fig. 13.

The bounds in steps R2 and R3 define interior and exterior regions with
simpler boundary equations. The well-known inequality

which holds for all real numbers x, can be used to show that

for any constant c > 0. Exercise 21 proves that c = e1/4 is the best possible
constant to use in step R2. The situation is more complicated in step R3, and
there doesn’t seem to be a simple expression for the optimum c in that case,
but computational experiments show that the best value for R3 is ≈ e1.35. The
approximating curves (28) are tangent to the true boundary when u = 1/c.

With an improved approximation to the acceptance region [see J. L.
Leva, ACM Trans. Math. Software 18 (1992), 449–455] we can, in fact,
reduce the expected number of logarithm computations to only 0.012.

It is possible to obtain a faster method by partitioning the region into
subregions, most of which can be handled more quickly. Of course, this
means that auxiliary tables will be needed, as in Algorithms M and F. An
interesting alternative that requires fewer auxiliary table entries has been
suggested by Ahrens and Dieter in CACM 31 (1988), 1330–1337.

5) Normal deviates from normal deviates. Exercise 31 discusses an
interesting approach that saves time by working directly with normal
deviates instead of basing everything on uniform deviates. This method,
introduced by C. S. Wallace in 1996, has comparatively little theoretical
support at the present time, but it has successfully passed a number of
empirical tests.

6) Variations of the normal distribution. So far we have considered the
normal distribution with mean zero and standard deviation one. If X has this
distribution, then

has the normal distribution with mean μ and standard deviation σ.
Furthermore, if X1 and X2 are independent normal deviates with mean zero
and standard deviation one, and if

then Y1 and Y2 are dependent random variables, normally distributed with
means μ1, μ2 and standard deviations σ1, σ2, and with correlation coefficient
ρ. (For a generalization to n variables, see exercise 13.)

D. The exponential distribution. After uniform deviates and normal
deviates, the next most important random quantity is an exponential deviate.
Such numbers occur in “arrival time” situations; for example, if a radioactive
substance emits alpha particles at a rate such that one particle is emitted
every μ seconds on the average, then the time between two successive
emissions has the exponential distribution with mean μ. This distribution is
defined by the formula

1) Logarithm method. Clearly, if y = F(x) = 1 – e−x/μ, then x = F[−1](y) =
–μ ln(1–y). Therefore –μ ln(1–U) has the exponential distribution by Eq. (7).
Since 1 – U is uniformly distributed when U is, we conclude that

is exponentially distributed with mean μ. (The case U = 0 must be treated
specially; we can substitute any convenient value ε for 0, since the
probability of this case is extremely small.)

2) Random minimization method. We saw in Algorithm F that there are
simple and fast alternatives to calculating the logarithm of a uniform deviate.
The following especially efficient approach has been developed by G.
Marsaglia, M. Sibuya, and J. H. Ahrens [see CACM 15 (1972), 876–877]:
Algorithm S (Exponential distribution with mean μ). This algorithm
produces exponential deviates on a binary computer, using uniform deviates
with (t + 1)-bit accuracy. The constants

should be precomputed, extending until Q[k] > 1 – 2−t.
S1. [Get U and shift.] Generate a (t + 1)-bit uniform random binary fraction

U = (.b0b1b2 . . . bt)2; locate the first zero bit bj, and shift off the leading
j + 1 bits, setting U ← (.bj+1 . . . bt)2. (As in Algorithm F, the average
number of discarded bits is 2.)

S2. [Immediate acceptance?] If U < ln 2, set X ← μ(j ln 2 + U) and
terminate the algorithm. (Note that Q[1] = ln 2.)

S3. [Minimize.] Find the least k ≥ 2 such that U < Q[k]. Generate k new
uniform deviates U1, . . . , Uk and set V ← min(U1, . . . , Uk).

S4. [Deliver the answer.] Set X ← μ(j + V) ln 2.
Alternative ways to generate exponential deviates (for example, a ratio

of uniforms as in Algorithm R) might also be used.
E. Other continuous distributions. Let us now consider briefly how to
handle some other distributions that arise reasonably often in practice.

1) The gamma distribution of order a > 0 is defined by

When a = 1, this is the exponential distribution with mean 1; when a = , it is
the distribution of Z2, where Z has the normal distribution (mean 0,
variance 1). If X and Y are independent gamma-distributed random variables,
of order a and b, respectively, then X + Y has the gamma distribution of order
a + b. Thus, for example, the sum of k independent exponential deviates with
mean 1 has the gamma distribution of order k. If the logarithm method (32) is
being used to generate these exponential deviates, we need compute only one
logarithm: X ← – ln(U1 . . . Uk), where U1, . . . , Uk are nonzero uniform
deviates. This technique handles all integer orders a; to complete the picture,
a suitable method for 0 < a < 1 appears in exercise 16.

The simple logarithm method is much too slow when a is large, since it
requires ⌊a⌋ uniform deviates. Moreover, there is a substantial risk that the
product U1 . . . U⌊a⌋ will cause floating point underflow. For large a, the
following algorithm due to J. H. Ahrens is reasonably efficient, and it is easy
to write in terms of standard subroutines. [See Ann. Inst. Stat. Math. 13
(1962), 231–237.]
Algorithm A (Gamma distribution of order a > 1).

A1. [Generate candidate.] Set Y ← tan(πU), where U is a uniform deviate,
and set . (In place of tan(πU) we could
use a polar method, calculating a ratio V2/V1 as in step P4 of Algorithm
P.)

A2. [Accept?] If X ≤ 0, return to A1. Otherwise generate a uniform deviate
V, and return to A1 if V > (1 + Y2) exp

. Otherwise accept X.
The average number of times step A1 is performed is < 1.902 when a ≥ 3.

There is also an attractive approach for large a based on the remarkable
fact that gamma deviates are approximately equal to aX3, where X is
normally distributed with mean 1–1/(9a) and standard deviation ; see
E. B. Wilson and M. M. Hilferty, Proc. Nat. Acad. Sci. 17 (1931), 684–688;
G. Marsaglia, Computers and Math. 3 (1977), 321–325.*

* Change “+(3a − 1)” to “–(3a − 1)” in Step 3 of the algorithm on page 323.

For a somewhat complicated but significantly faster algorithm, which
generates a gamma deviate in about twice the time to generate a normal
deviate, see J. H. Ahrens and U. Dieter, CACM 25 (1982), 47–54. This
article contains an instructive discussion of the design principles used to
construct the algorithm.

2) The beta distribution with positive parameters a and b is defined by

Let X1 and X2 be independent gamma deviates of order a and b, respectively,
and set X ← X1/(X1 + X2). Another method, useful for small a and b, is to set

repeatedly until Y1 + Y2 ≤ 1; then X ← Y1/(Y1 + Y2). [See M. D. Jöhnk,
Metrika 8 (1964), 5–15.] Still another approach, if a and b are integers and
not too large, is to set X to the bth largest of a + b − 1 independent uniform
deviates (see exercise 9 at the beginning of Chapter 5). See also the more
direct method described by R. C. H. Cheng, CACM 21 (1978), 317–322.

3) The chi-square distribution with ν degrees of freedom (Eq. 3.3.1–
(22)) is obtained by setting X ← 2Y, where Y is a random variable having the
gamma distribution of order ν/2.

4) The F-distribution (variance-ratio distribution) with ν1 and ν2
degrees of freedom is defined by

where x ≥ 0. Let Y1 and Y2 be independent, having the chi-square distribution
with ν1 and ν2 degrees of freedom, respectively; set X ← Y1ν2/Y2ν1. Or set X
← ν2Y/ν1(1 – Y), where Y is a beta variate with parameters ν1/2 and ν2/2.

5) The t-distribution with ν degrees of freedom is defined by

Let Y1 be a normal deviate (mean 0, variance 1) and let Y2 be independent of
Y1, having the chi-square distribution with ν degrees of freedom; set

. Alternatively, when ν > 2, let Y1 be a normal deviate
and let Y2 independently have the exponential distribution with mean 2/(ν –
2); set and reject (Y1, Y2) if e−Y2–Z ≥ 1 – Z, otherwise set

The latter method is due to George Marsaglia, Math. Comp. 34 (1980), 235–
236. [See also A. J. Kinderman, J. F. Monahan, and J. G. Ramage, Math.
Comp. 31 (1977), 1009–1018.]

6) Random point on an n-dimensional sphere with radius one. Let X1,
X2, . . . , Xn be independent normal deviates (mean 0, variance 1); the desired
point on the unit sphere is

If the X’s are calculated using the polar method, Algorithm P, we compute
two independent X’s each time, and we have in the
notation of that algorithm; this saves a little of the time needed to evaluate r.
The validity of (38) comes from the fact that the distribution function for the
point (X1, . . . , Xn) has a density that depends only on its distance from the
origin, so when it is projected onto the unit sphere it has the uniform
distribution. This method was first suggested by G. W. Brown, in Modern
Mathematics for the Engineer, First series, edited by E. F. Beckenbach
(New York: McGraw–Hill, 1956), 302. To get a random point inside the n-
sphere, R. P. Brent suggests taking a point on the surface and multiplying it by
U1/n.

In three dimensions a significantly simpler method can be used, since
each individual coordinate is uniformly distributed between –1 and 1: Find
V1, V2, and S by steps P1–P3 of Algorithm P; then the desired random point
on the surface of a globe is (αV1, αV2, 2S − 1), where .
[Robert E. Knop, CACM 13 (1970), 326.]

F. Important integer-valued distributions. A probability distribution that is
nonzero only at integer values can essentially be handled by the techniques
described at the beginning of this section; but some of these distributions are
so important in practice, they deserve special mention here.

1) The geometric distribution. If some event occurs with probability p,
the number N of independent trials needed between occurrences of the event
(or until the event occurs for the first time) has the geometric distribution. We
have N = 1 with probability p, N = 2 with probability (1 – p)p, . . . , N = n
with probability (1 – p)n−1p. This is essentially the situation we have already
considered in the gap test of Section 3.3.2; it is also directly related to the
number of times certain loops in the algorithms of this section are executed,
like steps P1–P3 of the polar method.

A convenient way to generate a variable with this distribution is to set

To check this formula, we observe that ⌈ln U / ln(1 – p)⌉ = n if and only if n
− 1 < ln U / ln(1 – p) ≤ n, that is, (1 – p)n− 1 > U ≥ (1 –p)n, and this happens
with probability (1 – p)n−1p as required. The quantity ln U can optionally be
replaced by –Y, where Y has the exponential distribution with mean 1.

The special case p = is quite simple on a binary computer, since
formula (39) reduces to setting N ← ⌈– lg U⌉; that is, N is one more than the
number of leading zero bits in the binary representation of U.

2) The binomial distribution (t, p). If some event occurs with
probability p, and if we carry out t independent trials, the total number N of
occurrences equals n with probability . (See Section
1.2.10.) In other words if we generate U1, . . . , Ut, we want to count how
many of these are < p. For small t we can obtain N in exactly this way.

For large t, we can generate a beta variate X with integer parameters a
and b where a + b − 1 = t; this effectively gives us the bth largest of t
elements, without bothering to generate the other elements. Now if X ≥ p, we
set N ← N1 where N1 has the binomial distribution (a−1, p/X), since this tells
us how many of a − 1 random numbers in the range [0 . . X) are < p; and if X
< p, we set N ← a + N1 where N1 has the binomial distribution (b − 1, (p –
X)/(1 – X)), since N1 tells us how many of b−1 random numbers in the range
[X . . 1) are < p. By choosing a = 1 + ⌊t/2⌋, the parameter t will be reduced

to a reasonable size after about lg t reductions of this kind. (This approach is
due to J. H. Ahrens, who has also suggested an alternative for medium-sized
t; see exercise 27.)

3) The Poisson distribution with mean μ. The Poisson distribution is
related to the exponential distribution as the binomial distribution is related
to the geometric: It represents the number of occurrences, per unit time, of an
event that can occur at any instant of time. For example, the number of alpha
particles emitted by a radioactive substance in a single second has a Poisson
distribution.

According to this principle, we can produce a Poisson deviate N by
generating independent exponential deviates X1, X2, . . . with mean 1/μ,
stopping as soon as X1 + ... + Xm ≥ 1; then N ← m − 1. The probability that
X1 + ... + Xm ≥ 1 is the probability that a gamma deviate of order m is ≥ μ,
and this comes to !; hence the probability that N
= n is

If we generate exponential deviates by the logarithm method, the recipe
above tells us to stop when –(ln U1 + ... + ln Um)/μ ≥ 1. Simplifying this
expression, we see that the desired Poisson deviate can be obtained by
calculating e−μ, converting it to a fixed point representation, then generating
one or more uniform deviates U1, U2, . . . until the product satisfies U1 . . .
Um ≤ e−μ, finally setting N ← m−1. On the average this requires the
generation of μ+1 uniform deviates, so it is a very useful approach when μ is
not too large.

When μ is large, we can obtain a method of order log μ by using the fact
that we know how to handle the gamma and binomial distributions for large
orders: First generate X with the gamma distribution of order m = ⌊αμ⌋,
where α is a suitable constant. (Since X is equivalent to – ln(U1 . . . Um), we
are essentially bypassing m steps of the previous method.) If X < μ, set N ←
m + N1, where N1 is a Poisson deviate with mean μ – X; and if X ≥ μ, set N
← N1, where N1 has the binomial distribution (m − 1, μ/X). This method is

due to J. H. Ahrens and U. Dieter, whose experiments suggest that is a good
choice for α.

The validity of the stated reduction when X ≥ μ is a consequence of the
following important principle: “Let X1, . . . , Xm be independent exponential
deviates with the same mean; let Sj = X1 + ... + Xj and let Vj = Sj/Sm for 1 ≤ j
≤ m. Then the distribution of V1, V2, . . . , Vm−1 is the same as the distribution
of m − 1 independent uniform deviates sorted into increasing order.” To
establish this principle formally, we compute the probability that V1 ≤ v1, . . .
, Vm−1 ≤ vm−1, given the value of Sm = s, for arbitrary values 0 ≤ v1 ≤ ... ≤
vm−1 ≤ 1: Let f(v1, v2, . . . , vm−1) be the (m − 1)-fold integral

then

by making the substitution t1 = su1, t1 + t2 = su2, . . . , t1 + ... + tm−1 = sum−1.
The latter ratio is the corresponding probability that uniform deviates U1, . . .
, Um−1 satisfy U1 ≤ v1, . . . , Um−1 ≤ vm−1, given that they also satisfy U1 ≤ ... ≤
Um−1.

A more efficient but somewhat more complicated technique for binomial
and Poisson deviates is sketched in exercise 22.
G. For further reading. A facsimile of a letter from von Neumann dated
May 21, 1947, in which the rejection method first saw the light of day,
appears in Stanislaw Ulam 1909–1984, a special issue of Los Alamos
Science (Los Alamos National Lab., 1987), 135–136. The book Non-
Uniform Random Variate Generation by L. Devroye (Springer, 1986)
discusses many more algorithms for the generation of random variables with
nonuniform distributions, together with a careful consideration of the
efficiency of each technique on typical computers.

W. Hörmann and G. Derflinger [ACM Trans. Math. Software 19 (1993),
489–495] have pointed out that it can be dangerous to use the rejection
method in connection with linear congruential generators that have small
multipliers a ≈ .

From a theoretical point of view it is interesting to consider optimal
ways to generate random variables with a given distribution, in the sense that
the method produces the desired result from the minimum possible number of
random bits. For the beginnings of a theory dealing with such questions, see
D. E. Knuth and A. C. Yao, Algorithms and Complexity, edited by J. F. Traub
(New York: Academic Press, 1976), 357–428.

Exercise 16 is recommended as a review of many of the techniques in
this section.

Exercises

1. [10] If α and β are real numbers with α < β, how would you generate a
random real number uniformly distributed between α and β?

2. [M16] Assuming that mU is a random integer between 0 and m − 1,
what is the exact probability that ⌊kU⌋ = r, if 0 ≤ r < k? Compare this with
the desired probability 1/k.
 3. [14] Discuss treating U as an integer and computing its remainder mod
k to get a random integer between 0 and k − 1, instead of multiplying as
suggested in the text. Thus (1) would be changed to

with the result appearing in register X. Is this a good method?
4. [M20] Prove the two relations in (8).

 5. [21] Suggest an efficient way to compute a random variable with the
distribution F (x) = px + qx2 + rx3, where p ≥ 0, q ≥ 0, r ≥ 0, and p + q + r
= 1.

6. [HM21] A quantity X is computed by the following method:
Step 1. Generate two independent uniform deviates U and V.
Step 2. If U2 + V2 ≥ 1, return to step 1; otherwise set X ← U.

What is the distribution function of X? How many times will step 1 be
performed? (Give the mean and standard deviation.)

 7. [20] (A. J. Walker.) Suppose we have a bunch of cubes of k different
colors, say nj cubes of color Cj for 1 ≤ j ≤ k, and we also have k boxes {B1,
. . . , Bk} each of which can hold exactly n cubes. Furthermore n1 + ... + nk
= kn, so the cubes will just fit in the boxes. Prove (constructively) that there
is always a way to put the cubes into the boxes so that each box contains at
most two different colors of cubes; in fact, there is a way to do it so that,
whenever box Bj contains two colors, one of those colors is Cj. Show how
to use this principle to compute the P and Y tables required in (3), given a
probability distribution (p1, . . . , pk).

8. [M15] Show that operation (3) could be changed to

(thus using the original value of U instead of V) if this were more
convenient, by suitably modifying P0, P1, . . . , Pk−1.

9. [HM10] Why is the curve f(x) of Fig. 9 concave for x < 1, convex for x
> 1?
 10. [HM24] Explain how to calculate auxiliary constants Pj, Qj, Yj, Zj, Sj,

Dj, Ej so that Algorithm M delivers answers with the correct distribution.
 11. [HM27] Prove that steps M7–M8 of Algorithm M generate a random

variable with the appropriate tail of the normal distribution; in other
words, the probability that X ≤ x should be exactly

[Hint: Show that it is a special case of the rejection method, with g(t) =
Cte−t2/2 for some C.]

12. [HM23] (R. P. Brent.) Prove that the numbers aj defined in (23) satisfy
the relation

[Hint: If dt, show that f(x) > f(y) for 0 ≤ x < y.]

13. [HM25] Given a set of n independent normal deviates, X1, X2, . . . , Xn,
with mean 0 and variance 1, show how to find constants bj and aij, 1 ≤ j ≤ i
≤ n, so that if

then Y1, Y2, . . . , Yn are dependent normally distributed variables, Yj has mean
μj, and the Y’s have a given covariance matrix (cij). (The covariance, cij, of Yi
and Yj is defined to be the average value of (Yi – μi)(Yj – μj). In particular, cjj
is the variance of Yj, the square of its standard deviation. Not all matrices
(cij) can be covariance matrices, and your construction is, of course, only
supposed to work whenever a solution to the given conditions is possible.)

14. [M21] If X is a random variable with the continuous distribution F(x),
and if c is a (possibly negative) constant, what is the distribution of cX?
15. [HM21] If X1 and X2 are independent random variables with the
respective distributions F1(x) and F2(x), and with densities

, what are the distribution and density
functions of the quantity X1 + X2?

 16. [HM22] (J. H. Ahrens.) Develop an algorithm for gamma deviates of
order a when 0 < a ≤ 1, using the rejection method with cg(t) = ta−1/Γ (a)
for 0 < t < 1, and with cg(t) = e−t/г(a) for t ≥ 1.

 17. [M24] What is the distribution function F (x) for the geometric
distribution with probability p? What is the generating function G(z)?
What are the mean and standard deviation of this distribution?
18. [M24] Suggest a method to compute a random integer N for which N
takes the value n with probability np2(1 – p)n−1, n ≥ 0. (The case of
particular interest is when p is rather small.)
19. [22] The negative binomial distribution (t, p) has integer values N = n
with probability . (Unlike the ordinary binomial
distribution, t need not be an integer, since this quantity is nonnegative for
all n whenever t > 0.) Generalizing exercise 18, explain how to generate
integers N with this distribution when t is a small positive integer. What
method would you suggest if t = p = ?
20. [M20] Let A be the area of the shaded region in Fig. 13, and let R be
the area of the enclosing rectangle. Let I be the area of the interior region
recognized by step R2, and let E be the area between the exterior region
rejected in step R3 and the outer rectangle. Determine the number of times

each step of Algorithm R is performed, for each of its four variants as in
(25), in terms of A, R, I, and E.
21. [HM29] Derive formulas for the quantities A, R, I, and E defined in
exercise 20. (For I and especially E you may wish to use an interactive
computer algebra system.) Show that c = e1/4 is the best possible constant
in step R2 for tests of the form “X2 ≤ 4(1 + ln c) – 4cU.”
22. [HM40] Can the exact Poisson distribution for large μ be obtained by
generating an appropriate normal deviate, converting it to an integer in
some convenient way, and applying a (possibly complicated) correction a
small percent of the time?
23. [HM23] (J. von Neumann.) Are the following two ways to generate a
random quantity X equivalent (that is, does the quantity X have the same
distribution)?

Method 1: Set X ← sin((π/2)U), where U is uniform.
Method 2: Generate two uniform deviates, U and V ; if U2 + V2 ≥ 1,
repeat until U2 + V2 < 1. Then set X ← |U2 – V2|/(U2 + V2).

24. [HM40] (S. Ulam, J. von Neumann.) Let V0 be a randomly selected real
number between 0 and 1, and define the sequence 〈Vn〉 by the rule Vn+1
= 4Vn(1 – Vn). If this computation is done with perfect accuracy, the result
should be a sequence with the distribution sin2 πU, where U is uniform,
that is, with distribution function F(x) = . For if we
write Vn = sin2 πUn, we find that Un+1 = (2Un) mod 1; and by the fact that
almost all real numbers have a random binary expansion (see Section 3.5),
this sequence Un is equidistributed. But if the computation of Vn is done
with only finite accuracy, the argument breaks down because we soon are
dealing with noise from the roundoff error. [See von Neumann’s Collected
Works 5, 768–770.]

Analyze the sequence 〈Vn〉 defined in the preceding paragraph, when
only finite accuracy is present, both empirically (for various different
choices of V0) and theoretically. Does the sequence have a distribution
resembling the expected distribution?

25. [M25] Let X1, X2, . . . , X5 be binary words each of whose bits is
independently 0 or 1 with probability . What is the probability that a
given bit position of X1 | (X2 & (X3 | (X4 & X5))) contains a 1? Generalize.
26. [M18] Let N1 and N2 be independent Poisson deviates with means μ1
and μ2, where μ1 > μ2 ≥ 0. Prove or disprove: (a) N1 + N2 has the Poisson
distribution with mean μ1 + μ2. (b) N1 – N2 has the Poisson distribution
with mean μ1 – μ2.

27. [22] (J. H. Ahrens.) On most binary computers there is an efficient way
to count the number of 1s in a binary word (see Section 7.1.3). Hence there
is a nice way to obtain the binomial distribution (t, p) when p = , simply
by generating t random bits and counting the number of 1s.

Design an algorithm that produces the binomial distribution (t, p) for
arbitrary p, using only a subroutine for the special case p = as a source of
random data. [Hint: Simulate a process that first looks at the most significant
bits of t uniform deviates, then at the second bit of those deviates whose
leading bit is not sufficient to determine whether or not their value is < p,
etc.]

28. [HM35] (R. P. Brent.) Develop a method to generate a random point on
the surface of the ellipsoid defined by , where a1 ≥ ... ≥ an >
0.
29. [M20] (J. L. Bentley and J. B. Saxe.) Find a simple way to generate n
numbers X1, . . . , Xn that are uniform between 0 and 1 except for the fact
that they are sorted: X1 ≤ ... ≤ Xn. Your algorithm should take only O(n)
steps.
30. [M30] Explain how to generate a set of random points (Xj, Yj) such
that, if R is any rectangle of area α contained in the unit square, the number
of (Xj, Yj) lying in R has the Poisson distribution with mean αμ.
31. [HM39] (Direct generation of normal deviates.)

a) Prove that if and if X1, . . . , Xk are independent
normal deviates with mean 0 and variance 1, then a1X1 + ... + akXk is a
normal deviate with mean 0 and variance 1.

b) The result of (a) suggests that we can generate new normal deviates
from old ones, just as we obtain new uniform deviates from old ones.
For example, we might use the idea of 3.2.2–(7), but with a recurrence
like

after a set of normal deviates X0, . . . , X54 has been computed initially.
Explain why this is not a good idea.

c) Show, however, that there is a suitable way to generate normal
deviates quickly from other normal deviates, by using a refinement of
the idea in (a) and (b). [Hint: If X and Y are independent normal
deviates, so are X′ = X cos θ + Y sin θ and Y′ = –X sin θ + Y cos θ, for
any angle θ.]

32. [HM30] (C. S. Wallace.) Let X and Y be independent exponential
deviates with mean 1. Show that X′ and Y′ are, likewise, independent
exponential deviates with mean 1, if we obtain them from X and Y in any of
the following ways:

a) Given 0 < λ < 1,

b)

c) If X = (. . . x2x1x0.x–1x–2x–3 . . .)2 and Y = (. . . y2y1y0.y–1y–2y–3 . . .)2 in
binary notation, then X′ and Y′ have the “shuffled” values

33. [20] Algorithms P, M, F, and R generate normal deviates by consuming
an unknown number of uniform random variables U1, U2, How can
they be modified so that the output is a function of just one U?

3.4.2. Random Sampling and Shuffling
Many data processing applications call for an unbiased choice of n records
at random from a file containing N records. This problem arises, for
example, in quality control or other statistical calculations where sampling is
needed. Usually N is very large, so that it is impossible to contain all the data
in memory at once; and the individual records themselves are often very
large, so that we can’t even hold n records in memory. Therefore we seek an
efficient procedure for selecting n records by deciding either to accept or to
reject each record as it comes along, writing the accepted records onto an
output file.

Several methods have been devised for this problem. The most obvious
approach is to select each record with probability n/N; this may sometimes
be appropriate, but it gives only an average of n records in the sample. The
standard deviation is , and the sample might turn out to be
either too large for the desired application or too small to give the necessary
results.

Fortunately, a simple modification of the “obvious” procedure gives us
what we want: The (t+1)st record should be selected with probability (n–
m)/(N –t), if m items have already been selected. This is the appropriate
probability, since of all the possible ways to choose n things from N such that
m values occur in the first t, exactly

of them select the (t + 1)st element.
The idea developed in the preceding paragraph leads immediately to the

following algorithm:
Algorithm S (Selection sampling technique). To select n records at random
from a set of N, where 0 < n ≤ N.

S1. [Initialize.] Set t ← 0, m ← 0. (During this algorithm, m represents the
number of records selected so far, and t is the total number of input
records that we have dealt with.)

S2. [Generate U.] Generate a random number U, uniformly distributed
between zero and one.

S3. [Test.] If (N – t)U ≥ n – m, go to step S5.

S4. [Select.] Select the next record for the sample, and increase m and t by
1. If m < n, go to step S2; otherwise the sample is complete and the
algorithm terminates.

S5. [Skip.] Skip the next record (do not include it in the sample), increase t
by 1, and go back to step S2.

This algorithm may appear to be unreliable at first glance and, in fact, to
be incorrect; but a careful analysis (see the exercises below) shows that it is
completely trustworthy. It is not difficult to verify that

a) At most N records are input (we never run off the end of the file before
choosing n items).

b) The sample is completely unbiased. In particular, the probability that
any given element is selected, such as the last element of the file, is
n/N.

Statement (b) is true in spite of the fact that we are not selecting the
(t+1)st item with probability n/N, but rather with the probability in Eq. (1)!
This has caused some confusion in the published literature. Can the reader
explain this seeming contradiction?

(Note: When using Algorithm S, one should be careful to use a different
source of random numbers U each time the program is run, to avoid
connections between the samples obtained on different days. This can be
done, for example, by choosing a different value of X0 for the linear
congruential method each time. The seed value X0 could be set to the current
date, or to the last random number X that was generated on the previous run
of the program.)

We will usually not have to pass over all N records. In fact, since (b)
above says that the last record is selected with probability n/N, we will
terminate the algorithm before considering the last record exactly (1 – n/N)
of the time. The average number of records considered when n = 2 is about
N, and the general formulas are given in exercises 5 and 6.

Algorithm S and a number of other sampling techniques are discussed in
a paper by C. T. Fan, Mervin E. Muller, and Ivan Rezucha, J. Amer. Stat.
Assoc. 57 (1962), 387–402. The method was independently discovered by T.
G. Jones, CACM 5 (1962), 343.

A problem arises if we don’t know the value of N in advance, since the
precise value of N is crucial in Algorithm S. Suppose we want to select n
items at random from a file, without knowing exactly how many are present
in that file. We could first go through and count the records, then take a
second pass to select them; but it is generally better to sample m ≥ n of the
original items on the first pass, where m is much less than N, so that only m
items must be considered on the second pass. The trick, of course, is to do
this in such a way that the final result is a truly random sample of the original
file.

Since we don’t know when the input is going to end, we must keep track
of a random sample of the input records seen so far, thus always being
prepared for the end. As we read the input we will construct a “reservoir”
that contains only the records that have appeared among the previous
samples. The first n records always go into the reservoir. When the (t + 1)st
record is being input, for t ≥ n, we will have in memory a table of n indices
pointing to the records that we have chosen from among the first t. The
problem is to maintain this situation with t increased by one, namely to find a
new random sample from among the t + 1 records now known to be present.
It is not hard to see that we should include the new record in the new sample
with probability n/(t + 1), and in such a case it should replace a random
element of the previous sample.

Thus, the following procedure does the job:
Algorithm R (Reservoir sampling). To select n records at random from a
file of unknown size ≥ n, given n > 0. An auxiliary file called the “reservoir”
contains all records that are candidates for the final sample. The algorithm
uses a table of distinct indices I[j] for 1 ≤ j ≤ n, each of which points to one
of the records in the reservoir.

R1. [Initialize.] Input the first n records and copy them to the reservoir. Set
I[j] ← j for 1 ≤ j ≤ n, and set t ← m ← n. (If the file being sampled has
fewer than n records, it will of course be necessary to abort the
algorithm and report failure. During this algorithm, indices I[1], . . . ,
I[n] point to the records in the current sample; m is the size of the
reservoir; and t is the number of input records dealt with so far.)

R2. [End of file?] If there are no more records to be input, go to step R6.
R3. [Generate and test.] Increase t by 1, then generate a random integer M

between 1 and t (inclusive). If M > n, go to R5.

R4. [Add to reservoir.] Copy the next record of the input file to the
reservoir, increase m by 1, and set I[M] ← m. (The record previously
pointed to by I[M] is being replaced in the sample by the new record.)
Go back to R2.

R5. [Skip.] Skip over the next record of the input file (do not include it in
the reservoir), and return to step R2.

R6. [Second pass.] Sort the I table entries so that I[1] < ... < I[n]; then go
through the reservoir, copying the records with these indices into the
output file that is to hold the final sample.

Algorithm R is due to Alan G. Waterman. The reader may wish to work
out the example of its operation that appears in exercise 9.

If the records are sufficiently short, it is of course unnecessary to have a
reservoir at all; we can keep the n records of the current sample in memory
at all times, and the algorithm becomes much simpler (see exercise 10).

The natural question to ask about Algorithm R is, “What is the expected
size of the reservoir?” Exercise 11 shows that the average value of m is
exactly n(1 + HN – Hn); this is approximately n(1 + ln(N/n)). So if N/n =
1000, the reservoir will contain only about 1/125 as many items as the
original file.

Notice that Algorithms S and R can be used to obtain samples for several
independent categories simultaneously. For example, if we have a large file
of names and addresses of U.S. residents, we could pick random samples of
exactly 10 people from each of the 50 states without making 50 passes
through the file, and without first sorting the file by state.

Significant improvements to both Algorithms S and R are possible, when
n/N is small, if we generate a single random variable to tell us how many
records should be skipped instead of deciding whether or not to skip each
record. (See exercise 8.)

The sampling problem can be regarded as the computation of a random
combination, according to the conventional definition of combinations of N
things taken n at a time (see Section 1.2.6). Now let us consider the problem
of computing a random permutation of t objects; we will call this the
shuffling problem, since shuffling a deck of cards is nothing more than
subjecting the deck to a random permutation.

A moment’s reflection is enough to convince any card player that
traditional shuffling procedures are miserably inadequate. There is no hope
of obtaining each of the t! permutations with anywhere near equal probability
by such methods. Expert bridge players reportedly make use of this fact when
deciding whether or not to finesse. At least seven “riffle shuffles” of a 52-
card deck are needed to reach a distribution within 10% of uniform, and 14
random riffles are guaranteed to do so [see Aldous and Diaconis, AMM 93
(1986), 333–348].

If t is small, we can obtain a random permutation very quickly by
generating a random integer between 1 and t!. For example, when t = 4, a
random number between 1 and 24 suffices to select a random permutation
from a table of all possibilities. But for large t, it is necessary to be more
careful if we want to claim that each permutation is equally likely, since t! is
much larger than the accuracy of individual random numbers.

A suitable shuffling procedure can be obtained by recalling Algorithm
3.3.2P, which gives a simple correspondence between each of the t! possible
permutations and a sequence of numbers (c1, c2, . . . , ct−1), with 0 ≤ cj ≤ j. It
is easy to compute such a set of numbers at random, and we can use the
correspondence to produce a random permutation.
Algorithm P (Shuffling). Let (X1, X2, . . . , Xt) be a sequence of t numbers to
be shuffled.

P1. [Initialize.] Set j ← t.
P2. [Generate U.] Generate a random number U, uniformly distributed

between zero and one.
P3. [Exchange.] Set k ← ⌊jU⌋ + 1. (Now k is a random integer, between 1

and j. Exercise 3.4.1–3 explains that k should not be computed by
taking a remainder modulo j.) Exchange Xk ↔ Xj.

P4. [Decrease j.] Decrease j by 1. If j > 1, return to step P2.
This algorithm was first published by R. A. Fisher and F. Yates

[Statistical Tables (London, 1938), Example 12], in ordinary language, and
by R. Durstenfeld [CACM 7 (1964), 420] in computer language. If we merely
wish to generate a random permutation of {1, . . . , t} instead of shuffling a
given sequence (X1, . . . , Xt), we can avoid the exchange operation Xk ↔ Xj

by letting j increase from 1 to t and setting Xj ← Xk, Xk ← j; see D. E. Knuth,
The Stanford GraphBase (New York: ACM Press, 1994), 104.

R. Salfi [COMPSTAT 1974 (Vienna: 1974), 28–35] has pointed out that
Algorithm P cannot possibly generate more than m distinct permutations
when we obtain the uniform U’s with a linear congruential sequence of
modulus m, or indeed whenever we use a recurrence Un+1 = f(Un) for which
Un can take only m different values, because the final permutation in such
cases is entirely determined by the value of the first U that is generated.
Thus, for example, if m = 232, certain permutations of 13 elements will never
occur, since 13! ≈ 1.45 × 232. In most applications we don’t really want to
see all 13! permutations; yet it is disconcerting to know that the excluded
ones are determined by a fairly simple mathematical rule such as a lattice
structure (see Section 3.3.4).

This problem does not arise when we use a lagged Fibonacci generator
like 3.2.2–(7) with a sufficiently long period. But even with such methods we
cannot get all permutations uniformly unless we are able to specify at least t!
different seed values to initialize the generator. In other words, we can’t get
lg t! truly random bits out unless we put lg t! truly random bits in. Section 3.5
shows that we need not despair about this.

Algorithm P can easily be modified to yield a random permutation of a
random combination (see exercise 15). For a discussion of random
combinatorial objects of other kinds (e.g., partitions), see Section 7.2 and/or
the book Combinatorial Algorithms by Nijenhuis and Wilf (New York:
Academic Press, 1975).

Exercises

1. [M12] Explain Eq. (1).
2. [20] Prove that Algorithm S never tries to read more than N records of

its input file.
 3. [22] The (t+1)st item in Algorithm S is selected with probability (n–
m)/(N –t), not n/N, yet the text claims that the sample is unbiased; thus each
item should be selected with the same probability. How can both of these
statements be true?

4. [M23] Let p(m, t) be the probability that exactly m items are selected
from among the first t in the selection sampling technique. Show directly

from Algorithm S that

5. [M24] What is the average value of t when Algorithm S terminates? (In
other words, how many of the N records have been passed, on the average,
before the sample is complete?)

6. [M24] What is the standard deviation of the value computed in exercise
5?

7. [M25] Prove that any given choice of n records from the set of N is
obtained by Algorithm S with probability . Therefore the sample is
completely unbiased.
 8. [M39] (J. S. Vitter.) Algorithm S computes one uniform deviate for
each input record it handles. The purpose of this exercise is to consider a
more efficient approach in which we calculate more quickly the proper
number X of input records to skip before the first selection is made.

a) What is the probability that X ≥ k, given k?
b) Show that the result of (a) allows us to calculate X by generating only

one uniform U and then doing O(X) other calculations.
c) Show that we may also set X ← min(YN , YN–1, . . . , YN–n+1), where the

Y’s are independent and each Yt is a random integer in the range 0 ≤ Yt
< t.

d) For maximum speed, show that X can also be calculated in O(1) steps,
on the average, using a “squeeze method” like Eq. 3.4.1–(18).

9. [12] Let n = 3. If Algorithm R is applied to a file containing 20 records
numbered 1 thru 20, and if the random numbers generated in step R3 are
respectively

which records go into the reservoir? Which are in the final sample?
10. [15] Modify Algorithm R so that the reservoir is eliminated, assuming
that the n records of the current sample can be held in memory.

 11. [M25] Let pm be the probability that exactly m elements are put into the
reservoir during the first pass of Algorithm R. Determine the generating

function G(z) = ∑m pmzm, and find the mean and standard deviation. (Use
the ideas of Section 1.2.10.)
12. [M26] The gist of Algorithm P is that any permutation π can be
uniquely written as a product of transpositions in the form π = (att) . . .
(a33)(a22), where 1 ≤ aj ≤ j for t ≥ j > 1. Prove that there is also a unique
representation of the form π = (b22)(b33) . . . (btt), where 1 ≤ bj ≤ j for 1 <
j ≤ t, and design an algorithm that computes the b’s from the a’s in O(t)
steps.
13. [M23] (S. W. Golomb.) One of the most common ways to shuffle cards
is to divide the deck into two parts as equal as possible, and to “riffle”
them together. (According to the discussion of card-playing etiquette in
Hoyle’s rules of card games, “A shuffle of this sort should be made about
three times to mix the cards thoroughly.”) Consider a deck of 2n − 1 cards
X1, X2, . . . , X2n−1; a “perfect shuffle” s divides this deck into X1, X2, . . . ,
Xn and Xn+1, . . . , X2n−1, then perfectly interleaves them to obtain X1, Xn+1,
X2, Xn+2, . . . , X2n−1, Xn. The “cut” operation cj changes X1, X2, . . . , X2n−1
into Xj+1, . . . , X2n−1, X1, . . . , Xj. Show that by combining perfect shuffles
and cuts, at most (2n − 1)(2n – 2) different arrangements of the deck are
possible, if n > 1.
14. [22] A cut-and-riffle permutation of a0 a1 . . . an−1 changes it to a
sequence that contains the subsequences

intermixed in some way, for some x and y. Thus, 3890145267 is a cut-
and-riffle of 0123456789, with x = 3 and y = 8.

a) Beginning with 52 playing cards arranged in the standard order

Mr. J. H. Quick (a student) did a random cut-and-riffle; then he removed
the leftmost card and inserted it in a random place, obtaining the sequence

Which card did he move from the leftmost position?
b) Starting again with the deck in its original order, Quick now did three

cut-andriffles before moving the leftmost card to a new place:

Which card did he move this time?
 15. [30] (Ole-Johan Dahl.) If Xk = k for 1 ≤ k ≤ t at the start of Algorithm

P, and if we terminate the algorithm when j reaches the value t – n, the
sequence Xt–n+1, . . . , Xt is a random permutation of a random combination
of n elements. Show how to simulate the effect of this procedure using only
O(n) cells of memory.

 16. [M25] Devise a way to compute a random sample of n records from N,
given N and n, based on the idea of hashing (Section 6.4). Your method
should use O(n) storage locations and an average of O(n) units of time, and
it should present the sample as a sorted set of integers 1 ≤ X1 < X2 < ... <
Xn ≤ N.
17. [M22] (R. W. Floyd.) Prove that the following algorithm generates a
random sample S of n integers from {1, . . . , N}: Set S ← ; then for j ← N
– n + 1, N – n + 2, . . . , N (in this order), set k ← ⌊jU⌋ + 1 and

 18. [M32] People sometimes try to shuffle n items (X1, X2, . . . , Xn) by
successively interchanging

where the indices kj are independent and uniformly random between 1
and n.

Consider the directed graph with vertices {1, 2, . . . , n} and with arcs
from j to kj for 1 ≤ j ≤ n. Describe the digraphs of this type for which, if we
start with the elements (X1, X2, . . . , Xn) = (1, 2, . . . , n), the stated
interchanges produce the respective permutations (a) (n, 1, 2, . . .); (b) (1, 2,
. . . , n); (c) (2, . . . , n, 1). Conclude that these three permutations are
obtained with wildly different probabilities.
 19. [M28] (Priority sampling.) Consider a file of N items in which the kth

item has a positive weight wk. Let qk = Uk/wk for 1 ≤ k ≤ N, where {U1, . .
. , UN } are independent uniform deviates in [0 . . 1). If r is any real
number, define

a) If r is the nth smallest element of {q1, . . . , qN }, prove that the
expected value is w1 w2...wk, for 1 ≤ k < n ≤ N.
Hint: Show that, if s is the (n–k)th smallest element of {qk+1, . . . , qN
}, we have .

(Notice that the quantity s is independent of {U1, . . . , Uk}.)

b) Consequently when j1 < ... < jk.

c) Show that, if n > 2, the variance Var is Var
.

d) Given n, explain how to modify the reservoir sampling method so that
the value of r and the n − 1 items with subscripts {j | qj < r} can be
obtained with one pass through a file of unknown size N. Hint: Use a
priority queue of size n.

By means of the thread one understands the ball of yarn, so
we’ll be satisfied and assured by having this sample.

— MIGUEL DE CERVANTES, El Ingenioso Hidalgo
Don Quixote de la Mancha (1605)

*3.5. What Is a Random Sequence?
A. Introductory remarks. We have seen in this chapter how to generate
sequences

of real numbers in the range 0 ≤ Un < 1, and we have called them “random”
sequences even though they are completely deterministic in character. To
justify this terminology, we claimed that the numbers “behave as if they are
truly random.” Such a statement may be satisfactory for practical purposes
(at the present time), but it sidesteps a very important philosophical and
theoretical question: Precisely what do we mean by “random behavior”? A
quantitative definition is needed. It is undesirable to talk about concepts that
we do not really understand, especially since many apparently paradoxical
statements can be made about random numbers.

The mathematical theory of probability and statistics scrupulously avoids
the issue. It refrains from making absolute statements, and instead expresses
everything in terms of how much probability is to be attached to statements
involving random sequences of events. The axioms of probability theory are
set up so that abstract probabilities can be computed readily, but nothing is
said about what probability really signifies, or how this concept can be
applied meaningfully to the actual world. In the book Probability, Statistics,
and Truth (New York: Macmillan, 1957), R. von Mises discusses this
situation in detail, and presents the view that a proper definition of
probability depends on obtaining a proper definition of a random sequence.

Let us paraphrase here some statements made by two of the many authors
who have commented on the subject.

D. H. Lehmer (1951): “A random sequence is a vague notion embodying
the idea of a sequence in which each term is unpredictable to the
uninitiated and whose digits pass a certain number of tests, traditional
with statisticians and depending somewhat on the uses to which the
sequence is to be put.”
J. N. Franklin (1962): “The sequence (1) is random if it has every
property that is shared by all infinite sequences of independent samples
of random variables from the uniform distribution.”

Franklin’s statement essentially generalizes Lehmer’s to say that the
sequence must satisfy all statistical tests. His definition is not completely
precise, and we will see later that a reasonable interpretation of his
statement leads us to conclude that there is no such thing as a random
sequence! So let us begin with Lehmer’s less restrictive statement and
attempt to make it precise. What we really want is a relatively short list of
mathematical properties, each of which is satisfied by our intuitive notion of
a random sequence; furthermore, the list is to be complete enough so that we
are willing to agree that any sequence satisfying these properties is
“random.” In this section, we will develop what seems to be an adequate
definition of randomness according to these criteria, although many
interesting questions remain to be answered.

Let u and v be real numbers, 0 ≤ u < v ≤ 1. If U is a random variable that
is uniformly distributed between 0 and 1, the probability that u ≤ U < v is
equal to v – u. For example, the probability that ≤ U < is . How can we
translate this property of the single number U into a property of the infinite
sequence U0, U1, U2, . . . ? The obvious answer is to count how many times
Un lies between u and v, and the average number of times should equal v – u.
Our intuitive idea of probability is based in this way on the frequency of
occurrence.

More precisely, let ν(n) be the number of values of j, 0 ≤ j < n, such that
u ≤ Uj < v; we want the ratio ν(n)/n to approach the value v–u as n
approaches infinity:

If this condition holds for all choices of u and v, the sequence is said to be
equidistributed.

Let S(n) be a statement about the integer n and the sequence U0, U1, . . . ;
for example, S(n) might be the statement considered above, “u ≤ Un < v.” We
can generalize the idea used in the preceding paragraph to define the
probability that S(n) is true with respect to a particular infinite sequence.
Definition A. Let ν(n) be the number of values of j, 0 ≤ j < n, such that S(j)
is true. We say that S(n) is true with probability λ if the limit as n tends to

infinity of ν(n)/n equals λ. Symbolically: Pr (S(n)) = λ if limn→∞ ν(n)/n =
λ.

In terms of this notation, the sequence U0, U1, . . . is equidistributed if
and only if Pr(u ≤ Un < v) = v – u, for all real numbers u, v with 0 ≤ u < v ≤
1.

A sequence might be equidistributed without being random. For example,
if U0, U1, . . . and V0, V1, . . . are equidistributed sequences, it is not hard to
show that the sequence

is also equidistributed, since the subsequence U0, U1, . . . is
equidistributed between 0 and , while the alternate terms + V0, + V1,
. . . , are equi-distributed between and 1. But in the sequence of W’s, a
value less than is always followed by a value greater than or equal to ,
and conversely; hence the sequence is not random by any reasonable
definition. A stronger property than equidistribution is needed.

A natural generalization of the equidistribution property, which removes
the objection stated in the preceding paragraph, is to consider adjacent pairs
of numbers of our sequence. We can require the sequence to satisfy the
condition

for any four numbers u1, v1, u2, v2 with 0 ≤ u1 < v1 ≤ 1, 0 ≤ u2 < v2 ≤ 1. And
in general, for any positive integer k we can require our sequence to be k-
distributed in the following sense:
Definition B. The sequence (1) is said to be k-distributed if

for all choices of real numbers uj, vj, with 0 ≤ uj < vj ≤ 1 for 1 ≤ j ≤ k.
An equidistributed sequence is a 1-distributed sequence. Notice that if k

> 1, a k-distributed sequence is always (k − 1)-distributed, since we may set
uk = 0 and vk = 1 in Eq. (5). Thus, in particular, any sequence that is known
to be 4-distributed must also be 3-distributed, 2-distributed, and
equidistributed. We can investigate the largest k for which a given sequence
is k-distributed; and this leads us to formulate a stronger property:

Definition C. A sequence is said to be ∞-distributed if it is k-distributed
for all positive integers k.

So far we have considered “[0 . . 1) sequences,” that is, sequences of
real numbers lying between zero and one. The same ideas apply to integer-
valued sequences; let us say that the sequence 〈Xn〉 = X0, X1, X2, . . . is a
b-ary sequence if each Xn is one of the integers 0, 1, . . . , b − 1. Thus, a 2-
ary (binary) sequence is a sequence of zeros and ones.

We also define a k-digit b-ary number as a string of k integers x1x2. . .
xk, where 0 ≤ xj < b for 1 ≤ j ≤ k.
Definition D. A b-ary sequence is said to be k-distributed if

for all b-ary numbers x1x2. . . xk.
It is clear from this definition that if U0, U1, . . . is a k-distributed [0 . . 1)

sequence, then the sequence ⌊bU0⌋, ⌊bU1⌋, . . . is a k-distributed b-ary
sequence. (If we set uj = xj/b, vj = (xj + 1)/b, Xn = ⌊bUn⌋, Eq. (5) becomes
Eq. (6).) Furthermore, every k-distributed b-ary sequence is also (k − 1)-
distributed, if k > 1: We add together the probabilities for the b-ary numbers
x1. . . xk−1 0, x1. . . xk−1 1, . . . , x1. . . xk−1 (b − 1) to obtain

(Probabilities for disjoint events are additive; see exercise 5.) It therefore is
natural to speak of an ∞-distributed b-ary sequence, as in Definition C
above.

The representation of a positive real number in the radix-b number
system may be regarded as a b-ary sequence; for example, π corresponds to
the 10-ary sequence 3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5, 8, 9, People have
conjectured that this sequence is ∞-distributed, but nobody has yet been able
to prove that it is even 1-distributed.

Let us analyze these concepts a little more closely in the case when k
equals a million. A binary sequence that is 1000000-distributed is going to
have runs of a million zeros in a row! Similarly, a [0 . . 1) sequence that is
1000000-distributed is going to have runs of a million consecutive values
each of which is less than .

It is true that this will happen only ()1000000 of the time, on the average, but
the fact is that it does happen. Indeed, this phenomenon will occur in any
truly random sequence, using our intuitive notion of “truly random.” One can
easily imagine that such a situation will have a drastic effect if this set of a
million “truly random” numbers is being used in a computer-simulation
experiment; there would be good reason to complain about the random
number generator. However, if we have a sequence of numbers that never has
runs of a million consecutive U’s less than , the sequence is not random,
and it will not be a suitable source of numbers for other conceivable
applications that use extremely long blocks of U’s as input. In summary, a
truly random sequence will exhibit local nonrandomness. Local
nonrandomness is necessary in some applications, but it is disastrous in
others. We are forced to conclude that no sequence of “random” numbers can
be adequate for every application.

In a similar vein, one may argue that it is impossible to judge whether a
finite sequence is random or not; any particular sequence is just as likely as
any other one. These facts are definitely stumbling blocks if we are ever to
have a useful definition of randomness, but they are not really cause for
alarm. It is still possible to give a definition for the randomness of infinite
sequences of real numbers in such a way that the corresponding theory
(viewed properly) will give us a great deal of insight concerning the
ordinary finite sequences of rational numbers that are actually generated on a
computer. Furthermore, we shall see later in this section that there are
several plausible definitions of randomness for finite sequences.
B. ∞-distributed sequences. Let us now make a brief study of the theory of
sequences that are ∞-distributed. To describe the theory adequately, we will
need to use a bit of higher mathematics, so we assume in the remainder of
this subsection that the reader knows the material ordinarily taught in an
“advanced calculus” course.

First it is convenient to generalize Definition A, since the limit appearing
there does not exist for all sequences. We define

Then Pr (S(n)), if it exists, is the common value of and
.

We have seen that a k-distributed [0 . . 1) sequence leads to a k-distributed b-
ary sequence, if U is replaced by ⌊bU⌋. Our first theorem shows that a
converse result is also true.
Theorem A. Let 〈Un〉 = U0, U1, U2, . . . be a [0 . . 1) sequence. If the
sequence

is a k-distributed bj-ary sequence for all bj in an infinite sequence of
integers 1 < b1 < b2 < b3 < ... , then the original sequence 〈Un〉 is k-
distributed.

As an example of this theorem, suppose that bj = 2j. The sequence
⌊2jU0⌋, ⌊2jU1⌋, . . . is essentially the sequence of the first j bits of the binary
representations of U0, U1, If all these integer sequences are k-
distributed, in the sense of Definition D, then the real-valued sequence U0,
U1, . . . must also be k-distributed in the sense of Definition B.

Proof of Theorem A. If the sequence ⌊bU0⌋, ⌊bU1⌋, . . . is k-distributed, it
follows by the addition of probabilities that Eq. (5) holds whenever each uj
and vj is a rational number with denominator b. Now let uj, vj be any real
numbers, and let u′j, v′j be rational numbers with denominator b such that

Let S(n) be the statement that u1 ≤ Un < v1, . . . , uk ≤ Un+k−1 < vk. We have

Now . Since our inequalities hold
for all b = bj, since bj → ∞ as j → ∞, we have

The next theorem is our main tool for proving things about k-distributed

sequences.
Theorem B. Suppose that 〈Un〉 is a k-distributed [0 . . 1) sequence, and
let f(x1, x2, . . . , xk) be a Riemann-integrable function of k variables; then

Proof. The definition of a k-distributed sequence states that this result is true
in the special case that

for some constants u1, v1, . . . , uk, vk. Therefore Eq. (8) is true whenever f =
a1f1 + a2f2 + ... + amfm and when each fj is a function of type (9); in other
words, Eq. (8) holds whenever f is a “step-function” obtained by partitioning
the unit k-dimensional cube into subcells whose faces are parallel to the
coordinate axes, and assigning a constant value to f on each subcell.

Now let f be any Riemann-integrable function. If ε is any positive
number, we know (by the definition of Riemann-integrability) that there exist
step functions and such that

, and such that the difference
of the integrals of and is less than ε. Since Eq. (8) holds for and , and
since

we conclude that Eq. (8) is true also for f.
Theorem B can be applied, for example, to the permutation test of

Section 3.3.2. Let (p1, p2, . . . , pk) be any permutation of the numbers {1, 2, .
. . , k}; we want to show that

To prove this, assume that the sequence 〈Un〉 is k-distributed, and let

We have

Corollary P. If a [0 . . 1) sequence is k-distributed, it satisfies the
permutation test of order k, in the sense of Eq. (10).

We can also show that the serial correlation test is satisfied:
Corollary S. If a [0 . . 1) sequence is (k + 1)-distributed, the serial
correlation coefficient between Un and Un+k tends to zero:

(All summations here are for 0 ≤ j < n.)
Proof. By Theorem B, the quantities

tend to the respective limits , , , , as n → ∞.
Let us now consider some slightly more general distribution properties

of sequences. We have defined the notion of k-distribution by considering all
of the adjacent k-tuples; for example, a sequence is 2-distributed if and only
if the points

are equidistributed in the unit square. It is quite possible, however, that this
can happen while alternate pairs of points (U1, U2), (U3, U4), (U5, U6), . . .
are not equidistributed; if the density of points (U2n−1, U2n) is deficient in
some area, the other points (U2n, U2n+1) might compensate. For example, the
periodic binary sequence

with a period of length 16, is seen to be 3-distributed; yet the sequence of
even-numbered elements 〈X2n〉 = 0, 0, 0, 0, 1, 0, 1, 0, . . . has three times
as many zeros as ones, while the subsequence of odd-numbered elements
〈X2n+1〉 = 0, 1, 0, 1, 1, 1, 1, 1, . . . has three times as many ones as zeros.

Suppose the sequence 〈Un〉 is ∞-distributed. Example (11) shows that
the subsequence of alternate terms 〈U2n〉 = U0, U2, U4, U6, . . . is not
obviously guaranteed to be ∞-distributed or even 1-distributed. But we shall
see that 〈U2n〉 is, in fact, ∞-distributed, and much more is true.

Definition E. A [0 . . 1) sequence 〈Un〉 is said to be (m, k)-distributed if

for all choices of real numbers ur, vr with 0 ≤ ur < vr ≤ 1 for 1 ≤ r ≤ k, and
for all integers j with 0 ≤ j < m.
Thus a k-distributed sequence is the special case m = 1 in Definition E; the
case m = 2 means that the k-tuples starting in even positions must have the
same density as the k-tuples starting in odd positions, etc.

The following properties of Definition E are obvious:

(See exercise 8.) We can also define the concept of an (m, k)-distributed b-
ary sequence, as in Definition D; and the proof of Theorem A remains valid
for (m, k)-distributed sequences.

The next theorem, which is in many ways rather surprising, shows that
the property of being ∞-distributed is very strong indeed, much stronger than
we imagined it to be when we first considered the definition of the concept.
Theorem C. (Ivan Niven and H. S. Zuckerman). An ∞-distributed sequence
is (m, k)-distributed for all positive integers m and k.
Proof. It suffices to prove the theorem for b-ary sequences, by using the
generalization of Theorem A just mentioned. Furthermore, we may assume
that m = k, because (12) and (13) tell us that the sequence will be (m, k)-
distributed if it is (mk, mk)-distributed.

So we will prove that any ∞-distributed b-ary sequence X0, X1, . . . is
(m, m)-distributed for all positive integers m. Our proof is a simplified
version of the original one given by Niven and Zuckerman in Pacific J.
Math. 1 (1951), 103–109.

The key idea we shall use is an important technique that applies to many
situations in mathematics: “If the sum of m quantities and the sum of their
squares are both consistent with the hypothesis that the m quantities are
equal, then that hypothesis is true.” In a strong form, this principle may be
stated as follows:
Lemma E. Given m sequences of numbers 〈yjn〉 = yj0, yj1, . . . for 1 ≤ j ≤
m, suppose that

Then for each j, limn→∞ yjn exists and equals α.
An incredibly simple proof of this lemma is given in exercise 9.

Resuming our proof of Theorem C, let x = x1x2. . . xm be a b-ary number,
and say that x occurs at position p if Xp–m+1Xp–m+2. . . Xp = x. Let νj(n) be the
number of occurrences of x at position p when p < n and p mod m = j. Let yjn
= νj(n)/n; we wish to prove that

First we know that

since the sequence is m-distributed. By Lemma E and Eq. (16), the theorem
will be proved if we can show that

This inequality is not obvious yet; some rather delicate maneuvering is
necessary before we can prove it. Let q be a multiple of m, and consider

This is the number of pairs of occurrences of x in positions p1 and p2 for
which n – q ≤ p1 < p2 < n and p2 – p1 is a multiple of m. Consider now the
sum

Each pair of occurrences of x in positions p1 and p2 with p1 < p2 < p1 + q,
where p2 – p1 is a multiple of m and p1 ≤ N, is counted exactly p1 + q – p2
times in the total SN (namely, when p2 < n ≤ p1 + q); and the pairs of such
occurrences with N < p1 < p2 < N + q are counted exactly N + q – p2 times.

Let dt(n) be the number of pairs of occurrences of x in positions p1 and
p2 with p1 + t = p2 < n. The analysis above shows that

Since the original sequence is q-distributed,

for all t, 0 < t < q/m, and therefore by (20) we have

This fact will prove the theorem, after some manipulation.
By definition,

and we can remove the unsquared terms by applying (16) to get

where

Using the inequality

(see exercise 1.2.3–30), we find that

We also have

and putting this into (24) gives

This formula has been established whenever q is a multiple of m; and if we
let q → ∞ we obtain (17), completing the proof.

For a possibly simpler proof, see J. W. S. Cassels, Pacific J. Math. 2
(1952), 555–557.

Exercises 29 and 30 illustrate the nontriviality of this theorem, and they
also demonstrate the fact that a q-distributed sequence will have
probabilities deviating from the true (m, m)-distribution probabilities by
essentially at most. (See (25).) The full hypothesis of ∞-distribution is
necessary for the proof of the theorem.

As a result of Theorem C, we can prove that an ∞-distributed sequence
passes the serial test, the maximum-of-t test, the collision test, the birthday
spacings test, and the tests on subsequences mentioned in Section 3.3.2. It is
not hard to show that the gap test, the poker test, and the run test are also
satisfied (see exercises 12 through 14). The coupon collector’s test is
considerably more difficult to deal with, but it too is passed (see exercises
15 and 16).

The existence of ∞-distributed sequences of a rather simple type is
guaranteed by the next theorem.
Theorem F. (J. N. Franklin). The [0 . . 1) sequence U0, U1, U2, . . . with

is ∞-distributed for almost all real numbers θ > 1. That is, the set

is of measure zero.
The proofs of this theorem and some generalizations are given in Math.
Comp. 17 (1963), 28–59.

Franklin has shown that θ must be a transcendental number for (26) to be
∞-distributed. Early in the 1960s, the powers 〈πn mod 1〉 were
laboriously computed for n ≤ 10000 using multiple-precision arithmetic; and
the most significant 35 bits of each of these numbers, stored on a disk file,
were used successfully as a source of uniform deviates. According to
Theorem F, the probability that the powers 〈πn mod 1〉 are ∞-distributed
is equal to 1; yet there are uncountably many real numbers, so the theorem
gives us no information about whether the sequence for π is really ∞-
distributed or not. It is a fairly safe bet that nobody in our lifetimes will ever
prove that this particular sequence is not ∞-distributed; but it might not be.
Because of these considerations, one may legitimately wonder if there is any
explicit sequence that is ∞-distributed: Is there an algorithm to compute
real numbers Un for all n ≥ 0, such that the sequence 〈Un〉 is ∞-
distributed? The answer is yes, as shown for example by D. E. Knuth in BIT
5 (1965), 246–250. The sequence constructed there consists entirely of
rational numbers; in fact, each number Un has a terminating representation in
the binary number system. Another construction of an explicit ∞-distributed
sequence, somewhat more complicated than the sequence just cited, follows
from Theorem W below. See also N. M. Korobov, Izv. Akad. Nauk SSSR 20
(1956), 649–660.
C. Does ∞-distributed = random? In view of all the theoretical results about
∞-distributed sequences, we can be sure of one thing: The concept of an ∞-
distributed sequence is an important one in mathematics. There is also a good
deal of evidence that the following statement might be a valid formulation of
the intuitive idea of randomness:

Definition R1. A [0 . . 1) sequence is defined to be “random” if it is an ∞-
distributed sequence.
We have seen that sequences meeting this definition will satisfy all the
statistical tests of Section 3.3.2 and many more.

Let us attempt to criticize this definition objectively. First of all, is every
“truly random” sequence ∞-distributed? There are uncountably many
sequences U0, U1, . . . of real numbers between zero and one. If a truly
random number generator is sampled to give values U0, U1, . . . , any of the
possible sequences may be considered equally likely, and some of the
sequences (indeed, uncountably many of them) are not even equidistributed.
On the other hand, using any reasonable definition of probability on this
space of all possible sequences leads us to conclude that a random sequence
is ∞-distributed with probability one. We are therefore led to formalize
Franklin’s definition of randomness (as given at the beginning of this section)
in the following way:
Definition R2. A [0 . . 1) sequence 〈Un〉 is defined to be “random” if,
whenever P is a property such that P (〈Vn〉) holds with probability one
for a sequence 〈Vn〉 of independent samples of random variables from
the uniform distribution, then P (〈Un〉) is true.

Is it perhaps possible that Definition R1 is equivalent to Definition R2?
Let us try out some possible objections to Definition R1, and see whether
these criticisms are valid.

In the first place, Definition R1 deals only with limiting properties of the
sequence as n → ∞. There are ∞-distributed sequences in which the first
million elements are all zero; should such a sequence be considered random?

This objection is not very substantial. If ε is any positive number, there is
no reason why the first million elements of a sequence should not all be less
than ε. With probability one, a truly random sequence contains infinitely
many runs of a million consecutive elements less than ε, so why can’t this
happen at the beginning of the sequence?

On the other hand, consider Definition R2 and let P be the property that
all elements of the sequence are distinct; P is true with probability one, so
any sequence with a million zeros is not random by this criterion.

Now let P be the property that no element of the sequence is equal to
zero; again, P is true with probability one, so by Definition R2 any sequence
with a zero element is nonrandom. More generally, however, let x0 be any
fixed number between zero and one, and let P be the property that no element
of the sequence is equal to x0; Definition R2 now says that no random
sequence may contain the element x0! We can now prove that no sequence
satisfies the condition of Definition R2. (For if U0, U1, . . . is such a
sequence, take x0 = U0.)

Therefore if R1 is too weak a definition, R2 is certainly too strong. The
“right” definition must be less strict than R2. We have not really shown that
R1 is too weak, however, so let us continue to attack it some more. As
mentioned above, an ∞-distributed sequence of rational numbers has been
constructed. (Indeed, this is not so surprising; see exercise 18.) Almost all
real numbers are irrational; perhaps we should insist that

for a random sequence.
The definition of equidistribution, Eq. (2), says that Pr(u ≤ Un < v) =

v−u. There is an obvious way to generalize this definition, using measure
theory: “If S ⊆ [0 . . 1) is a set of measure μ, then

for all random sequences 〈Un〉.” In particular, if S is the set of rationals, it
has measure zero, so no sequence of rational numbers is equidistributed in
this generalized sense. It is reasonable to expect that Theorem B could be
extended to Lebesgue integration instead of Riemann integration, if property
(27) is stipulated. However, once again we find that definition (27) is too
strict, for no sequence satisfies that property. If U0, U1, . . . is any sequence,
the set S = {U0, U1, . . .} is of measure zero, yet Pr(Un ∊ S) = 1. Thus, by the
force of the same argument we used to exclude rationals from random
sequences, we can exclude all random sequences.

So far Definition R1 has proved to be defensible. There are, however,
some quite valid objections to it. For example, if we have a random
sequence in the intuitive sense, the infinite subsequence

should also be a random sequence. This is not always true for an ∞-
distributed sequence. In fact, if we take any ∞-distributed sequence and set
Un2 ← 0 for all n, the counts νk(n) that appear in the test of k-distributivity
are changed by at most , so the limits of the ratios νk(n)/n remain
unchanged. Definition R1 unfortunately fails to satisfy this randomness
criterion.

Perhaps we should strengthen R1 as follows:
Definition R3. A [0 . . 1) sequence is said to be “random” if each of its
infinite subsequences is ∞-distributed.
Once again, however, the definition turns out to be too strict; any
equidistributed sequence 〈Un〉 has a monotonic subsequence with Us0 <
Us1 < Us2 <

The secret is to restrict the subsequences so that they could be defined by
a person who does not look at Un before deciding whether or not it is to be in
the subsequence. The following definition now suggests itself:
Definition R4. A [0 . . 1) sequence 〈Un〉 is said to be “random” if, for
every effective algorithm that specifies an infinite sequence of distinct
nonnegative integers sn for n ≥ 0, the subsequence Us0, Us1, Us2, . . .
corresponding to this algorithm is ∞-distributed.

The algorithms referred to in Definition R4 are effective procedures that
compute sn, given n. (See the discussion in Section 1.1.) Thus, for example,
the sequence 〈πn mod 1〉 will not satisfy R4, since it is either not
equidistributed or there is an effective algorithm that determines an infinite
subsequence sn with (πs0 mod 1) < (πs1 mod 1) < (πs2 mod 1) < Similarly,
no explicitly defined sequence can satisfy Definition R4; this is
appropriate, if we agree that no explicitly defined sequence can really be
random. The explicit-looking sequence 〈θn mod 1〉 actually does,
however, satisfy Definition R4, for almost all real numbers θ > 1; this is no
contradiction, since almost all θ are uncomputable by algorithms. J. F.
Koksma proved that 〈θsn mod 1〉 is 1-distributed for almost all θ > 1, if
〈sn〉 is any sequence of distinct positive integers [Compositio Math. 2
(1935), 250–258]; H. Niederreiter and R. F. Tichy strengthened Koksma’s
theorem, replacing “1-distributed” by “∞-distributed” [Mathematika 32

(1985), 26–32]. Only countably many sequences 〈sn〉 are effectively
definable, so 〈θn mod 1〉 almost always satisfies R4.

Definition R4 is much stronger than Definition R1; but it is still
reasonable to claim that Definition R4 is too weak. For example, let 〈Un〉
be a truly random sequence, and define the subsequence 〈Usn

〉 by the
following rules: s0 = 0; and if n > 0, sn is the smallest integer ≥ n for which
Usn–1, Usn–2, . . . , Usn–n are all less than . Thus we are considering the
subsequence of values following the first consecutive run of n values less
than . Suppose that “Un < ” corresponds to the value “heads” in the
flipping of a coin. Gamblers tend to feel that a long run of “heads” makes the
opposite condition, “tails,” more probable, assuming that a true coin is being
used; and the subsequence 〈Usn

〉 just defined corresponds to a gambling
system for a man who places his nth bet on the coin toss following the first
run of n consecutive “heads.” The gambler may think that Pr(Usn

 ≥) is more
than , but of course in a truly random sequence 〈Usn

〉 will be completely
random. No gambling system will ever be able to beat the odds! Definition
R4 says nothing about subsequences formed according to such a gambling
system, so apparently we need something more.

Let us define a “subsequence rule” R as an infinite sequence of functions
〈fn(x1, . . . , xn)〉 where, for n ≥ 0, fn is a function of n variables, and the
value of fn(x1, . . . , xn) is either 0 or 1. Here x1, . . . , xn are elements of some
set S. (Thus, in particular, f0 is a constant function, either 0 or 1.) A
subsequence rule R defines a subsequence of any infinite sequence 〈Xn〉 of
elements of S as follows: The nth term Xn is in the subsequence 〈Xn〉R if
and only if fn(X0, X1, . . . , Xn−1) = 1. Note that the subsequence 〈Xn〉R thus
defined is not necessarily infinite, and it may in fact contain no elements at
all.

For example, the gambler’s subsequence just described corresponds to
the following subsequence rule: “f0 = 1; and for n > 0, fn(x1, . . . , xn) = 1 if
and only if there is some k in the range 0 < k ≤ n such that the k consecutive

parameters xm, xm−1, . . . , xm–k+1 are all < when m = n but not when k ≤ m <
n.”

A subsequence rule R is said to be computable if there is an effective
algorithm that determines the value of fn(x1, . . . , xn), when n and x1, . . . , xn
are given as input. We had better restrict ourselves to computable
subsequence rules when trying to define randomness, lest we obtain an
overly restrictive definition like R3 above. But effective algorithms cannot
deal nicely with arbitrary real numbers as inputs; for example, if a real
number x is specified by an infinite radix-10 expansion, there is no algorithm
to determine if x is < or not, since all digits of the number 0.333 . . . have to
be examined. Therefore computable subsequence rules do not apply to all [0
. . ,1) sequences, and it is convenient to base our next definition on b-ary
sequences.
Definition R5. A b-ary sequence is said to be “random” if every infinite
subsequence defined by a computable subsequence rule is 1-distributed.

A [0 . . 1) sequence 〈Un〉 is said to be “random” if the b-ary
sequence 〈⌊bUn⌋〉 is “random” for all integers b ≥ 2.

Note that Definition R5 says only “1-distributed,” not “∞-distributed.” It
is interesting to verify that this may be done without loss of generality. For
we may define an obviously computable subsequence rule R(a1. . . ak) as
follows, given any b-ary number a1. . . ak: Let fn(x1, . . . , xn) = 1 if and only
if n ≥ k − 1 and xn–k+1 = a1, . . . , xn−1 = ak−1, xn = ak. Now if 〈Xn〉 is a k-
distributed b-ary sequence, this rule R(a1 . . . ak)—which selects the
subsequence consisting of those terms just following an occurrence of a1. . .
ak—defines an infinite subsequence; and if this subsequence is 1-distributed,
each of the (k + 1)-tuples a1. . . akak+1 for 0 ≤ ak+1 < b occurs with
probability 1/bk+1 in 〈Xn〉. Thus we can prove that a sequence satisfying
Definition R5 is k-distributed for all k, by induction on k. Similarly, by
considering the “composition” of subsequence rules—if R1 defines an
infinite subsequence 〈Xn〉R1, then we can define R1R2 to be the
subsequence rule for which 〈Xn〉R1R2 = (〈Xn〉R1)R2—we find that all

subsequences considered in Definition R5 are ∞-distributed. (See exercise
32.)

The fact that ∞-distribution comes out of Definition R5 as a very special
case is encouraging, and it is a good indication that we may at last have
found the definition of randomness we have been seeking. But alas, there still
is a problem. It is not clear that sequences satisfying Definition R5 must
satisfy Definition R4. The “computable subsequence rules” we have just
specified always enumerate subsequences 〈Xsn〉 for which s0 < s1 < ... ,
but 〈sn〉 does not have to be monotone in R4; it must only satisfy the
condition sn ≠ sm for n ≠ m.

To meet this objection, we may combine Definitions R4 and R5 as
follows:
Definition R6. A b-ary sequence 〈Xn〉 is said to be “random” if, for
every effective algorithm that specifies an infinite sequence of distinct
nonnegative integers 〈sn〉 as a function of n and the values of Xs0, . . . ,
Xsn−1, the subsequence 〈Xsn〉 corresponding to this algorithm is
“random” in the sense of Definition R5.

A [0 . . 1) sequence 〈Un〉 is said to be “random” if the b-ary
sequence 〈⌊bUn⌋〉 is “random” for all integers b ≥ 2.

The author contends* that this definition surely meets all reasonable
philosophical requirements for randomness, so it provides an answer to the
principal question posed in this section.

* At least, he made such a contention when originally preparing this material in 1966.

D. Existence of random sequences. We have seen that Definition R3 is too
strong, in the sense that no sequence can satisfy that definition; and the
formulation of Definitions R4, R5, and R6 above was carried out in an
attempt to recapture the essential characteristics of Definition R3. In order to
show that Definition R6 is not overly restrictive, it is still necessary for us to
prove that sequences satisfying all these conditions exist. Intuitively, we feel
quite sure that there is no problem, because we believe that a truly random
sequence exists and satisfies R6; but a proof is really necessary to show that
the definition is consistent.

An interesting method for constructing sequences satisfying Definition
R5 has been found by A. Wald, starting with a very simple 1-distributed
sequence.
Lemma T. Let the sequence of real numbers 〈Vn〉 be defined in terms of
the binary system as follows:

Let Ib1...br denote the set of all real numbers in [0 . . 1) whose binary
representation begins with 0.b1. . . br; thus

Then if ν(n) denotes the number of Vk in Ib1...br for 0 ≤ k < n, we have

Proof. Since ν(n) is the number of k for which k mod 2r = (br . . . b1)2, we
have ν(n) = t or t + 1 when ⌊n/2r⌋ = t. Hence |ν(n) – n/2r| ≤ 1.

It follows from (31) that the sequence 〈⌊2rVn⌋〉 is an equidistributed
2r-ary sequence; hence by Theorem A, 〈Vn〉 is an equidistributed [0 . . 1)
sequence. Indeed, it is pretty clear that 〈Vn〉 is about as equidistributed as
a [0 . . 1) sequence can be. (For further discussion of this and related
sequences, see J. G. van der Corput, Proc. Koninklijke Nederl. Akad.
Wetenschappen 38 (1935), 813–821, 1058–1066; J. H. Halton, Numerische
Math. 2 (1960), 84–90, 196; S. Haber, J. Research National Bur. Standards
B70 (1966), 127–136; R. Béjian and H. Faure, Comptes Rendus Acad. Sci.
A285 (Paris, 1977), 313–316; H. Faure, J. Number Theory 22 (1986), 4–20;
S. Tezuka, ACM Trans. Modeling and Comp. Simul. 3 (1993), 99–107. L. H.
Ramshaw has shown that the sequence 〈φn mod 1〉 is slightly more
equally distributed than 〈Vn〉; see J. Number Theory 13 (1981), 138–
175.)

Now let R1, R2, . . . be infinitely many subsequence rules; we seek a
sequence 〈Un〉 for which all the infinite subsequences 〈Un〉Rj are
equidistributed.

Algorithm W (Wald sequence). Given an infinite sequence of subsequence
rules R1, R2, . . . that define subsequences of [0 . . 1) sequences of rational
numbers, this procedure defines a [0 . . 1) sequence 〈Un〉. The
computation involves infinitely many auxiliary variables C[a1, . . . , ar],
where r ≥ 1 and where aj = 0 or 1 for 1 ≤ j ≤ r. These variables are initially
all zero.

W1. [Initialize n.] Set n ← 0.
W2. [Initialize r.] Set r ← 1.
W3. [Test Rr.] If the element Un is to be in the subsequence defined by Rr,

based on the values of Uk for 0 ≤ k < n, set ar ← 1; otherwise set ar ←
0.

W4. [Is case [a1, . . . , ar] unfinished?] If C[a1, . . . , ar] < 3 · 4r−1, go to
W6.

W5. [Increase r.] Set r ← r + 1 and return to W3.
W6. [Set Un.] Increase the value of C[a1, . . . , ar] by 1 and let k be its new

value. Set Un ← Vk, where Vk is defined in Lemma T above.
W7. [Advance n.] Increase n by 1 and return to W2.

Strictly speaking, this is not an algorithm, since it doesn’t terminate; but
we could of course easily modify the procedure to make it stop when n
reaches a given value. In order to grasp the idea of the construction, the
reader is advised to try it out manually, replacing the number 3 · 4r−1 of step
W4 by 2r during this exercise.

Algorithm W is not meant to be a practical source of random numbers. It
is intended to serve only a theoretical purpose:
Theorem W. Let 〈Un〉 be the sequence of rational numbers defined by
Algorithm W, and let k be a positive integer. If the subsequence 〈Un〉Rk is
infinite, it is 1-distributed.
Proof. Let A[a1, . . . , ar] denote the (possibly empty) subsequence of 〈Un〉
containing precisely those elements Un that, for all j ≤ r, belong to

subsequence 〈Un〉Rj if aj = 1 and do not belong to subsequence 〈Un〉Rj
if aj = 0.

It suffices to prove, for all r ≥ 1 and all pairs of binary numbers a1. . . ar

and b1. . . br, that Pr(Un ∊ Ib1...br) = 2−r with respect to the subsequence A[a1,
. . . , ar], whenever the latter is infinite. (See Eq. (30).) For if r ≥ k, the
infinite sequence 〈Un〉Rk is the finite union of the disjoint subsequences
A[a1, . . . , ar] for ak = 1 and aj = 0 or 1 for 1 ≤ j ≤ r, j ≠ k; and it follows that
Pr(Un ∊ Ib1...br) = 2−r with respect to 〈Un〉Rk. (See exercise 33.) This is
enough to show that the sequence is 1-distributed, by Theorem A.

Let B[a1, . . . , ar] denote the subsequence of 〈Un〉 that consists of the
values for those n in which C[a1, . . . , ar] is increased by one in step W6 of
the algorithm. By the algorithm, B[a1, . . . , ar] is a finite sequence with at
most 3 · 4r−1 elements. All but a finite number of the members of A[a1, . . . ,
ar] come from the subsequences B[a1, . . . , ar, . . . , at], where aj = 0 or 1 for
r < j ≤ t.

Now assume that A[a1, . . . , ar] is infinite, and let A[a1, . . . , ar] =
〈Usn〉, where s0 < s1 < s2 < If N is a large integer, with 4r ≤ 4q < N ≤
4q +1, it follows that the number of values of k < N for which Usk is in Ib1...br
is (except for finitely many elements at the beginning of the subsequence)

Here m is the number of subsequences B[a1, . . . , at] listed above in which
Usk appears for some k < N; Nj is the number of values of k with Usk in the
corresponding subsequence; and ν(Nj) is the number of such values that are
also in Ib1...br . Therefore by Lemma T,

The inequality on m follows here from the fact that, by our choice of N, the
element UsN is in B[a1, . . . , at] for some t ≤ q + 1.

We have proved that |ν(N)/N – 2−r| ≤ 2q+1/N < 2/ .
To show finally that sequences satisfying Definition R5 exist, we note

first that if 〈Un〉 is a [0 . . 1) sequence of rational numbers and if R is a
computable subsequence rule for a b-ary sequence, we can make R into a
computable subsequence rule R′ for 〈Un〉 by letting in R′
equal fn(⌊bx1⌋, . . . , ⌊bxn⌋) in R. If the [0 . . 1) sequence 〈Un〉R′ is
equidistributed, so is the b-ary sequence 〈⌊bUn⌋〉R. Now the set of all
computable subsequence rules for b-ary sequences, for all values of b, is
countable (since only countably many effective algorithms are possible), so
they may be listed in some sequence R1, R2, . . . ; therefore Algorithm W
defines a [0 . . 1) sequence that is random in the sense of Definition R5.

This brings us to a somewhat paradoxical situation. As we mentioned
earlier, no effective algorithm can define a sequence that satisfies Definition
R4, and for the same reason there is no effective algorithm that defines a
sequence satisfying Definition R5. A proof of the existence of such random
sequences is necessarily nonconstructive; how then can Algorithm W
construct such a sequence?

There is no contradiction here; we have merely stumbled on the fact that
the set of all effective algorithms cannot be enumerated by an effective
algorithm. In other words, there is no effective algorithm to select the jth
computable subsequence rule Rj; this happens because there is no effective
algorithm to determine if a computational method ever terminates. But
important large classes of algorithms can be systematically enumerated; thus,
for example, Algorithm W shows that it is possible to construct, with an
effective algorithm, a sequence that satisfies Definition R5 if we restrict
consideration to subsequence rules that are “primitive recursive.”

By modifying step W6 of Algorithm W, so that it sets Un ← Vk+t instead
of Vk, where t is any nonnegative integer depending on a1, . . . , ar, we can
show that there are uncountably many [0 . . 1) sequences satisfying
Definition R5.

The following theorem shows still another way to prove the existence of
uncountably many random sequences, using a less direct argument based on
measure theory, even if the strong definition R6 is used:

Theorem M. Let the real number x, 0 ≤ x < 1, correspond to the binary
sequence 〈Xn〉 if the binary representation of x is (0.X0X1 . . .)2. Under
this correspondence, almost all x correspond to binary sequences that are
random in the sense of Definition R6. (In other words, the set of all real x
that correspond to a binary sequence that is nonrandom by Definition R6 has
measure zero.)
Proof. Let S be an effective algorithm that determines an infinite sequence of
distinct nonnegative integers 〈sn〉, where the choice of sn depends only on
n and Xsk for 0 ≤ k < n; and let R be a computable subsequence rule. Then
any binary sequence 〈Xn〉 leads to a subsequence 〈Xsn〉R, and
Definition R6 says this subsequence must either be finite or 1-distributed. It
suffices to prove that for fixed R and S the set N(R, S) of all real x
corresponding to 〈Xn〉, such that 〈Xsn〉R is infinite and not 1-
distributed, has measure zero. For x has a nonrandom binary representation
if and only if x is in ∪N(R, S), taken over the countably many choices of R
and S.

Therefore let R and S be fixed. Consider the set T(a1a2. . . ar) defined for
all binary numbers a1a2. . . ar as the set of all x corresponding to 〈Xn〉,
such that 〈Xsn〉R has ≥ r elements whose first r elements are respectively
equal to a1, a2, . . . , ar. Our first result is that

To prove this, we start by observing that T(a1a2. . . ar) is a measurable set:
Each element of T(a1a2. . . ar) is a real number x = (0.X0X1 . . .)2 for which
there exists an integer m such that algorithm S determines distinct values s0,
s1, . . . , sm, and rule R determines a subsequence of Xs0, Xs1, . . . , Xsm such
that Xsm is the rth element of this subsequence. The set of all real y = (0.Y0Y1 .
. .)2 such that Ysk = Xsk for 0 ≤ k ≤ m also belongs to T(a1a2. . . ar), and this is
a measurable set consisting of the finite union of dyadic subintervals Ib1...bt.
Since there are only countably many such dyadic intervals, we see that
T(a1a2. . . ar) is a countable union of dyadic intervals, and it is therefore
measurable. Furthermore, this argument can be extended to show that the
measure of T(a1. . . ar−1 0) equals the measure of T(a1. . . ar−1 1), since the

latter is a union of dyadic intervals obtained from the former by requiring that
Ysk = Xsk for 0 ≤ k < m and Ysm ≠ Xsm. Now since

the measure of T(a1a2. . . ar) is at most one-half the measure of T(a1. . . ar−1).
The inequality (32) follows by induction on r.

Now that (32) has been established, the remainder of the proof is
essentially to show that the binary representations of almost all real numbers
are equidistributed. For 0 < ε < 1, let B(r, ε) be ∪T (a1 . . . ar), where the
union is taken over all binary strings a1 . . . ar for which the number ν(r) of
ones among a1 . . . ar satisfies

The number of such binary strings is summed over all values
of k with |k – r| ≥ εr. Exercise 1.2.10–21 proves that C(r, ε) ≤ 2r+1e−ε2r;
hence by (32),

The next step is to define

The measure of B*(r, ε) is at most ∑k≥r 2e−ε2k, and this is the remainder of a
convergent series, so

Now if x is a real number whose binary expansion (0.X0X1 . . .)2 leads to an
infinite sequence 〈Xsn〉R that is not 1-distributed, and if ν(r) denotes the
number of ones in the first r elements of the latter sequence, then

for some ε > 0 and infinitely many r. This means x is in B*(r, ε) for all r. So
finally we find that

and, by (34), ∩r≥1 B*(r, 1/t) has measure zero for all t. Hence N(R, S) has
measure zero.

From the existence of binary sequences satisfying Definition R6, we can
show the existence of [0 . . 1) sequences that are random in this sense. For
details, see exercise 36. The consistency of Definition R6 is thereby
established.
E. Random finite sequences. An argument was given above to indicate that
it is impossible to define the concept of randomness for finite sequences:
Any given finite sequence is as likely as any other. Still, nearly everyone
would agree that the sequence 011101001 is “more random” than
101010101, and even the latter sequence is “more random” than 000000000.
Although it is true that truly random sequences will exhibit locally
nonrandom behavior, we would expect such behavior only in a long finite
sequence, not in a short one.

Several ways to define the randomness of a finite sequence have been
proposed, and only a few of the ideas will be sketched here. For simplicity,
we shall restrict our consideration to the case of b-ary sequences.

Given a b-ary sequence X0, X1, . . . , XN−1, we can say that

where ν(n) is the quantity appearing in Definition A at the beginning of this
section. The sequence above can be called “k-distributed” if

for all b-ary numbers x1x2. . . xk. (Compare with Definition D. Unfortunately
a sequence might turn out to be k-distributed by this new definition when it is
not (k − 1)-distributed.)

A definition of randomness may now be given analogous to Definition
R1, as follows:
Definition Q1. A b-ary sequence of length N is “random” if it is k-
distributed (in the sense above) for all positive integers k ≤ logb N.

According to this definition, for example, there are 178 nonrandom
binary sequences of length 11:

plus 01010101010 and all sequences with nine or more zeros, plus all
sequences obtained from the preceding sequences by interchanging ones and
zeros.

Similarly, we can formulate a definition for finite sequences analogous to
Definition R6. Let A be a set of algorithms, each of which is a selection-and-
choice procedure that gives a subsequence 〈Xsn〉R as in the proof of
Theorem M.
Definition Q2. The b-ary sequence X0, X1, . . . , XN−1 is (n, ε)-random with
respect to a set of algorithms A, if for every subsequence Xt1, Xt2, . . . , Xtm

determined by an algorithm of A we have either m < n or

Here νa(x1, . . . , xm) is the number of a’s in the sequence x1, . . . , xm.
(In other words, every sufficiently long subsequence determined by an

algorithm of A must be approximately equidistributed.) The basic idea in this
case is to let A be a set of “simple” algorithms; the number (and the
complexity) of the algorithms in A can grow as N grows.

As an example of Definition Q2, let us consider binary sequences, and
let A be just the following four algorithms:

a) Take the whole sequence.
b) Take alternate terms of the sequence, starting with the first.
c) Take the terms of the sequence following a zero.
d) Take the terms of the sequence following a one.
Now a sequence X0, X1, . . . , X7 is -random with respect to A if:
by (a), , that is, if there are 3, 4,
or 5 ones;
by (b), , that is, if there are
exactly 2 ones in even-numbered positions;
by (c), there are three possibilities depending on how many zeros occupy
positions X0, . . . , X6: If there are 2 or 3 zeros here, there is no condition
to test (since n = 4); if there are 4 zeros, they must respectively be

followed by two zeros and two ones; and if there are 5 zeros, they must
respectively be followed by two or three zeros;
by (d), we get conditions similar to those implied by (c).
It turns out that only the following binary sequences of length 8 are

-random with respect to these rules:

plus those obtained by interchanging 0 and 1 consistently.
It is clear that we could make the set of algorithms so large that no

sequences satisfy the definition, when n and ε are reasonably small. A. N.
Kolmogorov has proved that an (n, ε)-random binary sequence will always
exist, for any given N, if the number of algorithms in A does not exceed

This result is not nearly strong enough to show that sequences satisfying
Definition Q1 will exist, but the latter can be constructed efficiently using the
procedure of Rees in exercise 3.2.2–21. A generalized spectral test, based
on discrete Fourier transforms, can be used to test how well a sequence
measures up to Definition Q1 [see A. Compagner, Physical Rev. E52 (1995),
5634–5645].

Still another interesting approach to a definition of randomness has been
taken by Per Martin-Löf [Information and Control 9 (1966), 602–619].
Given a finite b-ary sequence X1, . . . , XN, let l(X1, . . . , XN) be the length of
the shortest Turing machine program that generates this sequence.
(Alternatively, we could use other classes of effective algorithms, such as
those discussed in Section 1.1.) Then l(X1, . . . , XN) is a measure of the
“patternlessness” of the sequence, and we may equate this idea with
randomness. The sequences of length N that maximize l(X1, . . . , XN) may be
called random. (From the standpoint of practical random number generation

by computer, this is, of course, the worst definition of “randomness” that can
be imagined!)

Essentially the same definition of randomness was given independently
by G. Chaitin at about the same time; see JACM 16 (1969), 145–159. It is
interesting to note that even though this definition makes no reference to
equidistribution properties as our other definitions have, Martin-Löf and
Chaitin have proved that random sequences of this type also have the
expected equidistribution properties. In fact, Martin-Löf has demonstrated
that such sequences satisfy all computable statistical tests for randomness, in
an appropriate sense.

For further developments in the definition of random finite sequences,
see A. K. Zvonkin and L. A. Levin, Uspekhi Mat. Nauk 25, 6 (November
1970), 85–127 [English translation in Russian Math. Surveys 25, 6
(November 1970), 83–124]; L. A. Levin, Doklady Akad. Nauk SSSR 212
(1973), 548–550; L. A. Levin, Information and Control 61 (1984), 15–37.
F. Pseudorandom numbers. It is comforting from a theoretical standpoint to
know that random finite sequences of various flavors exist, but such theorems
don’t answer the questions faced by real-world programmers. More recent
developments have led to a more relevant theory, based on the study of sets
of finite sequences. More precisely, we consider multisets in which
sequences may appear more than once.

Let S be a multiset containing bit strings (binary sequences) of length N;
we call S an N-source. Let $N denote the special N-source that contains all
2N possible N-bit strings. Each element of S represents a sequence that we
might use as a source of pseudorandom bits; choosing different “seed” values
leads to different elements of S. For example, S might be

in the linear congruential sequence defined by Xj+1 = (aXj + c) mod 2e, where
there is one string B1B2 . . . BN for each of the 2e starting values X0.

The basic idea of pseudorandom sequences, as we have seen throughout
this chapter, is to get N bits that appear to be random, although we rely only
on a few “truly random” bits when we choose the seed value. In the example
just considered, we need e truly random bits to select X0; in general,
selecting a member of S amounts to using lg |S| truly random bits, after which

we proceed deterministically. If N = 106 and |S| = 232, we are getting more
than 30,000 “apparently random” bits for each truly random bit expended.
With $N instead of S, we get no such amplification, because lg |$N | = N.

What does it mean to be “apparently random”? A. C. Yao proposed a
good definition in 1982: Consider any algorithm A that looks at a bit string B
= B1. . . BN and outputs the value A(B) = 0 or 1. We may think of A as a test
for randomness; for example, A might compute the distribution of runs of
consecutive 0s and 1s, outputting 1 if the run lengths differ significantly from
the expected distribution. Whatever A does, we can consider the probability
P(A, S) that A(B) = 1 when B is a randomly chosen element of S, and we can
compare it to the probability P(A, $N) that A(B) = 1 when B is a truly random
bit string of length N. If P(A, S) is extremely close to P(A, $N) for all
statistical tests A, we cannot tell the difference between the sequences of S
and truly random binary sequences.
Definition P. We say that an N-source S passes statistical test A with
tolerance ε if |P(A, S)–P(A, $N)| < ε. It fails the test if |P(A, S)–P(A, $N)| ≥
ε.

The algorithm A need not be designed by statisticians. Any algorithm can
be considered a statistical test for randomness, according to Definition P. We
allow A to flip coins (that is, to use truly random bits) as it performs its
calculations. The only requirement is that A must output 0 or 1.

Well, actually there is another requirement: We insist that A must deliver
its output in a reasonable time, at least on the average. We’re not interested in
algorithms that will take many years to run, because we will never notice any
disparities between S and $N if our computers cannot detect them during our
lifetime. The sequences of S contain only lg |S| bits of information, so there
surely are algorithms that will eventually detect the redundancy; but we don’t
care, as long as S is able to pass all the tests that really matter.

These qualitative ideas can be quantified, as we will now see. The
theory is rather subtle, but it is sufficiently beautiful and important that
readers who take the time to study the details carefully will be amply
rewarded.

In the following discussion, the running time T (A) of an algorithm A on
N-bit strings is defined to be the maximum of the expected number of steps

needed to output A(B), maximized over all B ∊ $N; the expected number is
averaged over all coin flips made by the algorithm.

The first step in our quantitative analysis is to show that we may restrict
the tests to be of a very special kind. Let Ak be an algorithm that depends
only on the first k bits of the input string B = B1. . . BN, where 0 ≤ k < N, and
let mod 2. Thus outputs 1 if and
only if Ak has successfully predicted Bk+1; we call a prediction test.

Lemma P1. Let S be an N-source. If S fails test A with tolerance ε, there is
an integer k ∊ {0, 1, . . . , N –1} and a prediction test with

 such that S fails with tolerance ε/N.
Proof. By complementing the output of A, if necessary, we may assume that
P(A, S)–P(A, $N) ≥ ε. Consider the algorithms Fk that begin by flipping N – k
coins and replacing Bk+1. . . BN by random bits before
executing A. Algorithm FN is the same as A, while F0 acts on S as if A were
acting on $N. Let pk = P(Fk, S). Since

, there
is some k such that pk+1 – pk ≥ ε/N.

Let be the algorithm that performs the computations of Fk and
predicts the value mod 2; in other words, it outputs

A careful analysis of probabilities shows that
. (See exercise 40.)

Most N-sources S of practical interest are shift-symmetric in the sense
that every substring B1. . . Bk, B2 . . . Bk+1, . . . , BN–k+1. . . BN of length k has
the same probability distribution. This holds, for example, when S
corresponds to a linear congruential sequence as in (38). In such cases we
can improve on Lemma P1 by taking k = N − 1:
Lemma P2. If S is a shift-symmetric N-source that fails test A with
tolerance ε, there is an algorithm A′ with T (A′) ≤ T(A) + O(N) that predicts
BN from B1. . . BN−1 with probability at least .

Proof. If P(A, S) > P(A, $N), let A′ be the in the proof of Lemma P1, but
applied to BN–k . . . BN–10 . . . 0 instead of B1. . . BN. Then A′ has the same
average behavior, because of shift-symmetry. If P(A, S) < P(A, $N), let A′ be

 in the same fashion. Clearly .
Now let’s specialize S even more, by supposing that each of the

sequences B1B2 . . . BN has the form f(g(X0))f(g(g(X0))) . . . f(g[N](X0)) as X0
ranges over some set X, where g is a permutation of X and f(x) is 0 or 1 for
all x ∊ X. Our linear congruential example satisfies this restriction, with X =
{0, 1, . . . , 2e − 1}, g(x) = (ax + c) mod 2e, and f(x) = most significant bit of
x. Such N-sources will be called iterative.
Lemma P3. If S is an iterative N-source that fails test A with tolerance ε,
there is an algorithm A′ with T (A′) ≤ T(A) + O(N) that predicts B1 from B2 .
. . BN with probability at least .

Proof. An iterative N-source is shift-symmetric, and so is its reflection SR =
{BN . . . B1 | B1. . . BN ∊ S}. Therefore Lemma P2 applies to SR.

The permutation g(x) = (ax + c) mod 2e is easy to invert, in the sense that
we can determine x from g(x) whenever a is odd. But many easily computed
permutation functions are “one-way”—hard to invert—and we will see that
this makes them provably good sources of pseudorandom numbers.
Lemma P4. Let S be an iterative N-source corresponding to f, g, and X. If
S fails test A with tolerance ε, there is an algorithm G that correctly
guesses f(x), given g(x), with probability , when x is a random
element of X. The running time T(G) is at most T(A) + O(N)(T(f) + T(g)).
Proof. Given y = g(x), the desired algorithm G computes B2 = f(g(x)), B3 =
f(g(g(x)), . . . , BN = f(g[N−1](x)) and applies the algorithm A′ of Lemma P3. It
guesses f(x) = B1 with probability , because g is a permutation
of X, and B1. . . BN is the element of S corresponding to the seed value X0 for
which we have g(X0) = x.

In order to use Lemma P4, we need to amplify the ability to guess a
single bit f(x) to an ability to guess x itself, given only the value of g(x).
There is a nice general way to do this, using the properties of Boolean
functions, if we extend S so that many different functions f(x) need to be

guessed. (However, the method is somewhat technical, so the first-time
reader may want to skip down to Theorem G before looking closely at the
details that follow.)

Suppose G(z1. . . zR) is a binary-valued function on R-bit strings that is
good at guessing a function of the form f(z1. . . zR) = (x1z1 + ... + xRzR) mod 2
for some fixed x = x1. . . xR. It is convenient to measure the success of G by
computing the expected value

averaged over all possibilities for z1 . . . zR. This is the sum of correct
guesses minus incorrect guesses, divided by 2R; so if p is the probability that
G is correct, we have s = p – (1 – p), or .

For example, suppose R = 4 and G(z1z2z3z4) = [z1 ≠ z2][z3 + z4 < 2]. This
function has success rate (and) if x = 1100, because it
equals x · z mod 2 = (z1 + z2) mod 2 for all 4-bit strings z except 0111 or
1011. It also has success rate when x = 0000, 0011, 1101, or 1110; so there
are five plausible possibilities for x. The other eleven x’s make s ≤ 0.

The following algorithm magically discovers x in most cases when G is
a successful guesser in the sense just described. More precisely, the
algorithm constructs a short list that has a good chance of containing x.
Algorithm L (Amplification of linear guesses). Given a binary-valued
function G(z1 . . . zR) and a positive integer k, this algorithm outputs a list of
2k binary sequences x = x1. . . xR with the property that x is likely to be output
when G(z1 . . . zR) is a good approximation to the function (x1z1 + ... + xRzR)
mod 2.

L1. [Construct a random matrix.] Generate random bits Bij for 1 ≤ i ≤ k and
1 ≤ j ≤ R.

L2. [Compute signs.] For 1 ≤ i ≤ R, and for all bit strings b = b1. . . bk,
compute

where ei is the R-bit string 0 . . . 010 . . . 0 having 1 in position i, and
where cB is the string d1 . . . dR with dj = (B1jc1 + ... + Bkjck) mod 2. (In
other words the binary vector c1 . . . ck is multiplied by the k × R binary
matrix B.) The sum is taken over all 2k − 1 bit strings c1. . . ck ≠ 0 . . . 0.
It can be evaluated for each i with k · 2k additions and subtractions,
using Yates’s method for the Hadamard transform; see the remarks
following Eq. 4.6.4–(38).

L3. [Output the guesses.] For all 2k choices of b = b1. . . bk, output the
string x(b) = [h1(b) < 0] . . . [hR(b) < 0].

To prove that Algorithm L works properly, we must show that a given
string x will probably be output whenever it deserves to be. Notice first that
if we change G to G′, where G′(z) = (G(z) + zj) mod 2, the original G(z) is a
good approximation to x · z mod 2 if and only if the new G′(z) is a good
approximation to (x + ej) · z mod 2, where ej is the unit-vector string defined
in step L2. Moreover, if we apply the algorithm to G′ instead of G, we get

where Bj is column j of B. Therefore step L3 outputs the vectors x′(b) = x((b
+ Bj) mod 2) + ej, modulo 2. As b runs through all k-bit strings, so does (b +
Bj) mod 2, and the effect is to complement bit j of every x in the output.

We need therefore prove only that the vector x = 0 . . . 0 is likely to be
output whenever G(z) is a good approximation to the constant function 0. We
will show, in fact, that x(0 . . . 0) equals 0 . . . 0 in step L3 with high
probability, whenever G(z) is a lot more likely to be 0 than 1 and k is
sufficiently large. More precisely, the condition

holds for 1 ≤ i ≤ R with probability > , if s = E((–1)G(z)) is positive when
averaged over all 2R possibilities for z and if k is large enough.

The key observation is that, for each fixed c = c1. . . ck ≠ 0 . . . 0, the
string d = cB is uniformly distributed: Every value of d occurs with
probability 1/2R, because the bits of B are random. Furthermore, when

, the strings d = cB and d′ = c′B are independent:
Every value of the pair (d, d′) occurs with probability 1/22R. Therefore we
can argue as in the proof of Chebyshev’s inequality that, for any fixed i, the
sum is negative with probability at most 1/((2k −
1)s2). (Exercise 42 contains the details.) It follows that R/((2k − 1)s2) is an
upper bound on the probability that x(0) is nonzero in step L3.
Theorem G. If s = E((–1)G(z)+x·z) > 0 and 2k > ⌈2R/s2⌉, Algorithm L outputs
x with probability ≥ . The running time is O(k2kR) plus the time to make
2kR evaluations of G.

Now we are ready to prove that the muddle-square sequence of Eq.
3.2.2–(17) is a good source of (pseudo)random numbers. Suppose 2R−1 < M
= P Q < 2R, where P and Q are prime numbers of the form 4k + 3 in the
respective ranges 2(R−2)/2 < P < 2(R−1)/2, 2R/2 < Q < 2(R+1)/2. We will call M
an R-bit Blum integer, because the importance of such numbers for
cryptography was first pointed out by Manuel Blum [COMPCON 24 (Spring
1982), 133–137]. Blum originally suggested that P and Q both have R/2 bits,
but Algorithm 4.5.4D shows that it is better to choose P and Q as stated here
so that Q−P > .29×2R/2.

Choose X0 at random in the range 0 < X0 < M, with X0 ⊥ M; also let Z be
a random R-bit mask. We can construct an iterative N-source S by letting X
be the set of all (x, z, m) that are possibilities for (X0, Z, M), with the further
restriction that x ≡ a2 (modulo m) for some a. The function g(x, z, m) = (x2

mod m, z, m) is easily shown to be a permutation of X (see, for example,
exercise 4.5.4–35). The function f(x, z, m) that extracts bits in this iterative
source is x · z mod 2. Our starting value (X0, Z, M) isn’t necessarily in X, but
g(X0, Z, M) is uniformly distributed in X, because exactly four values of X0
have a given square mod M.
Theorem P. Let S be the N-source defined by the muddle-square method on
R-bit moduli, and suppose S fails some statistical test A with tolerance ε ≥
1/2N. Then we can construct an algorithm F that finds factors of random
R-bit Blum integers M = PQ having the form described above, with success
probability at least ε/(4N) and with running time T(F) = O(N2R2ε−2T(A) +
N3R4ε−2).

Proof. Multiplication mod M can be done in O(R2) steps; hence T(f) + T(g) =
O(R2). Lemma P4 therefore asserts the existence of a guessing algorithm G
with success rate ε/N and T(G) ≤ T(A) + O(NR2). We can construct G from A
using the method of exercise 41. This algorithm G has the property that

, where the
expected value is taken over all (x, z, m) ∊ X, and where (y, z, m) = g(x, z,
m).

The desired algorithm F proceeds as follows. Given a random M = P Q
with unknown P and Q, it computes a random X0 between 0 and M, and stops
immediately with a known factorization if gcd(X0, M) ≠ 1. Otherwise it
applies Algorithm L with and k = ⌈lg(1 +
2N2R/ε2)⌉. If one of the 2k values x output by that algorithm satisfies

 (modulo M), there is a 50:50 chance that x ≢ ±X0; then gcd(X0 – x,
M) and gcd(X0 + x, M) are the prime factors of M. (See Rabin’s “SQRT box”
in Section 4.5.4.)

The running time of this algorithm is clearly O(N2R2ε−2T(A) + N3R4ε−2),
since ε ≥ 2−N. The probability that it succeeds in factoring M can be
estimated as follows. Let n = |X|/2R be the number of choices of (x, m), and
let sxm = 2−R ∑(–1)G(y,z,m)+z·x summed over all R-bit numbers z; thus s = ∑x,m
sxm/n ≥ 2ε/N. Let t be the number of (x, m) such that sxm ≥ ε/N. The
probability that our algorithm deals with such a pair (x, m) is

And in such a case it finds x with probability ≥ , by Theorem G, since we
have ; so it finds a factor with probability ≥ .

What does Theorem P imply, from a practical standpoint? Our proof
shows that the constant implied by the O is small; let us assume that the
running time for factoring is at most 10(N2R2ε−2T(A) + N3R4ε−2). Many of the
world’s greatest mathematicians have worked on the problem of factoring

large numbers, especially after factoring was shown to be highly relevant to
cryptography in the late 1970s. Since they haven’t found a good solution, we
have excellent reason to believe that factoring is hard; hence Theorem P will
show that T(A) must be large on all algorithms that detect nonrandomness of
muddle-square bits.

Long computations are conveniently measured in MIP-years, the number
of instructions executed per Gregorian year by a machine that performs a
million instructions per Gregorian second—namely 31,556,952,000,000 ≈
3.16×1013. In 1995, the time to factor a number of 120 decimal digits (400
bits), using the most highly tuned algorithms, was more than 250 MIP-years.
The most optimistic researchers who have worked on factorization would be
astonished if an algorithm were discovered that requires only exp (R1/4(ln
R)3/4) instructions as R → ∞. But let us assume that such a breakthrough has
been achieved, for at least a not-too-small fraction of the R-bit Blum integers
M. Then we could factor many numbers of about 50000 bits (15000 digits) in
2 × 1025 MIP-years. If we generate N = 1000 random bits by muddle-square
with R = 50000, and if we assume that all algorithms that are good enough to
factor at least of the 50000-bit Blum integers must run at least 2 ×
1025 MIP-years, Theorem P tells us that every such set of 1000 bits will pass
all statistical tests for randomness whose running time T(A) is less than
70000 MIP-years: No such algorithm A will be able to distinguish such bits
from a truly random sequence with probability .

Impressive? No. Such a result is hardly surprising, since we need to
specify about 150000 truly random bits just to start up the muddle-square
method with X0, Z, and M when R = 50000. Of course we should be able to
get 1000 random bits back from such an investment!

But in general, the formula becomes

under our conservative assumptions, when ; the NR2 term is
negligible when R is large. So let’s set R = 200000 and N = 1010. Then we
get ten billion pseudorandom muddle-bits from ≈ 3R = 600000 truly random
bits, passing all statistical tests that require fewer than 7.486×1010 MIP-

years = 74.86 gigaMIP-years. With R = 333333 and N = 1013 the computation
time needed to detect any statistical bias increases to 535 teraMIP-years.

The simple pseudorandom generator Eq. 3.2.2–(16), which avoids the
random mask Z, can also be shown to pass all polynomial-time tests for
randomness if factoring is intractable. (See exercise 4.5.4–43.) But the
known performance guarantees for the simpler method are somewhat weaker
than for muddle-square; currently they are O(N4Rε−4 log(NRε−1)) versus the
O(N2R2ε−2) of Theorem P.

Everyone believes that there is no factoring algorithm for R-bit numbers
whose running time is polynomial in R. If that conjecture is true in a stronger
form, so that we cannot even factor 1/Rk of the R-bit Blum integers in
polynomial time for any fixed k, Theorem P proves that the muddle-square
method generates pseudorandom numbers that pass all polynomial-time
statistical tests for randomness.

Stating this another way: If you generate random bits with the muddle-
square method for suitably chosen N and R, you either get numbers that pass
all reasonable statistical tests, or you get fame and fortune for discovering a
new factorization algorithm.
G. Summary, history, and bibliography. We have defined several degrees of
randomness that a sequence might possess.

An infinite sequence that is ∞-distributed satisfies a great many useful
properties that are expected of random sequences, and there is a rich theory
concerning ∞-distributed sequences. (The exercises below develop several
important properties of such sequences that have not been mentioned in the
text.) Definition R1 is therefore an appropriate basis for theoretical studies
of randomness.

The concept of an ∞-distributed b-ary sequence was introduced in 1909
by Emile Borel. He essentially defined the concept of an (m, k)-distributed
sequence, and showed that the b-ary representations of almost all real
numbers are (m, k)-distributed for all m and k. He called such numbers
entirely normal to base b, and he stated Theorem C informally without
apparently realizing that it required proof [Rendiconti Circ. Mat. Palermo
27 (1909), 247–271, §12.]

The notion of an ∞-distributed sequence of real numbers, also called a
completely equidistributed sequence, first appeared in a note by N. M.

Korobov in Doklady Akad. Nauk SSSR 62 (1948), 21–22. Korobov and
several of his colleagues developed the theory of such sequences quite
extensively in a series of papers during the 1950s. Completely
equidistributed sequences were independently studied by Joel N. Franklin,
Math. Comp. 17 (1963), 28–59, in a paper that is particularly noteworthy
because it was inspired by the problem of random number generation. The
book Uniform Distribution of Sequences by L. Kuipers and H. Niederreiter
(New York: Wiley, 1974) is an extraordinarily complete source of
information about the rich mathematical literature concerning k-distributed
sequences of all kinds.

We have seen, however, that ∞-distributed sequences need not be
sufficiently haphazard to qualify completely as “random.” Three definitions,
R4, R5, and R6, were formulated above to provide the additional conditions;
and Definition R6, in particular, seems to be an appropriate way to define the
concept of an infinite random sequence. It is a precise, quantitative statement
that may well coincide with the intuitive idea of true randomness.

Historically, the development of these definitions was primarily
influenced by the quest of R. von Mises for a good definition of
“probability.” In Math. Zeitschrift 5 (1919), 52–99, von Mises proposed a
definition similar in spirit to Definition R5, although stated too strongly (like
our Definition R3) so that no sequences satisfying the conditions could
possibly exist. Many people noticed this discrepancy, and A. H. Copeland
[Amer. J. Math. 50 (1928), 535–552] suggested weakening von Mises’s
definition by substituting what he called “admissible numbers” (or Bernoulli
sequences). These are equivalent to ∞-distributed [0 . . 1) sequences in
which all entries Un have been replaced by 1 if Un < p or by 0 if Un ≥ p, for
a given probability p. Thus Copeland was essentially suggesting a return to
Definition R1. Then Abraham Wald showed that it is not necessary to weaken
von Mises’s definition so drastically, and he proposed substituting a
countable set of subsequence rules. In an important paper [Ergebnisse eines
math. Kolloquiums 8 (Vienna: 1937), 38–72], Wald essentially proved
Theorem W, although he made the erroneous assertion that the sequence
constructed by Algorithm W also satisfies the stronger condition that Pr(Un ∊
A) = measure of A, for all Lebesgue measurable A ⊆ [0 . . 1). We have
observed that no sequence can satisfy this property.

The concept of “computability” was still very much in its infancy when
Wald wrote his paper, and A. Church [Bull. Amer. Math. Soc. 46 (1940),
130–135] showed how the precise notion of “effective algorithm” could be
added to Wald’s theory to make his definitions completely rigorous. The
extension to Definition R6 was due essentially to A. N. Kolmogorov
[Sankhyā A25 (1963), 369–376], who proposed Definition Q2 for finite
sequences at the same time. Another definition of randomness for finite
sequences, somewhere “between” Definitions Q1 and Q2, had been
formulated many years earlier by A. S. Besicovitch [Math. Zeitschrift 39
(1934), 146–156].

The publications of Church and Kolmogorov considered only binary
sequences for which Pr(Xn = 1) = p for a given probability p. Our discussion
in this section has been slightly more general, since a [0 . . 1) sequence
essentially represents all p at once. The von Mises–Wald–Church definition
has been refined in yet another interesting way by J. V. Howard, Zeitschr. für
math. Logik und Grundlagen der Math. 21 (1975), 215–224.

Another important contribution was made by Donald W. Loveland
[Zeitschr. für math. Logik und Grundlagen der Math. 12 (1966), 279–294],
who discussed Definitions R4, R5, R6, and several intermediate concepts.
Loveland proved that there are R5-random sequences that do not satisfy R4,
thereby establishing the need for a stronger definition such as R6. In fact, he
defined a rather simple permutation 〈f(n)〉 of the nonnegative integers, and
an Algorithm W′ analogous to Algorithm W, such that

for every R5-random sequence 〈Un〉 produced by Algorithm W′ when it is
given an infinite set of subsequence rules Rk.

Although Definition R6 is intuitively much stronger than R4, it is
apparently not a simple matter to prove this rigorously, and for several years
it was an open question whether or not R4 implies R6. Finally Thomas
Herzog and James C. Owings, Jr., discovered how to construct a large family
of sequences that satisfy R4 but not R6. [See Zeitschr. für math. Logik und
Grundlagen der Math. 22 (1976), 385–389.]

Kolmogorov wrote another significant paper [Problemy Peredači
Informatsii 1 (1965), 3–11] in which he considered the problem of defining

the “information content” of a sequence, and this work led to Chaitin and
Martin-Löf’s interesting definition of finite random sequences via
“patternlessness.” [See IEEE Trans. IT-14 (1968), 662–664.] The ideas can
also be traced to R. J. Solomonoff, Information and Control 7 (1964), 1–22,
224–254; IEEE Trans. IT-24 (1978), 422–432; J. Computer and System
Sciences 55 (1997), 73–88.

For a philosophical discussion of random sequences, see K. R. Popper,
The Logic of Scientific Discovery (London, 1959), especially the interesting
construction on pages 162–163, which he first published in 1934.

Further connections between random sequences and recursive function
theory have been explored by D. W. Loveland, Trans. Amer. Math. Soc. 125
(1966), 497–510. See also C.-P. Schnorr [Zeitschr. Wahr. verw. Geb. 14
(1969), 27–35], who found strong relations between random sequences and
the “species of measure zero” defined by L. E. J. Brouwer in 1919.
Schnorr’s subsequent book Zufälligkeit und Wahrscheinlichkeit [Lecture
Notes in Math. 218 (Berlin: Springer, 1971)] gives a detailed treatment of
the entire subject of randomness and makes an excellent introduction to the
ever-growing advanced literature on the topic. Important developments
during the next two decades are surveyed in An Introduction to Kolmogorov
Complexity and Its Applications (Springer, 1993), by Ming Li and Paul M.
B. Vitányi.

The foundations of the theory of pseudorandom sequences and effective
information were laid by Manuel Blum, Silvio Micali, and Andrew Yao
[FOCS 23 (1982), 80–91, 112–117; SICOMP 13 (1984), 850–864], who
constructed the first explicit sequences that pass all feasible statistical tests.
Blum and Micali introduced the notion of a “hard-core bit,” a Boolean
function f such that f(x) and g(x) are easily computed although f(g[−1](x)) is
not; their paper was the origin of Lemma P4. Leonid Levin developed the
theory further [Combinatorica 7 (1987), 357–363], then he and Oded
Goldreich [STOC 21 (1989), 25–32] analyzed algorithms such as the
muddle-square method and showed that similar use of a mask yields hard-
core bits in many further cases. Finally Charles Rackoff refined the methods
of that paper by introducing and analyzing Algorithm L [see L. Levin, J.
Symbolic Logic 58 (1993), 1102–1103].

Many other authors have contributed to the theory—notably Impagliazzo,
Levin, Luby, and Håstad, who showed [SICOMP 28 (1999), 1364–1396] that
pseudorandom sequences can be constructed from any one-way function—but
such results are beyond the scope of this book. The practical implications of
theoretical work on pseudorandomness were first investigated empirically by
P. L’Ecuyer and R. Proulx, Proc. Winter Simulation Conf. 22 (1989), 467–
476.

If the numbers are not random, they are at least higgledy-
piggledy.

— GEORGE MARSAGLIA (1984)

Exercises

1. [10] Can a periodic sequence be equidistributed?
2. [10] Consider the periodic binary sequence 0, 0, 1, 1, 0, 0, 1, 1, Is

it 1-distributed? Is it 2-distributed? Is it 3-distributed?
3. [M22] Construct a periodic ternary sequence that is 3-distributed.
4. [HM14] Prove that Pr(S(n) and T(n)) + Pr(S(n) or T(n)) = Pr(S(n)) +

Pr(T (n)), for any two statements S(n) and T(n), provided that at least three
of the limits exist. For example, if a sequence is 2-distributed, we would
find that

 5. [HM22] Let Un = (2⌊lg(n+1)⌋/3) mod 1. What is Pr()?

6. [HM23] Let S1(n), S2(n), . . . be an infinite sequence of statements about
mutually disjoint events; that is, Si(n) and Sj(n) cannot simultaneously be true
if i ≠ j. Assume that Pr(Sj(n)) exists for each j ≥ 1. Show that Pr(Sj(n) is true
for some j ≥ 1) ≥ ∑j≥1 Pr(Sj(n)), and give an example to show that equality
need not hold.

7. [HM27] Let {Sij(n)} be a family of statements such that Pr(Sij(n)) exists
for all i, j ≥ 1. Assume that for all n > 0, Sij(n) is true for exactly one pair of
integers i, j. If ∑i,j≥1 Pr(Sij(n)) = 1, does it follow that “Pr(Sij(n) is true for
some j ≥ 1)” exists for all i ≥ 1, and that it equals ∑j≥1 Pr(Sij(n))?

8. [M15] Prove (13).
9. [HM20] Prove Lemma E. [Hint: Consider .]

 10. [HM22] Where was the fact that m divides q used in the proof of
Theorem C?
11. [M10] Use Theorem C to prove that if a sequence 〈Un〉 is ∞-
distributed, so is the subsequence 〈U2n〉.
12. [HM20] Show that a k-distributed sequence passes the “maximum-of-k
test,” in the following sense: Pr(u ≤ max(Un, Un+1, . . . , Un+k−1) < v) = vk

– uk.
 13. [HM27] Show that an ∞-distributed [0 . . 1) sequence passes the “gap

test” in the following sense: If 0 ≤ α < β ≤ 1 and p = β – α, let f(0) = 0, and
for n ≥ 1 let f(n) be the smallest integer m > f(n − 1) such that α ≤ Um < β;
then

14. [HM25] Show that an ∞-distributed sequence passes the “run test” in
the following sense: If f(0) = 0 and if, for n ≥ 1, f(n) is the smallest integer
m > f(n − 1) such that Um−1 > Um, then

 15. [HM30] Show that an ∞-distributed sequence passes the “coupon-
collector’s test” when there are only two kinds of coupons, in the
following sense: Let X1, X2, . . . be an ∞-distributed binary sequence. Let
f(0) = 0, and for n ≥ 1 let f(n) be the smallest integer m > f(n − 1) such that
{Xf(n−1)+1, . . . , Xm} is the set {0, 1}. Prove that Pr(f(n) – f(n − 1) = k) =
21–k, for k ≥ 2. (See exercise 7.)
16. [HM38] Does the coupon-collector’s test hold for ∞-distributed
sequences when there are more than two kinds of coupons? (See the
previous exercise.)
17. [HM50] If r is any given rational number, Franklin has proved that the
sequence 〈rn mod 1〉 is not 2-distributed. But is there any rational
number r for which this sequence is equidistributed? In particular, is the

sequence equidistributed when ? [See K. Mahler, Mathematika 4
(1957), 122–124.]

 18. [HM22] Prove that if U0, U1, . . . is k-distributed, so is the sequence
V0, V1, . . . , where Vn = ⌊nUn⌋/n.

19. [HM35] Consider a modification of Definition R4 that requires the
subsequences to be only 1-distributed instead of ∞-distributed. Is there a
sequence that satisfies this weaker definition, but that is not ∞-distributed?
(Is the weaker definition really weaker?)

 20. [HM36] (N. G. de Bruijn and P. Erd s.) The first n points of any [0 . .
1) sequence 〈Un〉 with U0 = 0 divide the interval [0 . . 1) into n
subintervals; let those subintervals have lengths .
Clearly , because . One way to measure
the equitability of the distribution of 〈Un〉 is to consider

a) What are and L for van der Corput’s sequence (29)?
b) Show that for 1 ≤ k ≤ n. Use this result to prove that

≥ 1/ln 2.
c) Prove that L ≤ 1/ln 4. [Hint: For each n there are numbers a1, . . . , a2n

such that for 1 ≤ k ≤ 2n. Moreover, each integer 2, . . . ,
n occurs at most twice in {a1, . . . , a2n}.]

d) Show that the sequence 〈Wn〉 defined by Wn = lg(2n + 1) mod 1
satisfies 1/In 2 > for all n; hence it achieves
the optimum and L.

21. [HM40] (L. H. Ramshaw.)
a) Continuing the previous exercise, is the sequence 〈Wn〉

equidistributed?
b) Show that 〈Wn〉 is the only [0 . . 1) sequence for which we have

 whenever 1 ≤ k ≤ n.

c) Let 〈fn(l1, . . . , ln)〉 be any sequence of continuous functions on the
sets of n-tuples {(l1, . . . , ln) | l1 ≥ ... ≥ ln and l1 + ... + ln = 1},
satisfying the following two properties:

[Examples are: .] Let

for the sequence 〈Wn〉. Show that for all n,
with respect to 〈Wn〉; also lim with
respect to every other [0 . . 1) sequence.

 22. [HM30] (Hermann Weyl.) Show that the [0 . . 1) sequence 〈Un〉 is
k-distributed if and only if

for every set of integers c1, c2, . . . , ck not all zero.

23. [M32] (a) Show that a [0 . . 1) sequence 〈Un〉 is k-distributed if and
only if all of the sequences 〈(c1Un +c2Un+1 + ... + ckUn+k−1) mod 1〉 are
1-distributed, whenever c1, c2, . . . , ck are integers not all zero. (b) Show
that a b-ary sequence 〈Xn〉 is k-distributed if and only if all of the
sequences 〈(c1Xn + c2Xn+1 + ... + ckXn+k−1) mod b〉 are 1-distributed,
whenever c1, c2, . . . , ck are integers with gcd(c1, . . . , ck) = 1.

 24. [M35] (J. G. van der Corput.) (a) Prove that the [0 . . 1) sequence
〈Un〉 is equidistributed whenever the sequences 〈(Un+k – Un) mod 1〉
are equidistributed for all k > 0. (b) Consequently 〈(αdnd + ... + α1n + α0)
mod 1〉 is equidistributed, when d > 0 and αd is irrational.

25. [HM20] A sequence is called a “white sequence” if all serial
correlations are zero; that is, if the equation in Corollary S is true for all k
≥ 1. (By Corollary S, an ∞-distributed sequence is white.) Show that if a
[0 . . 1) sequence is equidistributed, it is white if and only if

26. [HM34] (J. Franklin.) A white sequence, as defined in the previous
exercise, can definitely fail to be random. Let U0, U1, . . . be an ∞-
distributed sequence, and define the sequence V0, V1, . . . as follows:

where G is the set

Show that (a) V0, V1, . . . is equidistributed and white; (b)
. (This points out the weakness of the serial

correlation test.)
27. [HM48] What is the highest possible value for Pr(Vn > Vn+1) in an
equidistributed, white sequence? (D. Coppersmith has constructed such a
sequence achieving the value .)

 28. [HM21] Use the sequence (11) to construct a [0 . . 1) sequence that is
3-distributed, for which .
29. [HM34] Let X0, X1, . . . be a (2k)-distributed binary sequence. Show
that

 30. [M39] Construct a binary sequence that is (2k)-distributed, and for
which

(Therefore the inequality in the previous exercise is the best possible.)
31. [M30] Show that [0 . . 1) sequences exist that satisfy Definition R5, yet

 for all n > 0, where νn is the number of j < n for which .
(This might be considered a nonrandom property of the sequence.)
32. [M24] Given that 〈Xn〉 is a “random” b-ary sequence according to
Definition R5, and that R is a computable subsequence rule that specifies

an infinite subsequence 〈Xn〉R, show that the latter subsequence is not
only 1-distributed, it is “random” by Definition R5.
33. [HM22] Let 〈Urn〉 and 〈Usn〉 be infinite disjoint subsequences of
a sequence 〈Un〉. (Thus, r0 < r1 < r2 < ... and s0 < s1 < s2 < ... are
increasing sequences of integers and rm ≠ sn for any m, n.) Let 〈Utn〉 be
the combined subsequence, so that t0 < t1 < t2 < ... and the set {tn} = {rn} ∪
{sn}. Show that if Pr(Urn ∊ A) = Pr(Usn ∊ A) = p, then Pr(Utn ∊ A) = p.

 34. [M25] Define subsequence rules R1, R2, R3, . . . such that Algorithm W
can be used with these rules to give an effective algorithm to construct a [0
. . 1) sequence satisfying Definition R1.

 35. [HM35] (D. W. Loveland.) Show that if a binary sequence 〈Xn〉 is
R5-random, and if 〈sn〉 is any computable sequence as in Definition R4,
then and .

36. [HM30] Let 〈Xn〉 be a binary sequence that is “random” according
to Definition R6. Show that the [0 . . 1) sequence 〈Un〉 defined in binary
notation by the scheme

is random in the sense of Definition R6.
37. [M37] (D. Coppersmith.) Define a sequence that satisfies Definition
R4 but not Definition R5. [Hint: Consider changing U0, U1, U4, U9, . . . in a
truly random sequence.]
38. [M49] (A. N. Kolmogorov.) Given N, n, and ε, what is the smallest
number of algorithms in a set A such that no (n, ε)-random binary
sequences of length N exist with respect to A? (If exact formulas cannot be
given, can asymptotic formulas be found? The point of this problem is to
discover how close the bound (37) comes to being “best possible.”)
39. [HM45] (W. M. Schmidt.) Let Un be a [0 . . 1) sequence, and let νn(u)
be the number of nonnegative integers j ≤ n such that 0 ≤ Uj < u. Prove that
there is a positive constant c such that, for any N and for any [0 . . 1)
sequence 〈Un〉, we have

for some n and u with 0 ≤ n < N, 0 ≤ u < 1. (In other words, no [0 . . 1)
sequence can be too equidistributed.)

40. [M28] Complete the proof of Lemma P1.
41. [M21] Lemma P2 shows the existence of a prediction test, but its proof
relies on the existence of a suitable k without explaining how we could
find k constructively from A. Show that any algorithm A can be converted
into an algorithm A′ with T(A′) ≤ T(A) + O(N) that predicts BN from B1 . . .
BN−1 with probability at least on any
shift-symmetric N-source S.

 42. [M28] (Pairwise independence.)
a) Let X1, . . . , Xn be random variables having mean value μ = E Xj and

variance for 1 ≤ j ≤ n. Prove Chebyshev’s
inequality

under the additional assumption that E(XiXj) = (E Xi)(E Xj) whenever i
≠ j.

b) Let B be a random k × R binary matrix. Prove that if c and c′ are fixed
nonzero k-bit vectors, with c ≠ c′, the vectors cB and c′B are
independent random R-bit vectors (modulo 2).

c) Apply (a) and (b) to the analysis of Algorithm L.
43. [20] It seems just as difficult to find the factors of any fixed R-bit Blum
integer M as to find the factors of a random R-bit integer. Why then is
Theorem P stated for random M instead of fixed M?

 44. [16] (I. J. Good.) Can a valid table of random digits contain just one
misprint?

3.6. Summary
We have covered a fairly large number of topics in this chapter: How to
generate random numbers, how to test them, how to modify them in
applications, and how to derive theoretical facts about them. Perhaps the
main question in many readers’ minds will be, “What is the result of all this
theory? What is a simple, virtuous generator that I can use in my programs in
order to have a reliable source of random numbers?”

The detailed investigations in this chapter suggest that the following
procedure gives the simplest random number generator for the machine
language of most computers: At the beginning of the program, set an integer
variable X to some value X0. This variable X is to be used only for the
purpose of random number generation. Whenever a new random number is
required by the program, set

and use the new value of X as the random value. It is necessary to choose X0,
a, c, and m properly, and to use the random numbers wisely, according to the
following principles:

i) The “seed” number X0 may be chosen arbitrarily. If the program is run
several times and a different source of random numbers is desired each
time, set X0 to the last value attained by X on the preceding run; or (if
more convenient) set X0 to the current date and time. If the program may
need to be rerun later with the same random numbers (for example,
when debugging), be sure to print out X0 if it isn’t otherwise known.

ii) The number m should be large, say at least 230. It may conveniently be
taken as the computer’s word size, since this makes the computation of
(aX + c) mod m quite efficient. Section 3.2.1.1 discusses the choice of
m in more detail. The computation of (aX + c) mod m must be done
exactly, with no roundoff error.

iii) If m is a power of 2 (that is, if a binary computer is being used), pick
a so that a mod 8 = 5. If m is a power of 10 (that is, if a decimal
computer is being used), choose a so that a mod 200 = 21. This choice
of a together with the choice of c given below ensures that the random
number generator will produce all m different possible values of X

before it starts to repeat (see Section 3.2.1.2) and ensures high
“potency” (see Section 3.2.1.3).

iv) The multiplier a should preferably be chosen between .01m and .99m,
and its binary or decimal digits should not have a simple, regular
pattern. By choosing some haphazard constant like a = 3141592621
(which satisfies both of the conditions in (iii)), one almost always
obtains a reasonably good multiplier. Further testing should of course be
done if the random number generator is to be used extensively; for
example, there should be no large quotients when Euclid’s algorithm is
used to find the gcd of a and m (see Section 3.3.3). The multiplier
should pass the spectral test (Section 3.3.4) and several tests of Section
3.3.2, before it is considered to have a truly clean bill of health.

v) The value of c is immaterial when a is a good multiplier, except that c
must have no factor in common with m when m is the computer’s word
size. Thus we may choose c = 1 or c = a. (People who use c = 0
together with m = 2e are sacrificing two bits of accuracy and half of the
seed values just to save a few nanoseconds of running time; see exercise
3.2.1.2–9.)

vi) The least significant (right-hand) digits of X are not very random, so
decisions based on the number X should always be influenced primarily
by the most significant digits. It is generally best to think of X as a
random fraction X/m between 0 and 1, that is, to visualize X with a
radix point at its left, rather than to regard X as a random integer
between 0 and m − 1. To compute a random integer between 0 and k −
1, one should multiply by k and truncate the result. (Don’t divide by k;
see exercise 3.4.1–3.)

vii) An important limitation on the randomness of sequence (1) is
discussed in Section 3.3.4, where it is shown that the “accuracy” in t
dimensions will be only about one part in . Monte Carlo
applications requiring higher resolution can improve the randomness by
employing techniques discussed in Section 3.2.2.

viii) At most about m/1000 numbers should be generated; otherwise the
future will behave more and more like the past. If m = 232, this means
that a new scheme (for example, a new multiplier a) should be adopted
after every few million random numbers are consumed.

The comments above apply primarily to machine-language coding. Some
of the ideas work fine also in higher-level languages for programming; for
example, (1) becomes just ‘X=a*X+c’ in the C language, if X is of type
unsigned long and if m is the modulus of unsigned long arithmetic
(usually 232 or 264). But C gives us no good way to regard X as a fraction, as
required in (vi) above, unless we convert to double-precision floating point
numbers.

Another variant of (1) is therefore often used in languages like C: We
choose m to be a prime number near the largest easily computed integer, and
we let a be a primitive root of m; the appropriate increment c for this case is
zero. Then (1) can be implemented entirely with simple arithmetic on
numbers that remain between –m and +m, using the technique of exercise
3.2.1.1–9. For example, when a = 48271 and m = 231 – 1 (see line 20 of
Table 3.3.4–1), we can compute X ← aX mod m with the C code

here X is type long, and X should be initialized to a nonzero seed value less
than MM. Since MM is prime, the least-significant bits of X are just as random
as the most-significant bits, so the precautions of (vi) no longer need to be
taken.

If you need millions and millions of random numbers, you can combine
that routine with another, as in Eq. 3.3.4–(38), by writing some additional
code:

Like X, the variable Y needs to be initially nonzero. This code deviates
slightly from 3.3.4–(38) so that the output, Z, always lies strictly between 0
and 231 – 1, as recommended by Liviu Lalescu. The period length of the Z
sequence is about 74 quadrillion, and its numbers now have about twice as
many bits of accuracy as the X numbers do.

This method is portable and fairly simple, but not very fast. An
alternative scheme based on lagged Fibonacci sequences with subtraction
(exercise 3.2.2–23) is even more attractive, because it not only allows easy
portability between computers, it is considerably faster, and it delivers
random numbers of better quality because the t-dimensional accuracy is
probably good for t ≤ 100. Here is a C subroutine ran array(long aa[], int
n) that generates n new random numbers and places them into a given array
aa, using the recurrence

This recurrence is particularly well suited to modern computers. The value
of n must be at least 100; larger values like 1000 are recommended.

All information about numbers that will be generated by future calls to
ran array appears in ran x, so you can make a copy of that array in the midst
of a computation if you want to restart at the same point later without going
all the way back to the beginning of the sequence. The tricky thing about
using a recurrence like (2) is, of course, to get everything started properly in
the first place, by setting up suitable values of X0, . . . , X99. The following

subroutine ran start (long seed) initializes the generator nicely when given
any seed number between 0 and 230 – 3 = 1,073,741,821 inclusive:

(This program incorporates improvements to the author’s original ran start
routine, recommended by Richard Brent and Pedro Gimeno in November
2001.)

The somewhat curious maneuverings of ran start are explained in
exercise 9, which proves that the sequences of numbers generated from
different starting seeds are independent of each other: Every block of 100
consecutive values Xn, Xn+1, . . . , Xn+99 in the subsequent output of ran
array will be distinct from the blocks that occur with another seed.

(Strictly speaking, this is known to be true only when n < 270; but there are
fewer than 255 nanoseconds in a year.) Several processes can therefore start
in parallel with different seeds and be sure that they are doing independent
calculations; different groups of scientists working on a problem in different
computer centers can be sure that they are not duplicating the work of others
if they restrict themselves to disjoint sets of seeds. Thus, more than one
billion essentially disjoint batches of random numbers are provided by the
single routines ran array and ran start. And if that is not enough, you can
replace the program parameters 100 and 37 by other values from Table
3.2.2–1.

These C routines use the bitwise-and operation ‘&’ for efficiency, so they
are not strictly portable unless the computer uses two’s complement
representation for integers. Almost all modern computers are based on two’s
complement arithmetic, but ‘&’ is not really necessary for this algorithm.
Exercise 10 shows how to get exactly the same sequences of numbers in
FORTRAN, using no such tricks. Although the programs illustrated here are
designed to generate 30-bit integers, they are easily modified to generate
random 52-bit fractions between 0 and 1, on computers that have reliable
floating point arithmetic; see exercise 11.

You may wish to include ran array in a library of subroutines, or you
may find that somebody else has already done so. One way to check whether
an implementation of ran array and ran start conforms with the code above
is to run the following rudimentary test program:

The printed output should be 995235265 (twice).
Caution: The numbers generated by ran array fail the birthday spacings

test of Section 3.3.2J, and they have other deficiencies that sometimes show
up in high-resolution simulations (see exercises 3.3.2–31 and 3.3.2–35). One

way to avoid the birthday spacings problem is simply to use only half of the
numbers (skipping the odd-numbered elements); but that doesn’t cure the
other problems. An even better procedure is to follow Martin Lüscher’s
suggestion, discussed in Section 3.2.2: Use ran array to generate, say, 1009
numbers, but use only the first 100 of these. (See exercise 15.) This method
has modest theoretical support and no known defects. Most users will not
need such a precaution, but it is definitely less risky, and it allows a
convenient tradeoff between randomness and speed.

A great deal is known about linear congruential sequences like (1), but
comparatively little has yet been proved about the randomness properties of
lagged Fibonacci sequences like (2). Both approaches seem to be reliable in
practice, if they are used with the caveats already stated.

When this chapter was first written in the late 1960s, a truly horrible
random number generator called RANDU was commonly used on most of the
world’s computers (see Section 3.3.4). The authors of many contributions to
the science of random number generation have often been unaware that
particular methods they were advocating would prove to be inadequate. A
particularly noteworthy example was the experience of Alan M. Ferrenberg
and his colleagues, reported in Physical Review Letters 69 (1992), 3382–
3384: They tested their algorithms for a three-dimensional problem by
considering first a related two-dimensional problem with a known answer,
and discovered that supposedly super-quality modern random number
generators gave wrong results in the fifth decimal place. By contrast, an old-
fashioned run-of-the-mill linear congruential generator, X ← 16807X mod
(231 – 1), worked fine. Perhaps further research will show that even the
random number generators recommended here are unsatisfactory; we hope
this is not the case, but the history of the subject warns us to be cautious. The
most prudent policy for a person to follow is to run each Monte Carlo
program at least twice using quite different sources of random numbers,
before taking the answers of the program seriously; this will not only give an
indication of the stability of the results, it also will guard against the danger
of trusting in a generator with hidden deficiencies. (Every random number
generator will fail in at least one application.)

Excellent bibliographies of the pre-1972 literature on random number
generation have been compiled by Richard E. Nance and Claude Overstreet,
Jr., Computing Reviews 13 (1972), 495–508, and by E. R. Sowey,

International Stat. Review 40 (1972), 355–371. The period 1972–1984 is
covered by Sowey in International Stat. Review 46 (1978), 89–102; J.
Royal Stat. Soc. A149 (1986), 83–107. Subsequent developments are
discussed by Shu Tezuka, Uniform Random Numbers (Boston: Kluwer,
1995).

For a detailed study of the use of random numbers in numerical analysis,
see J. M. Hammersley and D. C. Handscomb, Monte Carlo Methods
(London: Methuen, 1964). This book shows that some numerical methods are
enhanced by using numbers that are “quasirandom,” designed specifically for
a certain purpose (not necessarily satisfying the statistical tests we have
discussed). The origins of Monte Carlo methods for computers are discussed
by N. Metropolis and R. Eckhardt in Stanislaw Ulam 1909–1984, a special
issue of Los Alamos Science 15 (1987), 125–137.

Every reader is urged to work exercise 6 in the following set of
problems.

Almost all good computer programs contain at least one
random-number generator.

— DONALD E. KNUTH, Seminumerical Algorithms (1969)

Exercises

1. [21] Write a MIX subroutine with the following characteristics, using
method (1):

 2. [15] Some people have been afraid that computers will someday take
over the world; but they are reassured by the statement that a machine
cannot do anything really new, since it is only obeying the commands of its
master, the programmer. Lady Lovelace wrote in 1844, “The Analytical
Engine has no pretensions to originate anything. It can do whatever we
know how to order it to perform.” Her statement has been elaborated
further by many philosophers. Discuss this topic, with random number
generators in mind.

3. [32] (A dice game.) Write a program that simulates a roll of two dice,
each of which takes on the values 1, 2, . . . , 6 with equal probability. If the
total is 7 or 11 on the first roll, the game is won; a total of 2, 3, or 12 loses;
and on any other total, call that total the “point” and continue rolling dice
until either a 7 occurs (a loss) or the point occurs again (a win).

Play ten games. The result of each roll of the dice should be printed in
the form m n, where m and n are the contents of the two dice, followed by
some appropriate comment (like “snake eyes” or “little Joe” or “the hard
way”, etc.).

4. [40] (Solitaire or patience.) Some people spend a lot of valuable time
playing card games of solitaire, and perhaps automation will make an
important inroad in this area. Write a program that (i) shuffles a simulated
deck of cards; (ii) plays some common game of solitaire based on the order
of the cards in the deck; and (iii) displays the result of the game, showing
how close the program came to winning. Cumulative statistics should be
kept. The program might be set up to “cheat” upon request.

5. [46] (Creative writing by computer.) A television program entitled
“The Thinking Machine,” broadcast by the CBS television network on
October 26, 1960, featured (among other things) two Western-style playlets
that were written by a computer program. Here are the two scripts as they
were printed out by the computer:
Saga #1. (The gun is in the right hand; the money is in the left hand; the glass
is on the table; the bottle is on the table; the holster is on the robber; the
sheriff’s gun is in the sheriff’s right hand; the sheriff’s holster is on the
sheriff.)
ROBBER: (The robber is at the window.) Go to door; open door; go thru

door; close door; go to corner; put money down at corner; go to
table; put gun on table; sit and fidget; sit at table; pick up glass with
right hand (empty); put glass on table; pick up bottle with right
hand; pour; put bottle on table; pick up glass with right hand; take a
drink from glass; put glass on table; pick up bottle with right hand;
sit at table; sit at table; go to corner; go to window; go to table; put
bottle on table; sit and fidget; sit at table; sit and fidget; go to
window; go to table; pick up glass with right hand.

SHERIFF: (The sheriff is at the window.) See robber; (robber sees sheriff);
go to door.

ROBBER: Put glass on table; pick up gun with right hand; check gun.
SHERIFF: Wait; open door; see robber; (robber sees sheriff); go thru door.
ROBBER: Go to window; aim; fire; SHERIFF NICKED.
SHERIFF: Go to window; aim; fire; MISSED; go to door; go to window.
ROBBER: Go to door; aim; aim.
SHERIFF: Aim; fire; MISSED.
ROBBER: Fire; SHERIFF NICKED.
SHERIFF: Go to door; aim; fire; MISSED; go thru door; aim.
ROBBER: Aim; fire; MISSED; aim; fire; MISSED.
SHERIFF: Fire; MISSED; go to window; aim; fire; MISSED.
ROBBER: Aim; fire; MISSED; aim; fire; MISSED; aim; fire; SHERIFF

NICKED.
SHERIFF: Aim; fire; ROBBER HIT.
ROBBER: Drop gun; robber dies.
SHERIFF: Put gun in holster; go to table; pick up glass with right hand

(empty); take glass from right hand with left hand; pick up bottle
with right hand; pour; put bottle on table; take glass from left hand
with right hand; take a drink from glass; take glass from right hand
with left hand; pick up bottle with right hand; pour; put bottle on
table; take glass from left hand with right hand; take a drink from
glass; put glass on table; go to corner; pick up money with right
hand; go to door; go thru door; close door. CURTAIN.

Saga #2. (The gun is in the right hand; the money is in the left hand; the glass
is on the table; the bottle is on the table; the holster is on the robber; the
sheriff’s gun is in the sheriff’s right hand; the sheriff’s holster is on the
sheriff.)
ROBBER: (The robber is at the window.) Go to door; open door; go thru

door; close door; go to corner; put money down at corner; go to
window; put gun down at window; lean on window and look; lean
on window and look; go to corner; count money; go to table; pick
up glass with right hand (empty); take glass from right hand with
left hand; pick up bottle with right hand; pour; put bottle on table;
take glass from left hand with right hand; take a drink from glass;
put glass on table; pick up bottle with right hand; pour; go to
corner; put bottle down at corner; go to window; pick up gun with
right hand; check gun; put gun in holster; go to table; pick up glass
with right hand; take a drink from glass; go to window; put glass
down at window.

SHERIFF: (The sheriff is at the window.) See robber; (robber sees sheriff);
go to door.

ROBBER: Take gun from holster with right hand; check gun; go to door;
check gun; put gun down at door.

SHERIFF: Open door; see robber; (robber sees sheriff); go thru door; go to
window.

ROBBER: Pick up gun with right hand.
SHERIFF: Go to table.
ROBBER: Aim; fire; MISSED; aim; fire; SHERIFF HIT; blow out barrel; put

gun in holster.
SHERIFF: Drop gun; sheriff dies.
ROBBER: Go to corner; pick up money with right hand; go to door; go thru

door; close door. CURTAIN.
A careful reading of these scripts reveals the highly intense drama

present here. The computer program was careful to keep track of the
locations of each player, the contents of his hands, etc. Actions taken by the
players were random, governed by certain probabilities; the probability of a
foolish action was increased depending on how much that player had had to
drink and on how often he had been nicked by a shot. The reader will be able
to deduce further properties of the program by studying the sample scripts.

Of course, even the best scripts are rewritten before they are produced,
and this is especially true when an inexperienced writer has prepared the
original draft. Here are the scripts just as they were actually used in the
show:
Saga #1. Music up.
MS Robber peering thru window of shack.
CU Robber’s face.
MS Robber entering shack.
CU Robber sees whiskey bottle on table.
CU Sheriff outside shack.
MS Robber sees sheriff.
LS Sheriff in doorway over shoulder of robber, both draw.
MS Sheriff drawing gun.
LS Shooting it out. Robber gets shot.
MS Sheriff picking up money bags.

MS Robber staggering.
MS Robber dying. Falls across table, after trying to take last shot at sheriff.
MS Sheriff walking thru doorway with money.
MS of robber’s body, now still, lying across table top. Camera dollies back.
(Laughter)
Saga #2. Music up.
CU of window. Robber appears.
MS Robber entering shack with two sacks of money.
MS Robber puts money bags on barrel.
CU Robber—sees whiskey on table.
MS Robber pouring himself a drink at table. Goes to count money. Laughs.
MS Sheriff outside shack.
MS thru window.
MS Robber sees sheriff thru window.
LS Sheriff entering shack. Draw. Shoot it out.
CU Sheriff. Writhing from shot.
M/2 shot Sheriff staggering to table for a drink . . . falls dead.
MS Robber leaves shack with money bags.*

* © 1962 by Columbia Broadcasting System, Inc. All Rights Reserved. Used by permission. For
further information, see J. E. Pfeiffer, The Thinking Machine (New York: J. B. Lippincott, 1962).

[Note: CU = “close up”, MS = “medium shot”, etc. The details above were
kindly furnished to the author by Thomas H. Wolf, producer of the television
show, who suggested the idea of a computer-written playlet in the first place,
and also by Douglas T. Ross and Harrison R. Morse who produced the
computer program.]

In the summer of 1952, Christopher Strachey had used the hardware
random number generator of the Ferranti Mark I to compose the following
letter:

Honey Dear
My sympathetic affection beautifully attracts your affectionate

enthusiasm. You are my loving adoration: my breathless adoration. My

fellow feeling breathlessly hopes for your dear eagerness. My lovesick
adoration cherishes your avid ardour.

Yours wistfully,
M. U. C.

[Encounter 3 (1954), 4, 25–31; another example appears in the article on
Electronic Computers in the 64th edition of Pears Cyclopedia (London,
1955), 190–191.]

The reader will undoubtedly have many ideas about how to teach a
computer to do creative writing; and that is the point of this exercise.
 6. [40] Look at the subroutine library of each computer installation in
your organization, and replace the random number generators by good ones.
Try to avoid being too shocked at what you find.
 7. [M40] A programmer decided to encipher his files by using a linear
congruential sequence 〈Xn〉 of period 232 generated by (1) with m = 232.
He took the most significant bits ⌊Xn/216⌋ and exclusive-or’ed them onto his
data, but kept the parameters a, c, and X0 secret.

Show that this isn’t a very secure scheme, by devising a method that
deduces the multiplier a and the first difference X1 – X0 in a reasonable
amount of time, given only the values of ⌊Xn/216⌋ for 0 ≤ n < 150.
8. [M15] Suggest a good way to test whether an implementation of linear

congruential generators is working properly.
9. [HM32] Let X0, X1, . . . be the numbers produced by ran array after ran

start has initialized the generation process with seed s, and consider the
polynomials

a) Prove that Pn(z) ≡ zh(s)–n (modulo 2 and z100 + z37 + 1), for some
exponent h(s).

b) Express h(s) in terms of the binary representation of s.
c) Prove that if , . . . is the sequence of numbers produced by the

same routines from the seed s′ ≠ s, we have (modulo
2) for 0 ≤ k < 100 only if |n – n′| ≥ 270 – 1.

10. [22] Convert the C code for ran array and ran start to FORTRAN 77
subroutines that generate exactly the same sequences of numbers.

 11. [M25] Assuming that floating point arithmetic on numbers of type
double is properly rounded in the sense of Section 4.2.2 (hence exact
when the values are suitably restricted), convert the C routines ran array
and ran start to similar programs that deliver double-precision random
fractions in the range [0 . . 1), instead of 30-bit integers.

 12. [M21] What random number generator would be suitable for a
minicomputer that does arithmetic only on integers in the range [–32768 . .
32767]?
13. [M25] Compare the subtract-with-borrow generators of exercise
3.2.1.1–12 to the lagged Fibonacci generators implemented in the
programs of this section.

 14. [M35] (The future versus the past.) Let Xn = (Xn−37 + Xn−100) mod 2
and consider the sequence

(This sequence corresponds to calling ran array(a, 200) repeatedly and
looking only at the least significant bits, after discarding half of the
elements.) The following experiment was repeated one million times using
the sequence 〈Yn〉: “Generate 100 random bits; then if 60 or more of them
were 0, generate one more bit and print it.” The result was to print 14527 0s
and 13955 1s; but the probability that 28482 random bits contain at most
13955 1s is only about .000358.

Give a mathematical explanation why so many 0s were output.
 15. [25] Write C code that makes it convenient to generate the random

integers obtained from ran array by discarding all but the first 100 of
every 1009 elements, as recommended in the text.

Chapter Four. Arithmetic

Seeing there is nothing (right well beloued Students in the
Mathematickes) that is so troublesome to Mathematicall

practise, nor that doth more molest and hinder Calculators,
then the Multiplications, Diuisions, square and cubical

Extractions of great numbers, which besides the tedious
expence of time, are for the most part subiect to many

slippery errors. I began therefore to consider in my minde,
by what certaine and ready Art I might remoue those

hindrances.
— JOHN NEPAIR [NAPIER] (1616)

I do hate sums. There is no greater mistake than to call
arithmetic an exact science. There are . . . hidden laws of

Number which it requires a mind like mine to perceive. For
instance, if you add a sum from the bottom up, and then

again from the top down, the result is always different.
— M. P. LA TOUCHE (1878)

I cannot conceive that anybody will require multiplications at
the rate of 40,000, or even 4,000 per hour; such a

revolutionary change as the octonary scale should not be
imposed upon mankind in general for the sake of a few

individuals.
— F. H. WALES (1936)

Most numerical analysts have no interest in arithmetic.
— B. PARLETT (1979)

The chief purpose of this chapter is to make a careful study of the four basic
processes of arithmetic: addition, subtraction, multiplication, and division.

Many people regard arithmetic as a trivial thing that children learn and
computers do, but we will see that arithmetic is a fascinating topic with many
interesting facets. It is important to make a thorough study of efficient
methods for calculating with numbers, since arithmetic underlies so many
computer applications.

Arithmetic is, in fact, a lively subject that has played an important part in
the history of the world, and it still is undergoing rapid development. In this
chapter, we shall analyze algorithms for doing arithmetic operations on many
types of quantities, such as “floating point” numbers, extremely large
numbers, fractions (rational numbers), polynomials, and power series; and
we will also discuss related topics such as radix conversion, factoring of
numbers, and the evaluation of polynomials.

4.1. Positional Number Systems
The way we do arithmetic is intimately related to the way we represent the
numbers we deal with, so it is appropriate to begin our study of the subject
with a discussion of the principal means for representing numbers.

Positional notation using base b (or radix b) is defined by the rule

for example, . Our
conventional decimal number system is, of course, the special case when b is
ten, and when the a’s are chosen from the “decimal digits” 0, 1, 2, 3, 4, 5, 6,
7, 8, 9; in this case the subscript b in (1) may be omitted.

The simplest generalizations of the decimal number system are obtained
when we take b to be an integer greater than 1 and when we require the a’s to
be integers in the range 0 ≤ ak < b. This gives us the standard binary (b = 2),
ternary (b = 3), quaternary (b = 4), quinary (b = 5), . . . number systems. In
general, we could take b to be any nonzero number, and we could choose the
a’s from any specified set of numbers; this leads to some interesting
situations, as we shall see.

The dot that appears between a0 and a–1 in (1) is called the radix point.
(When b = 10, it is also called the decimal point, and when b = 2, it is
sometimes called the binary point, etc.) Continental Europeans often use a

comma instead of a dot to denote the radix point; the English formerly used a
raised dot.

The a’s in (1) are called the digits of the representation. A digit ak for
large k is often said to be “more significant” than the digits ak for small k;
accordingly, the leftmost or “leading” digit is referred to as the most
significant digit and the rightmost or “trailing” digit is referred to as the
least significant digit. In the standard binary system the binary digits are
often called bits; in the standard hexadecimal system (radix sixteen) the
hexadecimal digits zero through fifteen are usually denoted by

The historical development of number representations is a fascinating
story, since it parallels the development of civilization itself. We would be
going far afield if we were to examine this history in minute detail, but it will
be instructive to look at its main features here.

The earliest forms of number representations, still found in primitive
cultures, are generally based on groups of fingers, piles of stones, etc.,
usually with special conventions about replacing a larger pile or group of,
say, five or ten objects by one object of a special kind or in a special place.
Such systems lead naturally to the earliest ways of representing numbers in
written form, as in the systems of Babylonian, Egyptian, Greek, Chinese, and
Roman numerals; but such notations are comparatively inconvenient for
performing arithmetic operations except in the simplest cases.

During the twentieth century, historians of mathematics have made
extensive studies of early cuneiform tablets found by archæologists in the
Middle East. These studies show that the Babylonian people actually had
two distinct systems of number representation: The numbers used in everyday
business transactions were written in a notation based on grouping by tens,
hundreds, etc.; this notation was inherited from earlier Mesopotamian
civilizations, and large numbers were seldom required. When more difficult
mathematical problems were considered, however, Babylonian
mathematicians made extensive use of a sexagesimal (radix sixty) positional
notation that was highly developed at least as early as 1750 B.C. This
notation was unique in that it was actually a floating point form of
representation with exponents omitted; the proper scale factor or power of

sixty was to be supplied by the context, so that, for example, the numbers 2,
120, 7200, and were all written in an identical manner. The notation was
especially convenient for multiplication and division, using auxiliary tables,
since radix-point alignment had no effect on the answer. As examples of this
Babylonian notation, consider the following excerpts from early tables: The
square of 30 is 15 (which may also be read, “The square of is ”); the
reciprocal of 81 = (1 21)60 is (44 26 40)60; and the square of the latter is (32
55 18 31 6 40)60. The Babylonians had a symbol for zero, but because of
their “floating point” philosophy, it was used only within numbers, not at the
right end to denote a scale factor. For the interesting story of early
Babylonian mathematics, see O. Neugebauer, The Exact Sciences in
Antiquity (Princeton, N. J.: Princeton University Press, 1952), and B. L. van
der Waerden, Science Awakening, translated by A. Dresden (Groningen: P.
Noordhoff, 1954); see also D. E. Knuth, CACM 15 (1972), 671–677; 19
(1976), 108.

Fixed point positional notation was apparently first conceived by the
Maya Indians in central America some 2000 years ago; their radix-20 system
was highly developed, especially in connection with astronomical records
and calendar dates. They began to use a written sign for zero about A.D. 200.
But the Spanish conquerors destroyed nearly all of the Maya books on history
and science, so we have comparatively little knowledge about the degree of
sophistication that native Americans had reached in arithmetic. Special-
purpose multiplication tables have been found, but no examples of division
are known. [See J. Eric S. Thompson, Contrib. to Amer. Anthropology and
History 7 (Carnegie Inst. of Washington, 1941), 37–67; J. Justeson, “Pratiche
di calcolo nell’antica mesoamerica,” Storia della Scienza 2 (Rome: Istituto
della Enciclopedia Italiana, 2001), 976–990.]

Several centuries before Christ, the Greek people employed an early
form of the abacus to do their arithmetical calculations, using sand and/or
pebbles on a board that had rows or columns corresponding in a natural way
to our decimal system. It is perhaps surprising to us that the same positional
notation was never adapted to written forms of numbers, since we are so
accustomed to decimal reckoning with pencil and paper; but the greater ease
of calculating by abacus (since handwriting was not a common skill, and
since abacus users need not memorize addition and multiplication tables)
probably made the Greeks feel it would be silly even to suggest that

computing could be done better on “scratch paper.” At the same time Greek
astronomers did make use of a sexagesimal positional notation for fractions,
which they had learned from the Babylonians.

Our decimal notation, which differs from the more ancient forms
primarily because of its fixed radix point, together with its symbol for zero to
mark an empty position, was developed first in India within the Hindu
culture. The exact date when this notation first appeared is quite uncertain;
about A.D. 600 seems to be a good guess. Hindu science was highly
developed at that time, particularly in astronomy. The earliest known Hindu
manuscripts that show decimal notation have numbers written backwards
(with the most significant digit at the right), but soon it became standard to
put the most significant digit at the left.

The Hindu principles of decimal arithmetic were brought to Persia about
A.D. 750, as several important works were translated into Arabic; a
picturesque account of this development is given in a Hebrew document by
Abraham Ibn Ezra, which has been translated into English in AMM 25
(1918), 99–108. Not long after this, al-Khwārizmī wrote his Arabic textbook
on the subject. (As noted in Chapter 1, our word “algorithm” comes from al-
Khwārizmī’s name.) His work was translated into Latin and was a strong
influence on Leonardo Pisano (Fibonacci), whose book on arithmetic (A.D.
1202) played a major role in the spreading of Hindu-Arabic numerals into
Europe. It is interesting to note that the left-to-right order of writing numbers
was unchanged during these two transitions, although Arabic is written from
right to left while Hindu and Latin scholars generally wrote from left to right.
A detailed account of the subsequent propagation of decimal numeration and
arithmetic into all parts of Europe during the period 1200–1600 has been
given by David Eugene Smith in his History of Mathematics 1 (Boston: Ginn
and Co., 1923), Chapters 6 and 8.

Decimal notation was applied at first only to integer numbers, not to
fractions. Arabic astronomers, who required fractions in their star charts and
other tables, continued to use the notation of Ptolemy (the famous Greek
astronomer), a notation based on sexagesimal fractions. This system still
survives today in our trigonometric units of degrees, minutes, and seconds,
and also in our units of time, as a remnant of the original Babylonian
sexagesimal notation. Early European mathematicians also used sexagesimal

fractions when dealing with noninteger numbers; for example, Fibonacci
gave the value

as an approximation to the root of the equation x3 + 2x2 + 10x = 20. (The
correct answer is 1◦ 22′ 7″ 42″′ 33IV 4V 38VI 30VII 50VIII 15IX 43X. . . .)

The use of decimal notation also for tenths, hundredths, etc., in a similar
way seems to be a comparatively minor change; but, of course, it is hard to
break with tradition, and sexagesimal fractions have an advantage over
decimal fractions because numbers such as can be expressed exactly, in a
simple way.

Chinese mathematicians—who never used sexagesimals—were
apparently the first people to work with the equivalent of decimal fractions,
although their numeral system (lacking zero) was not originally a positional
number system in the strict sense. Chinese units of weights and measures
were decimal, so that Tsu Ch’ung-Chih (who died in A.D. 500 or 501) was
able to express an approximation to π in the following form:

Here chang, . . . , hu are units of length; 1 hu (the diameter of a silk thread)
equals 1/10 miao, etc. The use of such decimal-like fractions was fairly
widespread in China after about 1250.

An embryonic form of truly positional decimal fractions appeared in a
10th-century arithmetic text, written in Damascus by an obscure
mathematician named al-Uqlīdisī (“the Euclidean”). He occasionally marked
the place of a decimal point, for example in connection with a problem about
compound interest, the computation of 135 times (1.1)n for 1 ≤ n ≤ 5. [See A.
S. Saidan, The Arithmetic of al-Uqlīdisī (Dordrecht: D. Reidel, 1975), 110,
114, 343, 355, 481–485.] But he did not develop the idea very fully, and his
trick was soon forgotten. Al-Samaw’al of Baghdad and Baku, writing in
1172, understood that but he had no convenient way
to write such approximations down. Several centuries passed before decimal
fractions were reinvented by a Persian mathematician, al-Kāshī, who died in
1429. Al-Kāshī was a highly skillful calculator, who gave the value of 2π as
follows, correct to 16 decimal places:

This was by far the best approximation to π known until Ludolph van Ceulen
laboriously calculated 35 decimal places during the period 1586–1610.

Decimal fractions began to appear sporadically in Europe; for example,
a so-called “Turkish method” was used to compute 153.5 × 16.25 =
2494.375. Giovanni Bianchini developed them further, with applications to
surveying, prior to 1450; but like al-Uqlīdisī, his work seems to have had
little influence. Christof Rudolff and François Viète suggested the idea again
in 1525 and 1579. Finally, an arithmetic text by Simon Stevin, who
independently hit on the idea of decimal fractions in 1585, became popular.
Stevin’s work, and the discovery of logarithms soon afterwards, made
decimal fractions commonplace in Europe during the 17th century. [For
further remarks and references, see D. E. Smith, History of Mathematics 2
(1925), 228–247; V. J. Katz, A History of Mathematics (1993), 225–228,
345–348; and G. Rosińska, Quart. J. Hist. Sci. Tech. 40 (1995), 17–32.]

The binary system of notation has its own interesting history. Many
primitive tribes in existence today are known to use a binary or “pair”
system of counting (making groups of two instead of five or ten), but they do
not count in a true radix-2 system, since they do not treat powers of 2 in a
special manner. See The Diffusion of Counting Practices by Abraham
Seidenberg, Univ. of Calif. Publ. in Math. 3 (1960), 215–300, for interesting
details about primitive number systems. Another “primitive” example of an
essentially binary system is the conventional musical notation for expressing
rhythms and durations of time.

Nondecimal number systems were discussed in Europe during the
seventeenth century. For many years astronomers had occasionally used
sexagesimal arithmetic both for the integer and the fractional parts of
numbers, primarily when performing multiplication [see John Wallis,
Treatise of Algebra (Oxford: 1685), 18–22, 30]. The fact that any integer
greater than 1 could serve as radix was apparently first stated in print by
Blaise Pascal in De Numeris Multiplicibus, which was written about 1658
[see Pascal’s Œuvres Complètes (Paris: Éditions du Seuil, 1963), 84–89].
Pascal wrote, “Denaria enim ex instituto hominum, non ex necessitate naturæ
ut vulgus arbitratur, et sane satis inepte, posita est”; i.e., “The decimal system

has been established, somewhat foolishly to be sure, according to man’s
custom, not from a natural necessity as most people think.” He stated that the
duodecimal (radix twelve) system would be a welcome change, and he gave
a rule for testing a duodecimal number for divisibility by nine. Erhard Weigel
tried to drum up enthusiasm for the quaternary (radix four) system in a series
of publications beginning in 1673. A detailed discussion of radix-twelve
arithmetic was given by Joshua Jordaine, Duodecimal Arithmetick (London:
1687).

Although decimal notation was almost exclusively used for arithmetic
during that era, other systems of weights and measures were rarely if ever
based on multiples of 10, and business transactions required a good deal of
skill in adding quantities such as pounds, shillings, and pence. For centuries
merchants had therefore learned to compute sums and differences of
quantities expressed in peculiar units of currency, weights, and measures;
thus they were doing arithmetic in nondecimal number systems. The common
units of liquid measure in England, dating from the 13th century or earlier,
are particularly noteworthy:

Quantities of liquid expressed in gallons, pottles, quarts, pints, etc. were
essentially written in binary notation. Perhaps the true inventors of binary
arithmetic were British wine merchants!

The first known appearance of pure binary notation was about 1605 in
some unpublished manuscripts of Thomas Harriot (1560–1621). Harriot was
a creative man who first became famous by coming to America as a
representative of Sir Walter Raleigh. He invented (among other things) a
notation like that now used for “less than” and “greater than” relations; but
for some reason he chose not to publish many of his discoveries. Excerpts
from his notes on binary arithmetic have been reproduced by John W. Shirley,

Amer. J. Physics 19 (1951), 452–454; Harriot’s discovery of binary notation
was first cited by Frank Morley in The Scientific Monthly 14 (1922), 60–66.

The first published treatment of the binary system appeared in the work
of a prominent Cistercian bishop, Juan Caramuel de Lobkowitz, Mathesis
Biceps 1 (Campaniæ: 1670), 45–48. Caramuel discussed the representation
of numbers in radices 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, and 60 at some length, but
gave no examples of arithmetic operations in nondecimal systems except in
the sexagesimal case.

Ultimately, an article by G. W. Leibniz [Mémoires de l’Académie Royale
des Sciences (Paris, 1703), 110–116], which illustrated binary addition,
subtraction, multiplication, and division, really brought binary notation into
the limelight, and his article is usually referred to as the birth of radix-2
arithmetic. Leibniz later referred to the binary system quite frequently. He did
not recommend it for practical calculations, but he stressed its importance in
number-theoretical investigations, since patterns in number sequences are
often more apparent in binary notation than they are in decimal; he also saw a
mystical significance in the fact that everything is expressible in terms of
zero and one. Leibniz’s unpublished manuscripts show that he had been
interested in binary notation as early as 1679, when he referred to it as a
“bimal” system (analogous to “decimal”).

A careful study of Leibniz’s early work with binary numbers has been
made by Hans J. Zacher, Die Hauptschriften zur Dyadik von G. W. Leibniz
(Frankfurt am Main: Klostermann, 1973). Zacher points out that Leibniz was
familiar with John Napier’s so-called “local arithmetic,” a way for
calculating with stones that amounts to using a radix-2 abacus. [Napier had
published the idea of local arithmetic as part three of his little book
Rabdologiæ in 1617; it may be called the world’s first “binary computer,”
and it is surely the world’s cheapest, although Napier felt that it was more
amusing than practical. See Martin Gardner’s discussion in Knotted
Doughnuts and Other Mathematical Entertainments (New York: Freeman,
1986), Chapter 8.]

It is interesting to note that the important concept of negative powers to
the right of the radix point was not yet well understood at that time. Leibniz
asked James Bernoulli to calculate π in the binary system, and Bernoulli
“solved” the problem by taking a 35-digit approximation to π, multiplying it
by 1035, and then expressing this integer in the binary system as his answer.

On a smaller scale this would be like saying that π ≈ 3.14, and (314)10 =
(100111010)2; hence π in binary is 100111010! [See Leibniz, Math.
Schriften, edited by C. I. Gerhardt, 3 (Halle: 1855), 97; two of the 118 bits
in the answer are incorrect, due to computational errors.] The motive for
Bernoulli’s calculation was apparently to see whether any simple pattern
could be observed in this representation of π.

Charles XII of Sweden, whose talent for mathematics perhaps exceeded
that of all other kings in the history of the world, hit on the idea of radix-8
arithmetic about 1717. This was probably his own invention, although he had
met Leibniz briefly in 1707. Charles felt that radix 8 or 64 would be more
convenient for calculation than the decimal system, and he considered
introducing octal arithmetic into Sweden; but he died in battle before
decreeing such a change. [See The Works of Voltaire 21 (Paris: E. R.
DuMont, 1901), 49; E. Swedenborg, Gentleman’s Magazine 24 (1754),
423–424.]

Octal notation was proposed also in colonial America before 1750, by
the Rev. Hugh Jones, professor at the College of William and Mary [see
Gentleman’s Magazine 15 (1745), 377–379; H. R. Phalen, AMM 56 (1949),
461–465].

More than a century later, a prominent Swedish-American civil engineer
named John W. Nystrom decided to carry Charles XII’s plans a step further,
by devising a complete system of numeration, weights, and measures based
on radix-16 arithmetic. He wrote, “I am not afraid, or do not hesitate, to
advocate a binary system of arithmetic and metrology. I know I have nature
on my side; if I do not succeed to impress upon you its utility and great
importance to mankind, it will reflect that much less credit upon our
generation, upon our scientific men and philosophers.” Nystrom devised
special means for pronouncing hexadecimal numbers; for example,
(C0160)16 was to be read “vybong, bysanton.” His entire system was called
the Tonal System, and it is described in J. Franklin Inst. 46 (1863), 263–
275, 337–348, 402–407. A similar system, but using radix 8, was worked out
by Alfred B. Taylor [Proc. Amer. Pharmaceutical Assoc. 8 (1859), 115–216;
Proc. Amer. Philosophical Soc. 24 (1887), 296–366]. Increased use of the
French (metric) system of weights and measures prompted extensive debate
about the merits of decimal arithmetic during that era; indeed, octal
arithmetic was even being proposed in France [J. D. Collenne, Le Système

Octaval (Paris: 1845); Aimé Mariage, Numération par Huit (Paris: Le
Nonnant, 1857)].

The binary system was well known as a curiosity ever since Leibniz’s
time, and about 20 early references to it have been compiled by R. C.
Archibald [AMM 25 (1918), 139–142]. It was applied chiefly to the
calculation of powers, as explained in Section 4.6.3, and to the analysis of
certain games and puzzles. Giuseppe Peano [Atti della R. Accademia delle
Scienze di Torino 34 (1898), 47–55] used binary notation as the basis of a
“logical” character set of 256 symbols. Joseph Bowden [Special Topics in
Theoretical Arithmetic (Garden City: 1936), 49] gave his own system of
nomenclature for hexadecimal numbers.

The book History of Binary and Other Nondecimal Numeration by
Anton Glaser (Los Angeles: Tomash, 1981) contains an informative and
nearly complete discussion of the development of binary notation, including
English translations of many of the works cited above [see Historia Math.
10 (1983), 236–243].

Much of the recent history of number systems is connected with the
development of calculating machines. Charles Babbage’s notebooks for 1838
show that he considered using nondecimal numbers in his Analytical Engine
[see M. V. Wilkes, Historia Math. 4 (1977), 421]. Increased interest in
mechanical devices for arithmetic, especially for multiplication, led several
people in the 1930s to consider the binary system for this purpose. A
particularly delightful account of such activity appears in the article “Binary
Calculation” by E. William Phillips [Journal of the Institute of Actuaries 67
(1936), 187–221] together with a record of the discussion that followed a
lecture he gave on the subject. Phillips began by saying, “The ultimate aim
[of this paper] is to persuade the whole civilized world to abandon decimal
numeration and to use octonal [that is, radix 8] numeration in its place.”

Modern readers of Phillips’s article will perhaps be surprised to
discover that a radix-8 number system was properly referred to as
“octonary” or “octonal,” according to all dictionaries of the English language
at that time, just as the radix-10 number system is properly called either
“denary” or “decimal”; the word “octal” did not appear in English language
dictionaries until 1961, and it apparently originated as a term for the base of
a certain class of vacuum tubes. The word “hexadecimal,” which has crept
into our language even more recently, is a mixture of Greek and Latin stems;

more proper terms would be “senidenary” or “sedecimal” or even
“sexadecimal,” but the latter is perhaps too risqué for computer
programmers.

The comment by Mr. Wales that is quoted at the beginning of this chapter
has been taken from the discussion printed with Phillips’s paper. Another
man who attended the same lecture objected to the octal system for business
purposes: “5% becomes per 64, which sounds rather horrible.”

Phillips got the inspiration for his proposals from an electronic circuit
that was capable of counting in binary [C. E. Wynn-Williams, Proc. Roy.
Soc. London A136 (1932), 312–324]. Electromechanical and electronic
circuitry for general arithmetic operations was developed during the late
1930s, notably by John V. Atanasoff and George R. Stibitz in the U.S.A., L.
Couffignal and R. Valtat in France, Helmut Schreyer and Konrad Zuse in
Germany. All of these inventors used the binary system, although Stibitz later
developed excess-3 binary-coded-decimal notation. A fascinating account of
these early developments, including reprints and translations of important
contemporary documents, appears in Brian Randell’s book The Origins of
Digital Computers (Berlin: Springer, 1973).

The first American high-speed computers, built in the early 1940s, used
decimal arithmetic. But in 1946, an important memorandum by A. W. Burks,
H. H. Goldstine, and J. von Neumann, in connection with the design of the
first stored-program computers, gave detailed reasons for making a radical
departure from tradition and using base-two notation [see John von Neumann,
Collected Works 5, 41–65]. Since then binary computers have multiplied.
After a dozen years of experience with binary machines, a discussion of the
relative advantages and disadvantages of radix-2 notation was given by W.
Buchholz in his paper “Fingers or Fists?” [CACM 2, 12 (December 1959),
3–11].

The MIX computer used in this book has been defined so that it can be
either binary or decimal. It is interesting to note that nearly all MIX programs
can be expressed without knowing whether binary or decimal notation is
being used—even when we are doing calculations involving multiple-
precision arithmetic. Thus we find that the choice of radix does not
significantly influence computer programming. (Noteworthy exceptions to
this statement, however, are the “Boolean” algorithms discussed in Section
7.1; see also Algorithm 4.5.2B.)

There are several different ways to represent negative numbers in a
computer, and this sometimes influences the way arithmetic is done. In order
to understand these notations, let us first consider MIX as if it were a
decimal computer; then each word contains 10 digits and a sign, for example

This is called the signed magnitude representation. Such a representation
agrees with common notational conventions, so it is preferred by many
programmers. A potential disadvantage is that minus zero and plus zero can
both be represented, while they usually should mean the same number; this
possibility requires some care in practice, although it turns out to be useful at
times.

Most mechanical calculators that do decimal arithmetic use another
system called ten’s complement notation. If we subtract 1 from 00000 00000,
we get 99999 99999 in this notation; in other words, no explicit sign is
attached to the number, and calculation is done modulo 1010. The number
−12345 67890 would appear as

in ten’s complement notation. It is conventional to regard any number whose
leading digit is 5, 6, 7, 8, or 9 as a negative value in this notation, although
with respect to addition and subtraction there is no harm in regarding (3) as
the number +87654 32110 if it is convenient to do so. Notice that there is no
problem of minus zero in such a system.

The major difference between signed magnitude and ten’s complement
notations in practice is that shifting right does not divide the magnitude by
ten; for example, the number –11 = . . . 99989, shifted right one, gives . . .
99998 = –2 (assuming that a shift to the right inserts “9” as the leading digit
when the number shifted is negative). In general, x shifted right one digit in
ten’s complement notation will give ⌊x/10⌋, whether x is positive or
negative.

A possible disadvantage of the ten’s complement system is the fact that it
is not symmetric about zero; the p-digit negative number 500 . . . 0 is not the
negative of any p-digit positive number. Thus it is possible that changing x to
–x will cause overflow. (See exercises 7 and 31 for a discussion of radix-
complement notation with infinite precision.)

Another notation that has been used since the earliest days of high-speed
computers is called nines’ complement representation. In this case the
number −12345 67890 would appear as

Each digit of a negative number (–x) is equal to 9 minus the corresponding
digit of x. It is not difficult to see that the nines’ complement notation for a
negative number is always one less than the corresponding ten’s complement
notation. Addition and subtraction are done modulo 1010 – 1, which means
that a carry off the left end is to be added at the right end. (See the discussion
of arithmetic modulo w − 1 in Section 3.2.1.1.) Again there is a potential
problem with minus zero, since 99999 99999 and 00000 00000 denote the
same value.

The ideas just explained for radix-10 arithmetic apply in a similar way
to radix-2 arithmetic, where we have signed magnitude, two’s complement,
and ones’ complement notations. Two’s complement arithmetic on n-bit
numbers is arithmetic modulo 2n; ones’ complement arithmetic is modulo 2n

− 1. The MIX computer, as used in the examples of this chapter, deals only
with signed magnitude arithmetic; however, alternative procedures for
complement notations are discussed in the accompanying text when it is
important to do so.

Detail-oriented readers and copy editors should notice the position of the
apostrophe in terms like “two’s complement” and “ones’ complement”: A
two’s complement number is complemented with respect to a single power of
2, while a ones’ complement number is complemented with respect to a long
sequence of 1s. Indeed, there is also a “twos’ complement notation,” which
has radix 3 and complementation with respect to (2 . . . 22)3.

Descriptions of machine language often tell us that a computer’s circuitry
is set up with the radix point at a particular place within each numeric word.
Such statements should usually be disregarded. It is better to learn the rules
concerning where the radix point will appear in the result of an instruction if
we assume that it lies in a certain place beforehand. For example, in the case
of MIX we could regard our operands either as integers with the radix point
at the extreme right, or as fractions with the radix point at the extreme left, or
as some mixture of these two extremes; the rules for the appearance of the

radix point after addition, subtraction, multiplication, or division are
straightforward.

It is easy to see that there is a simple relation between radix b and radix
bk:

where

see exercise 8. Thus we have simple techniques for converting at sight
between, say, binary and hexadecimal notation.

Many interesting variations on positional number systems are possible in
addition to the standard b-ary systems discussed so far. For example, we
might have numbers in base (–10), so that

Here the individual digits satisfy 0 ≤ ak ≤ 9 just as in the decimal system.
The number 12345 67890 appears in the “negadecimal” system as

since the latter represents 10305070900 – 9070503010. It is interesting to
note that the negative of this number, –12345 67890, would be written

and, in fact, every real number whether positive or negative can be
represented without a sign in the –10 system.

Negative-base systems were first considered by Vittorio Grünwald
[Giornale di Matematiche di Battaglini 23 (1885), 203–221, 367], who
explained how to perform the four arithmetic operations in such systems;
Grünwald also discussed root extraction, divisibility tests, and radix
conversion. However, his work seems to have had no effect on other
research, since it was published in a rather obscure journal, and it was soon
forgotten. The next publication about negative-base systems was apparently
by A. J. Kempner [AMM 43 (1936), 610–617], who discussed the properties
of noninteger radices and remarked in a footnote that negative radices would
be feasible too. After twenty more years the idea was rediscovered again,

this time by Z. Pawlak and A. Wakulicz [Bulletin de l’Académie Polonaise
des Sciences, Classe III, 5 (1957), 233–236; Série des sciences techniques 7
(1959), 713–721], and also by L. Wadel [IRE Transactions EC-6 (1957),
123]. Experimental computers called SKRZAT 1 and BINEG, which used –2
as the radix of arithmetic, were built in Poland in the late 1950s; see N. M.
Blachman, CACM 4 (1961), 257; R. W. Marczyński, Ann. Hist. Computing 2
(1980), 37–48. For further references see IEEE Transactions EC-12 (1963),
274–277; Computer Design 6 (May 1967), 52–63. There is evidence that the
idea of negative bases occurred independently to quite a few people. For
example, D. E. Knuth had discussed negative-radix systems in 1955, together
with a further generalization to complex-valued bases, in a short paper
submitted to a “science talent search” contest for high-school seniors.

The base 2i gives rise to a system called the “quater-imaginary” number
system (by analogy with “quaternary”), which has the unusual feature that
every complex number can be represented with the digits 0, 1, 2, and 3
without a sign. [See D. E. Knuth, CACM 3 (1960), 245–247; 4 (1961), 355.]
For example,

.
Here the number (a2n . . . a1a0.a–1 . . . a–2k)2i is equal to

so conversion to and from quater-imaginary notation reduces to conversion to
and from negative quaternary representation of the real and imaginary parts.
The interesting property of this system is that it allows multiplication and
division of complex numbers to be done in a fairly unified manner without
treating real and imaginary parts separately. For example, we can multiply
two numbers in this system much as we do with any base, merely using a
different carry rule: Whenever a digit exceeds 3 we subtract 4 and carry –1
two columns to the left; when a digit is negative, we add 4 to it and carry +1
two columns to the left. The following example shows this peculiar carry
rule at work:

A similar system that uses just the digits 0 and 1 may be based on , but
this requires an infinite nonrepeating expansion for the simple number “i”
itself. Vittorio Grünwald proposed using the digits 0 and in odd-
numbered positions, to avoid such a problem; but that actually spoils the
whole system [see Commentari dell’Ateneo di Brescia (1886), 43–54].

Another “binary” complex number system may be obtained by using the
base i − 1, as suggested by W. Penney [JACM 12 (1965), 247–248]:

In this system, only the digits 0 and 1 are needed. One way to demonstrate
that every complex number has such a representation is to consider the
interesting set S shown in Fig. 1; this set is, by definition, all points that can
be written as ∑k≥1ak(i − 1)−k, for an infinite sequence a1, a2, a3, . . . of zeros
and ones. It is also known as the “twindragon fractal” [see M. F. Barnsley,
Fractals Everywhere, second edition (Academic Press, 1993), 306, 310].
Figure 1 shows that S can be decomposed into 256 pieces congruent to S.
Notice that if the diagram of S is rotated counterclockwise by 135°, we
obtain two adjacent sets congruent to () S, because (i − 1)S = S ∪ (S +
1). For details of a proof that S contains all complex numbers that are of
sufficiently small magnitude, see exercise 18.

Fig. 1. The fractal set S called the “twindragon.”
Perhaps the prettiest number system of all is the balanced ternary

notation, which consists of radix-3 representation using –1, 0, and +1 as
“trits” (ternary digits) instead of 0, 1, and 2. If we let the symbol stand for –
1, we have the following examples of balanced ternary numbers:

One way to find the representation of a number in the balanced ternary
system is to start by representing it in ordinary ternary notation; for example,

(A very simple pencil-and-paper method for converting to ternary notation is
given in exercise 4.4–12.) Now add the infinite number . . . 11111.11111 . . .
in ternary notation; we obtain, in the example above, the infinite number

Finally, subtract . . . 11111.11111 . . . by decrementing each digit; we get

This process may clearly be made rigorous if we replace the artificial
infinite number . . . 11111.11111 . . . by a number with suitably many ones.

The balanced ternary number system has many pleasant properties:
a) The negative of a number is obtained by interchanging 1 and .
b) The sign of a number is given by its most significant nonzero trit, and

in general we can compare any two numbers by reading them from left
to right and using lexicographic order, as in the decimal system.

c) The operation of rounding to the nearest integer is identical to
truncation; in other words, we simply delete everything to the right of
the radix point.

Addition in the balanced ternary system is quite simple, using the table

(The three inputs to the addition are the digits of the numbers to be added and
the carry digit.) Subtraction is negation followed by addition. Multiplication

also reduces to negation and addition, as in the following example:

Representation of numbers in the balanced ternary system is implicitly
present in a famous mathematical puzzle, commonly called “Bachet’s
problem of weights”—although it was already stated by Fibonacci four
centuries before Bachet wrote his book, and by abarī in Persia more than
100 years before Fibonacci. [See W. Ahrens, Mathematische
Unterhaltungen und Spiele 1 (Leipzig: Teubner, 1910), Section 3.4; H.
Hermelink, Janus 65 (1978), 105–117.] Positional number systems with
negative digits were invented by J. Colson [Philos. Trans. 34 (1726), 161–
173], then forgotten and rediscovered about 100 years later by Sir John
Leslie [The Philosophy of Arithmetic (Edinburgh: 1817); see pages 33–34,
54, 64–65, 117, 150], and by A. Cauchy [Comptes Rendus Acad. Sci. 11
(Paris, 1840), 789–798]. Cauchy pointed out that negative digits make it
unnecessary for a person to memorize the multiplication table past 5 × 5. A
claim that such number systems were known in India long ago [J. Bharati,
Vedic Mathematics (Delhi: Motilal Banarsidass, 1965)] has been refuted by
K. S. Shukla [Mathematical Education 5, 3 (1989), 129–133]. The first true
appearance of “pure” balanced ternary notation was in an article by Léon
Lalanne [Comptes Rendus Acad. Sci. 11 (Paris, 1840), 903–905], who was a
designer of mechanical devices for arithmetic. Thomas Fowler independently
invented and constructed a balanced ternary calculator at about the same time
[see Report British Assoc. Adv. Sci. 10 (1840), 55; 11 (1841), 39–40]. The
balanced ternary number system was mentioned only rarely for the next 100
years, until the development of the first electronic computers at the Moore
School of Electrical Engineering in 1945–1946; at that time it was given
serious consideration as a possible replacement for the decimal system. The
complexity of arithmetic circuitry for balanced ternary arithmetic is not much
greater than it is for the binary system, and a given number requires only ln 2/
ln 3 ≈ 63% as many digit positions for its representation. Discussions of the

balanced ternary system appear in AMM 57 (1950), 90–93, and in High-
speed Computing Devices, Engineering Research Associates (McGraw–
Hill, 1950), 287–289. The experimental Russian computer SETUN was
based on balanced ternary notation [see CACM 3 (1960), 149–150], and
perhaps the symmetric properties and simple arithmetic of this number
system will prove to be quite important someday—when the “flip-flop” is
replaced by a “flip-flap-flop.”

Positional notation generalizes in another important way to a mixed-
radix system. Given a sequence of numbers 〈bn〉 (where n may be
negative), we define

In the simplest mixed-radix systems, we work only with integers; we let b0,
b1, b2, . . . be integers greater than one, and deal only with numbers that have
no radix point, where an is required to lie in the range 0 ≤ an < bn.

One of the most important mixed-radix systems is the factorial number
system, where bn = n + 2. Using this system, which was known in 13th-
century India, we can represent every positive integer uniquely in the form

where 0 ≤ ck ≤ k for 1 ≤ k ≤ n, and cn ≠ 0. (See Algorithms 3.3.2P and
3.4.2P.)

Mixed-radix systems are familiar in everyday life, when we deal with
units of measure. For example, the quantity “3 weeks, 2 days, 9 hours, 22
minutes, 57 seconds, and 492 milliseconds” is equal to

The quantity “10 pounds, 6 shillings, and thruppence ha’penny” was once
equal to pence in British currency, before Great Britain
changed to a purely decimal monetary system.

It is possible to add and subtract mixed-radix numbers by using a
straightforward generalization of the usual addition and subtraction

algorithms, provided of course that the same mixed-radix system is being
used for both operands (see exercise 4.3.1–9). Similarly, we can easily
multiply or divide a mixed-radix number by small integer constants, using
simple extensions of the familiar pencil-and-paper methods.

Mixed-radix systems were first discussed in full generality by Georg
Cantor [Zeitschrift für Math. und Physik 14 (1869), 121–128]. Exercises 26
and 29 give further information about them.

Several questions concerning irrational radices have been investigated
by W. Parry, Acta Math. Acad. Sci. Hung. 11 (1960), 401–416.

Besides the systems described in this section, several other ways to
represent numbers are mentioned elsewhere in this series of books: the
combinatorial number system (exercise 1.2.6–56); the Fibonacci number
system (exercises 1.2.8–34, 5.4.2–10); the phi number system (exercise
1.2.8–35); modular representations (Section 4.3.2); Gray code (Section
7.2.1); and Roman numerals (Section 9.1).

Exercises

1. [15] Express –10, –9, . . . , 9, 10 in the number system whose radix is –
2.
 2. [24] Consider the following four number systems: (a) binary (signed
magnitude); (b) negabinary (radix –2); (c) balanced ternary; and (d) radix

. Use each of these four number systems to express each of the
following three numbers: (i) –49; (ii) (show the repeating cycle); (iii)
π (to a few significant figures).

3. [20] Express –49 + i in the quater-imaginary system.
4. [15] Assume that we have a MIX program in which location A contains

a number for which the radix point lies between bytes 3 and 4, while
location B contains a number whose radix point lies between bytes 2 and 3.
(The leftmost byte is number 1.) Where will the radix point be, in registers A
and X, after the following instructions?

5. [00] Explain why a negative integer in nines’ complement notation has a
representation in ten’s complement notation that is always one greater, if the
representations are regarded as positive.

6. [16] What are the largest and smallest p-bit integers that can be
represented in (a) signed magnitude binary notation (including one bit for the
sign), (b) two’s complement notation, (c) ones’ complement notation?

7. [M20] The text defines ten’s complement notation only for integers
represented in a single computer word. Is there a way to define a ten’s
complement notation for all real numbers, having “infinite precision,”
analogous to the text’s definition? Is there a similar way to define a nines’
complement notation for all real numbers?

8. [M10] Prove Eq. (5).
 9. [15] Change the following octal numbers to hexadecimal notation,
using the hexadecimal digits 0, 1, . . . , 9, A, B, C, D, E, F: 12 ; 5655 ;
2550276 ; 76545336 ; 3726755.
10. [M22] Generalize Eq. (5) to mixed-radix notation as in (9).
11. [22] Design an algorithm that uses the –2 number system to compute the
sum of (an . . . a1a0)–2 and (bn . . . b1b0)–2, obtaining the answer (cn+2 . . .
c1c0)–2.
12. [23] Specify algorithms that convert (a) the binary signed magnitude
number ±(an . . . a0)2 to its negabinary form (bn+2 . . . b0)–2; and (b) the
negabinary number (bn+1 . . . b0)–2 to its signed magnitude form ±(an+1 . . .
a0)2.

 13. [M21] In the decimal system there are some numbers with two infinite
decimal expansions; for example, 2.3599999 . . . = 2.3600000 Does
the negadecimal (base –10) system have unique expansions, or are there
real numbers with two different infinite expansions in this base also?
14. [14] Multiply (11321)2i by itself in the quater-imaginary system using
the method illustrated in the text.
15. [M24] What are the sets S = { ∑k≥1 akb−k | ak an allowable digit},
analogous to Fig. 1, for the negative decimal and for the quater-imaginary
number systems?
16. [M24] Design an algorithm to add 1 to (an . . . a1a0)i−1 in the i−1
number system.
17. [M30] It may seem peculiar that i − 1 has been suggested as a number-
system base, instead of the similar but intuitively simpler number i + 1.

Can every complex number a + bi, where a and b are integers, be
represented in a positional number system to base i + 1, using only the
digits 0 and 1?
18. [HM32] Show that the twindragon of Fig. 1 is a closed set that contains
a neighborhood of the origin. (Consequently, every complex number has a
binary representation with radix i − 1.)

 19. [23] (David W. Matula.) Let D be a set of b integers, containing
exactly one solution to the congruence x ≡ j (modulo b) for 0 ≤ j < b. Prove
that all integers m (positive, negative, or zero) can be represented in the
form m = (an . . . a0)b, where all the aj are in D, if and only if all integers
in the range l ≤ m ≤ u can be so represented, where l = – max{a | a ∊
D}/(b − 1) and u = – min{a | a ∊ D}/(b − 1). For example, D = {–1, 0, . . .
, b – 2} satisfies the conditions for all b ≥ 3. [Hint: Design an algorithm
that constructs a suitable representation.]
20. [HM28] (David W. Matula.) Consider a decimal number system that
uses the digits D = {–1, 0, 8, 17, 26, 35, 44, 53, 62, 71} instead of {0, 1, . .
. , 9}. The result of exercise 19 implies (as in exercise 18) that all real
numbers have an infinite decimal expansion using digits from D.

In the usual decimal system, exercise 13 points out that some numbers
have two representations. (a) Find a real number that has more than two D-
decimal representations. (b) Show that no real number has infinitely many
D-decimal representations. (c) Show that uncountably many numbers have
two or more D-decimal representations.

 21. [M22] (C. E. Shannon.) Can every real number (positive, negative, or
zero) be expressed in a “balanced decimal” system, that is, in the form
∑k≤nak10k, for some integer n and some sequence an, an−1, an−2, . . . ,
where each ak is one of the ten numbers

 (Although zero is not
one of the allowed digits, we implicitly assume that an+1, an+2, . . . are
zero.) Find all representations of zero in this number system, and find all
representations of unity.

22. [HM25] Let α = – ∑m≥1 10−m2. Given ε > 0 and any real number x,
prove that there is a “decimal” representation such that

, where each ak is allowed to be only one of

the three values 0, 1, or α. (No negative powers of 10 are used in this
representation!)
23. [HM30] Let D be a set of b real numbers such that every positive real
number has a representation ∑k≤n akbk with all ak ∊ D. Exercise 20 shows
that there may be many numbers without unique representations; but prove
that the set T of all such numbers has measure zero, if 0 ∊ D. Show that this
conclusion need not be true if 0 ∉ D.
24. [M35] Find infinitely many different sets D of ten nonnegative integers
satisfying the following three conditions: (i) gcd(D) = 1; (ii) 0 ∊ D; (iii)
every positive real number can be represented in the form ∑k≤n ak10k with
all ak ∊ D.
25. [M25] (S. A. Cook.) Let b, u, and v be positive integers, where b ≥ 2
and 0 < v < bm. Show that the radix-b representation of u/v does not
contain a run of m consecutive digits equal to b − 1, anywhere to the right
of the radix point. (By convention, no runs of infinitely many (b − 1)’s are
permitted in the standard radix-b representation.)

 26. [HM30] (N. S. Mendelsohn.) Let 〈βn〉 be a sequence of real
numbers defined for all integers n, –∞ < n < ∞, such that

Let 〈cn〉 be an arbitrary sequence of positive integers that is defined for
all integers n, –∞ < n < ∞. Let us say that a number x has a “generalized
representation” if there is an integer n and an infinite sequence of integers
an, an−1, an−2, . . . such that x = ∑k≤n akβk, where an ≠ 0, 0 ≤ ak ≤ ck, and
ak < ck for infinitely many k.

Show that every positive real number x has exactly one generalized
representation if and only if

(Consequently, the mixed-radix systems with integer bases all have this
property; and mixed-radix systems with β1 = (c0 + 1)β0, β2 = (c1 + 1)(c0 +
1)β0, . . . , β–1 = β0/(c–1 + 1), . . . are the most general number systems of
this type.)

27. [M21] Show that every nonzero integer has a unique “reversing binary
representation”

where e0 < e1 < ... < et.
 28. [M24] Show that every nonzero complex number of the form a + bi

where a and b are integers has a unique “revolving binary representation”

where e0 < e1 < ... < et. (Compare with exercise 27.)

29. [M35] (N. G. de Bruijn.) Let S0, S1, S2, . . . be sets of nonnegative
integers; we will say that the collection {S0, S1, S2, . . .} has Property B if
every nonnegative integer n can be written in the form

in exactly one way. (Property B implies that 0 ∊ Sj for all j, since n = 0 can
only be represented as 0 + 0 + 0 +) Any mixed-radix number system
with radices b0, b1, b2, . . . provides an example of a collection of sets
satisfying Property B, if we let Sj = {0, Bj, . . . , (bj – 1)Bj}, where Bj =
b0b1 . . . bj−1; here the representation of n = s0+s1+s2+... corresponds in an
obvious manner to its mixed-radix representation (9). Furthermore, if the
collection {S0, S1, S2, . . .} has Property B, and if A0, A1, A2, . . . is any
partition of the nonnegative integers (so that we have A0 ∪ A1 ∪ A2 ∪ ... =
{0, 1, 2, . . .} and Ai ∩ Aj = for i ≠ j; some Aj’s may be empty), then the
“collapsed” collection {T0, T1, T2, . . .} also has Property B, where Tj is
the set of all sums ∑i∊Aj

 si taken over all possible choices of si ∊ Si.

Prove that any collection {T0, T1, T2, . . .} that satisfies Property B
may be obtained by collapsing some collection {S0, S1, S2, . . .} that
corresponds to a mixed-radix number system.
30. [M39] (N. G. de Bruijn.) The negabinary number system shows us that
every integer (positive, negative, or zero) has a unique representation of
the form

The purpose of this exercise is to explore generalizations of this
phenomenon.

a) Let b0, b1, b2, . . . be a sequence of integers such that every integer n
has a unique representation of the form

(Such a sequence 〈bn〉 is called a “binary basis.”) Show that there
is an index j such that bj is odd, but bk is even for all k ≠ j.

b) Prove that a binary basis 〈bn〉 can always be rearranged into the
form d0, 2d1, 4d2, . . . = 〈2ndn〉, where each dk is odd.

c) If each of d0, d1, d2, . . . in (b) is ±1, prove that 〈bn〉 is a binary
basis if and only if there are infinitely many +1’s and infinitely many –
1’s.

d) Prove that 7, –13 · 2, 7 · 22, –13 · 23, . . . , 7 · 22k, –13 · 22k+1, . . . is a
binary basis, and find the representation of n = 1.

 31. [M35] A generalization of two’s complement arithmetic, called “2-
adic numbers,” was introduced by K. Hensel in Crelle 127 (1904), 51–84.
(In fact he treated p-adic numbers, for any prime p.) A 2-adic number may
be regarded as a binary number

whose representation extends infinitely far to the left of the binary point,
but only finitely many places to the right. Addition, subtraction, and
multiplication of 2-adic numbers are done according to the ordinary
procedures of arithmetic, which can in principle be extended indefinitely
to the left. For example,

Here 7 appears as the ordinary binary integer seven, while –7 is its
two’s complement (extending infinitely to the left); it is easy to verify that
the ordinary procedure for addition of binary numbers will give –7 + 7 = (.

. . 00000)2 = 0, when the procedure is continued indefinitely. The values of
 and are the unique 2-adic numbers that, when formally multiplied by

7, give 1 and –1, respectively. The values of and are examples of 2-
adic numbers that are not 2-adic “integers,” since they have nonzero bits to
the right of the binary point. The two values of , which are negatives
of each other, are the only 2-adic numbers that, when formally squared,
yield the value (. . . 111111111111001)2.

a) Prove that any 2-adic number u can be divided by any nonzero 2-adic
number v to obtain a unique 2-adic number w satisfying u = vw. (Hence
the set of 2-adic numbers forms a “field”; see Section 4.6.1.)

b) Prove that the 2-adic representation of the rational number –1/(2n + 1)
may be obtained as follows, when n is a positive integer: First find the
ordinary binary expansion of +1/(2n+1), which has the periodic form
(0.ααα . . .)2 for some string α of 0s and 1s. Then –1/(2n + 1) is the 2-
adic number (. . . ααα)2.

c) Prove that the representation of a 2-adic number u is ultimately
periodic (that is, uN+λ = uN for all large N, for some λ ≥ 1) if and only
if u is rational (that is, u = m/n, for some integers m and n).

d) Prove that, when n is an integer, is a 2-adic number if and only if
it satisfies n mod 22k+3 = 22k for some nonnegative integer k. (Thus, the
possibilities are either n mod 8 = 1, or n mod 32 = 4, etc.)

32. [M40] (I. Z. Ruzsa.) Construct infinitely many integers whose ternary
representation uses only 0s and 1s and whose quinary representation uses
only 0s, 1s, and 2s.
33. [M40] (D. A. Klarner.) Let D be any set of integers, let b be any
positive integer, and let kn be the number of distinct integers that can be
written as n-digit numbers (an−1 . . . a1a0)b to base b with digits ai in D.
Prove that the sequence 〈kn〉 satisfies a linear recurrence relation, and
explain how to compute the generating function ∑n knzn. Illustrate your
algorithm by showing that kn is a Fibonacci number in the case b = 3 and D
= {–1, 0, 3}.

 34. [22] (G. W. Reitwiesner, 1960.) Explain how to represent a given
integer n in the form (. . . a2a1a0)2, where each aj is –1, 0, or 1, using the

fewest nonzero digits.

4.2. Floating Point Arithmetic
In this section we shall study the basic principles of arithmetic operations on
“floating point” numbers, by analyzing the internal mechanisms underlying
such calculations. Perhaps many readers will have little interest in this
subject, since their computers either have built-in floating point instructions
or their operating systems include suitable subroutines. But, in fact, the
material of this section should not merely be the concern of computer-design
engineers or of a small clique of people who write library subroutines for
new machines; every well-rounded programmer ought to have a knowledge
of what goes on during the elementary steps of floating point arithmetic. This
subject is not at all as trivial as most people think, and it involves a
surprising amount of interesting information.

4.2.1. Single-Precision Calculations
A. Floating point notation. We have discussed “fixed point” notation for
numbers in Section 4.1; in such a case the programmer knows where the
radix point is assumed to lie in the numbers being manipulated. For many
purposes, however, it is considerably more convenient to let the position of
the radix point be dynamically variable or “floating” as a program is running,
and to carry with each number an indication of its current radix point
position. This idea has been used for many years in scientific calculations,
especially for expressing very large numbers like Avogadro’s number N =
6.02214 × 1023, or very small numbers like Planck’s constant h = 6.6261 ×
10−27 erg sec.

In this section we shall work with base b, excess q, floating point
numbers with p digits: Such numbers will be represented by pairs of values
(e, f), denoting

Here e is an integer having a specified range, and f is a signed fraction. We
will adopt the convention that

in other words, the radix point appears at the left of the positional
representation of f. More precisely, the stipulation that we have p-digit

numbers means that bpf is an integer, and that

The term “floating binary” implies that b = 2, “floating decimal” implies b =
10, etc. Using excess-50 floating decimal numbers with 8 digits, we can
write, for example,

The two components e and f of a floating point number are called the
exponent and the fraction parts, respectively. (Other names are occasionally
used for this purpose, notably “characteristic” and “mantissa”; but it is an
abuse of terminology to call the fraction part a mantissa, since that term has
quite a different meaning in connection with logarithms. Furthermore the
English word mantissa means “a worthless addition.”)

The MIX computer assumes that its floating point numbers have the form

Here we have base b, excess q, floating point notation with four bytes of
precision, where b is the byte size (e.g., b = 64 or b = 100), and q is equal to
⌊ b⌋. The fraction part is ± f f f f, and e is the exponent, which lies in the
range 0 ≤ e < b. This internal representation is typical of the conventions in
most existing computers, although b is a much larger base than usual.
B. Normalized calculations. A floating point number (e, f) is normalized if
the most significant digit of the representation of f is nonzero, so that

or if f = 0 and e has its smallest possible value. It is possible to tell which of
two normalized floating point numbers has a greater magnitude by comparing
the exponent parts first, and then testing the fraction parts only if the
exponents are equal.

Most floating point routines now in use deal almost entirely with
normalized numbers: Inputs to the routines are assumed to be normalized, and
the outputs are always normalized. Under these conventions we lose the
ability to represent a few numbers of very small magnitude—for example, the
value (0, .00000001) can’t be normalized without producing a negative
exponent—but we gain in speed, uniformity, and the ability to give relatively

simple bounds on the relative error in our computations. (Unnormalized
floating point arithmetic is discussed in Section 4.2.2.)

Let us now study the normalized floating point operations in detail. At
the same time we can consider the construction of subroutines for these
operations, assuming that we have a computer without built-in floating point
hardware.

Machine-language subroutines for floating point arithmetic are usually
written in a very machine-dependent manner, using many of the wildest
idiosyncrasies of the computer at hand. Therefore floating point addition
subroutines for two different machines usually bear little superficial
resemblance to each other. Yet a careful study of numerous subroutines for
both binary and decimal computers reveals that these programs actually have
quite a lot in common, and it is possible to discuss the topics in a machine-
independent way.

The first (and by far the most difficult!) algorithm we shall discuss in this
section is a procedure for floating point addition,

Since floating point arithmetic is inherently approximate, not exact, we
will use “round” symbols

to stand for floating point addition, subtraction, multiplication, and
division, respectively, in order to distinguish approximate operations from
the true ones.

Fig. 2. Floating point addition.

The basic idea involved in floating point addition is fairly simple:
Assuming that eu ≥ ev, we take ew = eu, fw = fu + fv/beu–ev (thereby aligning
the radix points for a meaningful addition), and normalize the result. But
several situations can arise that make this process nontrivial, and the
following algorithm explains the method more precisely.
Algorithm A (Floating point addition). Given base b, excess q, p-digit,
normalized floating point numbers u = (eu, fu) and v = (ev, fv), this algorithm
forms the sum w = u ⊕ v. The same procedure may be used for floating point
subtraction, if –v is substituted for v.

A1. [Unpack.] Separate the exponent and fraction parts of the
representations of u and v.

A2. [Assume eu ≥ ev.] If eu < ev, interchange u and v. (In many cases, it is
best to combine step A2 with step A1 or with some of the later steps.)

A3. [Set ew.] Set ew ← eu.
A4. [Test eu – ev.] If eu – ev ≥ p + 2 (large difference in exponents), set fw

← fu and go to step A7. (Actually, since we are assuming that u is
normalized, we could terminate the algorithm; but it is occasionally
useful to be able to normalize a possibly unnormalized number by
adding zero to it.)

A5. [Scale right.] Shift fv to the right eu – ev places; that is, divide it by beu–

ev. [Note: This will be a shift of up to p + 1 places, and the next step
(which adds fu to fv) thereby requires an accumulator capable of
holding 2p + 1 base-b digits to the right of the radix point. If such a
large accumulator is not available, it is possible to shorten the
requirement to p + 2 or p + 3 places if proper precautions are taken; the
details are given in exercise 5.]

A6. [Add.] Set fw ← fu + fv.

Fig. 3. Normalization of (e, f).

A7. [Normalize.] (At this point (ew, fw) represents the sum of u and v, but
|fw| may have more than p digits, and it may be greater than unity or less
than 1/b.) Perform Algorithm N below, to normalize and round (ew, fw)
into the final answer.

Algorithm N (Normalization). A “raw exponent” e and a “raw fraction” f
are converted to normalized form, rounding if necessary to p digits. This
algorithm assumes that |f| < b.

N1. [Test f.] If |f| ≥ 1 (“fraction overflow”), go to step N4. If f = 0, set e to
its lowest possible value and go to step N7.

N2. [Is f normalized?] If |f| ≥ 1/b, go to step N5.
N3. [Scale left.] Shift f to the left by one digit position (that is, multiply it

by b), and decrease e by 1. Return to step N2.

N4. [Scale right.] Shift f to the right by one digit position (that is, divide it
by b), and increase e by 1.

N5. [Round.] Round f to p places. (We take this to mean that f is changed to
the nearest multiple of b−p. It is possible that (bpf) mod so that
there are two nearest multiples; if b is even, we change f to the nearest
multiple f′ of b−p such that is odd. Further discussion of
rounding appears in Section 4.2.2.) It is important to note that this
rounding operation can make |f| = 1 (“rounding overflow”); in such a
case, return to step N4.

N6. [Check e.] If e is too large, that is, greater than its allowed range, an
exponent overflow condition is sensed. If e is too small, an exponent
underflow condition is sensed. (See the discussion below; since the
result cannot be expressed as a normalized floating point number in the
required range, special action is necessary.)

N7. [Pack.] Put e and f together into the desired output representation.
Some simple examples of floating point addition are given in exercise 4.
The following MIX subroutines, for addition and subtraction of numbers

having the form (4), show how Algorithms A and N can be expressed as
computer programs. The subroutines below are designed to take one input u
from symbolic location ACC, and the other input v comes from register A
upon entrance to the subroutine. The output w appears both in register A and
location ACC. Thus, a fixed point coding sequence

would correspond to the floating point coding sequence

Program A (Addition, subtraction, and normalization). The following
program is a subroutine for Algorithm A, and it is also designed so that the
normalization portion can be used by other subroutines that appear later in
this section. In this program and in many others throughout this chapter, OFLO
stands for a subroutine that prints out a message to the effect that MIX’s
overflow toggle was unexpectedly found to be on. The byte size b is assumed
to be a multiple of 4. The normalization routine NORM assumes that rI2 = e
and rAX = f, where rA = 0 implies rX = 0 and rI2 < b.

The rather long section of code from lines 26 to 40 is needed because
MIX has only a 5-byte accumulator for adding signed numbers while in
general 2p +1 = 9 places of accuracy are required by Algorithm A. The

program could be shortened to about half its present length if we were
willing to sacrifice a little bit of its accuracy, but we shall see in the next
section that full accuracy is important. Line 58 uses a nonstandard MIX
instruction defined in Section 4.5.2. The running time for floating point
addition and subtraction depends on several factors that are analyzed in
Section 4.2.4.

Now let us consider multiplication and division, which are simpler than
addition, and somewhat similar to each other.
Algorithm M (Floating point multiplication or division). Given base b,
excess q, p-digit, normalized floating point numbers u = (eu, fu) and v = (ev,
fv), this algorithm forms the product w = u ⊗ v or the quotient w = u ⊘ v.

M1. [Unpack.] Separate the exponent and fraction parts of the
representations of u and v. (Sometimes it is convenient, but not
necessary, to test the operands for zero during this step.)

M2. [Operate.] Set

(Since the input numbers are assumed to be normalized, it follows that
either fw = 0, or 1/b2 ≤ |fw| < 1, or a division-by-zero error has
occurred.) If necessary, the representation of fw may be reduced to p + 2
or p + 3 digits at this point, as in exercise 5.

M3. [Normalize.] Perform Algorithm N on (ew, fw) to normalize, round, and
pack the result. (Note: Normalization is simpler in this case, since
scaling left occurs at most once, and since rounding overflow cannot
occur after division.)

The following MIX subroutines, intended to be used in connection with
Program A, illustrate the machine considerations that arise in Algorithm M.
Program M (Floating point multiplication and division).

The most noteworthy feature of this program is the provision for division
in lines 23–26, which is made in order to ensure enough accuracy to round
the answer. If |fu| < |fv|, straightforward application of Algorithm M would
leave a result of the form “± 0 f f f f” in register A, and this would not allow
a proper rounding without a careful analysis of the remainder (which appears
in register X). So the program computes fw ← fu/fv in this case, ensuring that
fw is either zero or normalized in all cases; rounding can proceed with five
significant bytes, possibly testing whether the remainder is zero.

We occasionally need to convert values between fixed and floating point
representations. A “fix-to-float” routine is easily obtained with the help of
the normalization algorithm above; for example, in MIX, the following
subroutine converts an integer to floating point form:

A “float-to-fix” subroutine is the subject of exercise 14.
The debugging of floating point subroutines is usually a difficult job,

since there are so many cases to consider. Here is a list of common pitfalls
that often trap a programmer or machine designer who is preparing floating
point routines:

1) Losing the sign. On many machines (not MIX), shift instructions
between registers will affect the sign, and the shifting operations used in
normalizing and scaling numbers must be carefully analyzed. The sign is also
lost frequently when minus zero is present. (For example, Program A is
careful to retain the sign of register A in lines 33–37. See also exercise 6.)

2) Failure to treat exponent underflow or overflow properly. The size of
ew should not be checked until after the rounding and normalization, because
preliminary tests may give an erroneous indication. Exponent underflow and
overflow can occur on floating point addition and subtraction, not only
during multiplication and division; and even though this is a rather rare
occurrence, it must be tested each time. Enough information should be
retained so that meaningful corrective actions are possible after overflow or
underflow has occurred.

It has unfortunately become customary in many instances to ignore
exponent underflow and simply to set underflowed results to zero with no
indication of error. This causes a serious loss of accuracy in most cases
(indeed, it is the loss of all the significant digits), and the assumptions
underlying floating point arithmetic have broken down; so the programmer
really must be told when underflow has occurred. Setting the result to zero is
appropriate only in certain cases when the result is later to be added to a
significantly larger quantity. When exponent underflow is not detected, we
find mysterious situations in which (u⊗v)⊗w is zero, but u⊗(v ⊗ w) is not,

since u⊗v results in exponent underflow but u ⊗ (v ⊗ w) can be calculated
without any exponents falling out of range. Similarly, we can find positive
numbers a, b, c, d, and y such that

if exponent underflow is not detected. (See exercise 9.) Even though floating
point routines are not precisely accurate, such a disparity as (11) is certainly
unexpected when a, b, c, d, and y are all positive! Exponent underflow is
usually not anticipated by a programmer, so it needs to be reported.*

3) Inserted garbage. When scaling to the left it is important to keep from
introducing anything but zeros at the right. For example, note the ‘ENTX 0’
instruction in line 21 of Program A, and the all-too-easily-forgotten ‘ENTX
0’ instruction in line 04 of the FLOT subroutine (10). (But it would be a
mistake to clear register X after line 27 in the division subroutine.)

4) Unforeseen rounding overflow. When a number like .999999997 is
rounded to 8 digits, a carry will occur to the left of the decimal point, and the
result must be scaled to the right. Many people have mistakenly concluded
that rounding overflow is impossible during multiplication, since they look at
the maximum value of |fufv|, which is 1 – 2b−p + b−2p; and this cannot round
up to 1. The fallacy in this reasoning is exhibited in exercise 11. Curiously, it
turns out that the phenomenon of rounding overflow is impossible during
floating point division (see exercise 12).

* On the other hand, we must admit that today’s high-level programming languages give the
programmer little or no satisfactory way to make use of the information that a floating point routine
wants to provide; and the MIX programs in this section, which simply halt when errors are detected, are
even worse. There are numerous important applications in which exponent underflow is relatively
harmless, and it is desirable to find a way for programmers to cope with such situations easily and
safely. The practice of silently replacing underflows by zero has been thoroughly discredited, but there is
another alternative that has recently been gaining much favor, namely to modify the definition that we
have given for floating point numbers, allowing an unnormalized fraction part when the exponent has its
smallest possible value. This idea of “gradual underflow,” which was first embodied in the hardware of
the Electrologica X8 computer, adds only a small amount of complexity to the algorithms, and it makes
exponent underflow impossible during addition or subtraction. The simple formulas for relative error in
Section 4.2.2 no longer hold in the presence of gradual underflow, so the topic is beyond the scope of
this book. However, by using formulas like round(x) = x(1 – δ) + ε, where |δ| < b1–p/2 and |ε| <
b−p−q/2, one can show that gradual underflow succeeds in many important cases. See W. M. Kahan
and J. Palmer, ACM SIGNUM Newsletter (October 1979), 13–21.

There is a school of thought that says it is harmless to “round” a value
like .999999997 to .99999999 instead of to 1.0000000, since this does not
increase the worst-case bounds on relative error. The floating decimal
number 1.0000000 may be said to represent all real values in the interval

while .99999999 represents all values in the much smaller interval

Even though the latter interval does not contain the original value
.999999997, each number of the second interval is contained in the first, so
subsequent calculations with the second interval are no less accurate than
with the first. This ingenious argument is, however, incompatible with the
mathematical philosophy of floating point arithmetic expressed in Section
4.2.2.

5) Rounding before normalizing. Inaccuracies are caused by premature
rounding in the wrong digit position. This error is obvious when rounding is
being done to the left of the appropriate position; but it is also dangerous in
the less obvious cases where rounding is first done too far to the right,
followed by rounding in the true position. For this reason it is a mistake to
round during the “scaling-right” operation in step A5, except as prescribed in
exercise 5. (The special case of rounding in step N5, then rounding again
after rounding overflow has occurred, is harmless, however, because
rounding overflow always yields ±1.0000000 and such values are unaffected
by the subsequent rounding process.)

6) Failure to retain enough precision in intermediate calculations.
Detailed analyses of the accuracy of floating point arithmetic, made in the
next section, suggest strongly that normalizing floating point routines should
always deliver a properly rounded result to the maximum possible accuracy.
There should be no exceptions to this dictum, even in cases that occur with
extremely low probability; the appropriate number of significant digits
should be retained throughout the computations, as stated in Algorithms A
and M.
C. Floating point hardware. Nearly every large computer intended for
scientific calculations includes floating point arithmetic as part of its
repertoire of built-in operations. Unfortunately, the design of such hardware
usually includes some anomalies that result in dismally poor behavior in

certain circumstances, and we hope that future computer designers will pay
more attention to providing the proper behavior than they have in the past. It
costs only a little more to build the machine right, and considerations in the
following section show that substantial benefits will be gained. Yesterday’s
compromises are no longer appropriate for modern machines, based on what
we know now.

The MIX computer, which is being used as an example of a “typical”
machine in this series of books, has an optional “floating point attachment”
(available at extra cost) that includes the following seven operations:
• FADD, FSUB, FMUL, FDIV, FLOT, FCMP (C = 1, 2, 3, 4, 5, 56,
respectively; F = 6). The contents of rA after the operation ‘FADD V’ are
precisely the same as the contents of rA after the operations

where FADD is the subroutine that appears earlier in this section, except that
both operands are automatically normalized before entry to the subroutine if
they were not already in normalized form. (If exponent underflow occurs
during this pre-normalization, but not during the normalization of the answer,
no underflow is signalled.) Similar remarks apply to FSUB, FMUL, and
FDIV. The contents of rA after the operation ‘FLOT’ are the contents after
‘JMP FLOT’ in the subroutine (10) above.

The contents of rA are unchanged by the operation ‘FCMP V’. This
instruction sets the comparison indicator to LESS, EQUAL, or GREATER,
depending on whether the contents of rA are “definitely less than,”
“approximately equal to,” or “definitely greater than” V, as discussed in the
next section. The precise action is defined by the subroutine FCMP of
exercise 4.2.2–17 with EPSILON in location 0.

No register other than rA is affected by any of the floating point
operations. If exponent overflow or underflow occurs, the overflow toggle is
turned on and the exponent of the answer is given modulo the byte size.
Division by zero leaves undefined garbage in rA. Execution times: 4u, 4u,
9u, 11u, 3u, 4u, respectively.
• FIX (C = 5; F = 7). The contents of rA are replaced by the integer
“round(rA)”, rounding to the nearest integer as in step N5 of Algorithm N.
However, if this answer is too large to fit in the register, the overflow toggle
is set on and the result is undefined. Execution time: 3u.

Sometimes it is helpful to use floating point operators in a nonstandard
way. For example, if the operation FLOT had not been included as part of
MIX’s floating point attachment, we could easily achieve its effect on 4-byte
numbers by writing

This routine is not strictly equivalent to the FLOT operator, since it assumes
that the 1:1 byte of rA is zero, and it destroys rX. The handling of more
general situations is a little tricky, because rounding overflow can occur even
during a FLOT operation.

Similarly, suppose MIX had a FADD operation but not FIX. If we
wanted to round a number u from floating point form to the nearest fixed
point integer, and if we knew that the number was nonnegative and would fit
in at most three bytes, we could write

where location FUDGE contains the constant

the result in rA would be

D. History and bibliography. The origins of floating point notation can be
traced back to Babylonian mathematicians (1800 B.C. or earlier), who made
extensive use of radix-60 floating point arithmetic but did not have a notation
for the exponents. The appropriate exponent was always somehow
“understood” by whoever was doing the calculations. At least one case has
been found in which the wrong answer was given because addition was
performed with improper alignment of the operands, but such examples are
very rare; see O. Neugebauer, The Exact Sciences in Antiquity (Princeton,
N. J.: Princeton University Press, 1952), 26–27. Another early contribution
to floating point notation is due to the Greek mathematician Apollonius (3rd
century B.C.), who apparently was the first to explain how to simplify

multiplication by collecting powers of 10 separately from their coefficients,
at least in simple cases. [For a discussion of Apollonius’s method, see
Pappus, Mathematical Collections (4th century A.D.).] After the Babylonian
civilization died out, the first significant uses of floating point notation for
products and quotients did not emerge until much later, about the time
logarithms were invented (1600) and shortly afterwards when Oughtred
invented the slide rule (1630). The modern notation “xn” for exponents was
being introduced at about the same time; separate symbols for x squared, x
cubed, etc., had been in use before this.

Floating point arithmetic was incorporated into the design of some of the
earliest computers. It was independently proposed by Leonardo Torres y
Quevedo in Madrid, 1914; by Konrad Zuse in Berlin, 1936; and by George
Stibitz in New Jersey, 1939. Zuse’s machines used a floating binary
representation that he called “semi-logarithmic notation”; he also
incorporated conventions for dealing with special quantities like “∞” and
“undefined.” The first American computers to operate with floating point
arithmetic hardware were the Bell Laboratories’ Model V and the Harvard
Mark II, both of which were relay calculators designed in 1944. [See B.
Randell, The Origins of Digital Computers (Berlin: Springer, 1973), 100,
155, 163–164, 259–260; Proc. Symp. Large-Scale Digital Calculating
Machinery (Harvard, 1947), 41–68, 69–79; Datamation 13 (April 1967),
35–44 (May 1967), 45–49; Zeit. für angew. Math. und Physik 1 (1950),
345–346.]

The use of floating binary arithmetic was seriously considered in 1944–
1946 by researchers at the Moore School in their plans for the first
electronic digital computers, but they found that floating point circuitry was
much harder to implement with tubes than with relays. The group realized
that scaling was a problem in programming; but they knew that it was only a
very small part of a total programming job in those days. Indeed, explicit
fixed-point scaling seemed to be well worth the time and trouble it took,
since it tended to keep programmers aware of the numerical accuracy they
were getting. Furthermore, the machine designers argued that floating point
representation would consume valuable memory space, since the exponents
must be stored; and they noted that floating point hardware was not readily
adapted to multiple-precision calculations. [See von Neumann’s Collected
Works 5 (New York: Macmillan, 1963), 43, 73–74.] At that time, of course,

they were designing the first stored-program computer and the second
electronic computer, and their choice had to be either fixed point or floating
point arithmetic, not both. They anticipated the coding of floating binary
subroutines, and in fact “shift left” and “shift right” instructions were put into
their design primarily to make such routines more efficient. The first machine
to have both kinds of arithmetic in its hardware was apparently a computer
developed at General Electric Company [see Proc. 2nd Symp. Large-Scale
Digital Calculating Machinery (Cambridge, Mass.: Harvard University
Press, 1951), 65–69].

Floating point subroutines and interpretive systems for early machines
were coded by D. J. Wheeler and others, and the first publication of such
routines was in The Preparation of Programs for an Electronic Digital
Computer by Wilkes, Wheeler, and Gill (Reading, Mass.: Addison–Wesley,
1951), subroutines A1–A11, pages 35–37 and 105–117. It is interesting to
note that floating decimal subroutines are described here, although a binary
computer was being used; in other words, the numbers were represented as
10ef, not 2ef, and therefore the scaling operations required multiplication or
division by 10. On this particular machine such decimal scaling was almost
as easy as shifting, and the decimal approach greatly simplified input/output
conversions.

Most published references to the details of floating point arithmetic
routines are scattered in technical memorandums distributed by various
computer manufacturers, but there have been occasional appearances of these
routines in the open literature. Besides the reference above, the following are
of historical interest: R. H. Stark and D. B. MacMillan, Math. Comp. 5
(1951), 86–92, where a plugboard-wired program is described; D.
McCracken, Digital Computer Programming (New York: Wiley, 1957),
121–131; J. W. Carr III, CACM 2, 5 (May 1959), 10–15; W. G. Wadey,
JACM 7 (1960), 129–139; D. E. Knuth, JACM 8 (1961), 119–128; O.
Kesner, CACM 5 (1962), 269–271; F. P. Brooks and K. E. Iverson,
Automatic Data Processing (New York: Wiley, 1963), 184–199. For a
discussion of floating point arithmetic from a computer designer’s standpoint,
see “Floating point operation” by S. G. Campbell, in Planning a Computer
System, edited by W. Buchholz (New York: McGraw–Hill, 1962), 92–121;
A. Padegs, IBM Systems J. 7 (1968), 22–29. Additional references, which

deal primarily with the accuracy of floating point methods, are given in
Section 4.2.2.

A revolutionary change in floating point hardware took place when most
manufacturers began to adopt ANSI/IEEE Standard 754 during the late
1980s. Relevant references are: IEEE Micro 4 (1984), 86–100; W. J. Cody,
Comp. Sci. and Statistics: Symp. on the Interface 15 (1983), 133–139; W.
M. Kahan, Mini/Micro West-83 Conf. Record (1983), Paper 16/1; D.
Goldberg, Computing Surveys 23 (1991), 5–48, 413; W. J. Cody and J. T.
Coonen, ACM Trans. Math. Software 19 (1993), 443–451.

 The MMIX computer, which will replace MIX in the next edition of this

book, will naturally conform to the new standard.

Exercises

1. [10] How would Avogadro’s number and Planck’s constant (3) be
represented in base 100, excess 50, four-digit floating point notation? (This
would be the representation used by MIX, as in (4), when the byte size is
100.)

2. [12] Assume that the exponent e is constrained to lie in the range 0 ≤ e
≤ E; what are the largest and smallest positive values that can be written as
base b, excess q, p-digit floating point numbers? What are the largest and
smallest positive values that can be written as normalized floating point
numbers with these specifications?

3. [11] (K. Zuse, 1936.) Show that if we are using normalized floating
binary arithmetic, there is a way to increase the precision slightly without
loss of memory space: A p-bit fraction part can be represented using only p
− 1 bit positions of a computer word, if the range of exponent values is
decreased very slightly.
 4. [16] Assume that b = 10, p = 8. What result does Algorithm A give for
(50, +.98765432) ⊕ (49, +.33333333)? For (53, –.99987654) ⊕ (54,
+.10000000)? For (45, –.50000001) ⊕ (54, +.10000000)?
 5. [24] Let us say that x ~ y (with respect to a given radix b) if x and y are
real numbers satisfying the following conditions:

Prove that if fv is replaced by b−p−2Fv between steps A5 and A6 of Algorithm
A, where Fv ~ bp+2fv, the result of that algorithm will be unchanged. (If Fv is
an integer and b is even, this operation essentially truncates fv to p + 2 places
while remembering whether any nonzero digits have been dropped, thereby
minimizing the length of register that is needed for the addition in step A6.)

6. [20] If the result of a FADD instruction is zero, what will be the sign of
rA, according to the definitions of MIX’s floating point attachment given in
this section?

7. [27] Discuss floating point arithmetic using balanced ternary notation.
8. [20] Give examples of normalized eight-digit floating decimal numbers

u and v for which addition yields (a) exponent underflow, (b) exponent
overflow, assuming that exponents must satisfy 0 ≤ e < 100.

9. [M24] (W. M. Kahan.) Assume that the occurrence of exponent
underflow causes the result to be replaced by zero, with no error indication
given. Using excess zero, eight-digit floating decimal numbers with e in the
range –50 ≤ e < 50, find positive values of a, b, c, d, and y such that (11)
holds.

10. [12] Give an example of normalized eight-digit floating decimal
numbers u and v for which rounding overflow occurs in addition.

 11. [M20] Give an example of normalized, excess 50, eight-digit floating
decimal numbers u and v for which rounding overflow occurs in
multiplication.
12. [M25] Prove that rounding overflow cannot occur during the
normalization phase of floating point division.
13. [30] When doing “interval arithmetic” we don’t want to round the
results of a floating point computation; we want rather to implement

operations such as and , which give the tightest possible representable
bounds on the true sum:

How should the algorithms of this section be modified for such a purpose?
14. [25] Write a MIX subroutine that begins with an arbitrary floating point
number in register A, not necessarily normalized, and converts it to the
nearest fixed point integer (or determines that the number is too large in
absolute value to make such a conversion possible).

 15. [28] Write a MIX subroutine, to be used in connection with the other
subroutines of this section, that calculates , namely u – ⌊u⌋
rounded to the nearest floating point number, given a floating point number
u. Notice that when u is a very small negative number, should be
rounded so that the result is unity (even though u mod 1 has been defined to
be always less than unity, as a real number).
16. [HM21] (Robert L. Smith.) Design an algorithm to compute the real
and imaginary parts of the complex number (a + bi)/(c + di), given real
floating point values a, b, c, and d with c + di ≠ 0. Avoid the computation
of c2 + d2, since it would cause floating point overflow even when |c| or |d|
is approximately the square root of the maximum allowable floating point
value.
17. [40] (John Cocke.) Explore the idea of extending the range of floating
point numbers by defining a single-word representation in which the
precision of the fraction decreases as the magnitude of the exponent
increases.
18. [25] Consider a binary computer with 36-bit words, on which positive
floating binary numbers are represented as (0 e1e2 . . . e8f1f2 . . . f27)2; here
(e1e2 . . . e8)2 is an excess (10000000)2 exponent and (f1f2 . . . f27)2 is a 27-
bit fraction. Negative floating point numbers are represented by the two’s
complement of the corresponding positive representation (see Section
4.1). Thus, 1.5 is 201 |600000000 in octal notation, while –1.5 is 576
|200000000 ; the octal representations of 1.0 and –1.0 are 201 |400000000
and 576 |400000000, respectively. (A vertical line is used here to show
the boundary between exponent and fraction.) Note that bit f1 of a

normalized positive number is always 1, while it is almost always zero for
negative numbers; the exceptional cases are representations of –2k.

Suppose that the exact result of a floating point operation has the octal
code 572 |740000000 |01 ; this (negative) 33-bit fraction must be
normalized and rounded to 27 bits. If we shift left until the leading fraction
bit is zero, we get 576 |000000000 |20, but this rounds to the illegal value
576 |000000000 ; we have over-normalized, since the correct answer is
575 |400000000. On the other hand if we start (in some other problem)
with the value 572 |740000000 |05 and stop before over-normalizing it,
we get 575 |400000000 |50, which rounds to the unnormalized number 575
|400000001 ; subsequent normalization yields 576 |000000002 while the
correct answer is 576 |000000001.

Give a simple, correct rounding rule that resolves this dilemma on
such a machine (without abandoning two’s complement notation).
19. [24] What is the running time for the FADD subroutine in Program A, in
terms of relevant characteristics of the data? What is the maximum running
time, over all inputs that do not cause exponent overflow or underflow?

Round numbers are always false.
— SAMUEL JOHNSON (1750)

I shall speak in round numbers, not absolutely accurate, yet
not so wide from truth as to vary the result materially.

— THOMAS JEFFERSON (1824)

4.2.2. Accuracy of Floating Point Arithmetic
Floating point computation is by nature inexact, and programmers can easily
misuse it so that the computed answers consist almost entirely of “noise.”
One of the principal problems of numerical analysis is to determine how
accurate the results of certain numerical methods will be. There’s a
credibility gap: We don’t know how much of the computer’s answers to
believe. Novice computer users solve this problem by implicitly trusting in
the computer as an infallible authority; they tend to believe that all digits of a
printed answer are significant. Disillusioned computer users have just the
opposite approach; they are constantly afraid that their answers are almost
meaningless. Many serious mathematicians have attempted to analyze a
sequence of floating point operations rigorously, but have found the task so
formidable that they have tried to be content with plausibility arguments
instead.

A thorough examination of error analysis techniques is beyond the scope
of this book, but in the present section we shall study some of the low-level
characteristics of floating point arithmetic errors. Our goal is to discover
how to perform floating point arithmetic in such a way that reasonable
analyses of error propagation are facilitated as much as possible.

A rough (but reasonably useful) way to express the behavior of floating
point arithmetic can be based on the concept of “significant figures” or
relative error. If we are representing an exact real number x inside a
computer by using the approximation = x(1 + ∈), the quantity ∈ = (– x)/x
is called the relative error of approximation. Roughly speaking, the
operations of floating point multiplication and division do not magnify the
relative error by very much; but floating point subtraction of nearly equal
quantities (and floating point addition, u ⊕ v, where u is nearly equal to –v)
can very greatly increase the relative error. So we have a general rule of
thumb, that a substantial loss of accuracy is expected from such additions and
subtractions, but not from multiplications and divisions. On the other hand,
the situation is somewhat paradoxical and needs to be understood properly,
since the “bad” additions and subtractions are always performed with perfect
accuracy! (See exercise 25.)

One of the consequences of the possible unreliability of floating point
addition is that the associative law breaks down:

For example,

(All examples in this section are given in eight-digit floating decimal
arithmetic, with exponents indicated by an explicit decimal point. Recall that,
as in Section 4.2.1, the symbols ⊕, ⊖, ⊗ , ⊘ are used to stand for floating
point operations that correspond to the exact operations +, –, ×, /.)

In view of the failure of the associative law, the comment of Mrs. La
Touche that appears at the beginning of this chapter makes a good deal of
sense with respect to floating point arithmetic. Mathematical notations like
“a1 + a2 + a3” or are inherently based upon the assumption of
associativity, so a programmer must be especially careful not to assume
implicitly that the associative law is valid.
A. An axiomatic approach. Although the associative law is not valid, the
commutative law

does hold, and this law can be a valuable conceptual asset in programming
and in the analysis of programs. Equation (2) suggests that we should look
for additional examples of important laws that are satisfied by ⊕, ⊖, ⊗ , and
⊘; it is not unreasonable to say that floating point routines should be
designed to preserve as many of the ordinary mathematical laws as
possible. If more axioms are valid, it becomes easier to write good
programs, and programs also become more portable from machine to
machine.

Let us therefore consider some of the other basic laws that are valid for
normalized floating point operations as described in the previous section.
First we have

From these laws we can derive further identities; for example (exercise 1),

Identities (2) to (6) are easily deduced from the algorithms in Section
4.2.1. The following rule is slightly less obvious:

Instead of attempting to prove this rule by analyzing Algorithm 4.2.1A, let us
go back to the basic principle by which that algorithm was designed.
(Algorithmic proofs aren’t always easier than mathematical ones.) Our idea
was that the floating point operations should satisfy

where round(x) denotes the best floating point approximation to x as defined
in Algorithm 4.2.1N. We have

and these fundamental relations yield properties (2) through (8) immediately.
We can also write down several more identities:

If u ≤ v and w > 0, then u ⊗ w ≤ v ⊗ w and u ⊘ w ≤ v ⊘ w; also w ⊘ u ≥ w
⊘ v when v ≥ u > 0. If u ⊕ v = u + v, then (u ⊕ v) ⊖ v = u; and if u ⊗ v = u ×
v ≠ 0, then (u ⊗ v) ⊘ v = u. We see that a good deal of regularity is present
in spite of the inexactness of the floating point operations, when things have
been defined properly.

Several familiar rules of algebra are still, of course, conspicuously
absent from the collection of identities above. The associative law for
floating point multiplication is not strictly true, as shown in exercise 3, and
the distributive law between ⊗ and ⊕ can fail rather badly: Let u =
20000.000, v = –6.0000000, and w = 6.0000003; then

so

On the other hand we do have b ⊗ (v ⊕ w) = (b ⊗ v) ⊕ (b ⊗ w), when b is
the floating point radix, since

(Strictly speaking, the identities and inequalities we are considering in this
section implicitly assume that exponent underflow and overflow do not
occur. The function round(x) is undefined when |x| is too small or too large,
and equations such as (13) hold only when both sides are defined.)

The failure of Cauchy’s fundamental inequality

is another important example of the breakdown of traditional algebra in the
presence of floating point arithmetic. Exercise 7 shows that Cauchy’s
inequality can fail even in the simple case n = 2, x1 = x2 = 1. Novice
programmers who calculate the standard deviation of some observations by
using the textbook formula

often find themselves taking the square root of a negative number! A much
better way to calculate means and standard deviations with floating point
arithmetic is to use the recurrence formulas

for 2 ≤ k ≤ n, where . [See B. P. Welford,
Technometrics 4 (1962), 419–420.] With this method Sn can never be
negative, and we avoid other serious problems encountered by the naïve
method of accumulating sums, as shown in exercise 16. (See exercise 19 for
a summation technique that provides an even better guarantee on the
accuracy.)

Although algebraic laws do not always hold exactly, we can often show
that they aren’t too far off base. When be−1 ≤ |x| < be we have round(x) = x +
ρ(x), where ; hence

where the relative error is bounded independently of x:

We can use this inequality to estimate the relative error of normalized
floating point calculations in a simple way, since u ⊕ v = (u + v)(1 + δ(u +
v)), etc.

As an example of typical error-estimation procedures, let us consider the
associative law for multiplication. Exercise 3 shows that (u ⊗ v) ⊗ w is not
in general equal to u ⊗ (v ⊗ w); but the situation in this case is much better
than it was with respect to the associative law of addition (1) and the
distributive law (12). In fact, we have

for some δ1, δ2, δ3, δ4, provided that no exponent underflow or overflow
occurs, where for each j. Hence

where

The number b1–p occurs so often in such analyses, it has been given a
special name, one ulp, meaning one unit in the last place of the fraction part.
Floating point operations are correct to within half an ulp, and the calculation
of uvw by two floating point multiplications will be correct within about one
ulp (ignoring second-order terms). Hence the associative law for
multiplication holds to within about two ulps of relative error.

We have shown that (u ⊗ v) ⊗ w is approximately equal to u ⊗ (v ⊗ w),
except when exponent overflow or underflow is a problem. It is worthwhile
to study this intuitive idea of approximate equality in more detail; can we
make such a statement more precise in a reasonable way?

Programmers who use floating point arithmetic almost never want to test
if two computed values are exactly equal to each other (or at least they
hardly ever should try to do so), because this is an extremely improbable
occurrence. For example, if a recurrence relation

is being used, where the theory in some textbook says that xn approaches a
limit as n → ∞, it is usually a mistake to wait until xn+1 = xn for some n,
since the sequence xn might be periodic with a longer period due to the
rounding of intermediate results. The proper procedure is to wait until |xn+1 –
xn| < δ, for some suitably chosen number δ; but since we don’t necessarily
know the order of magnitude of xn in advance, it is even better to wait until

now ∈ is a number that is much easier to select. Relation (20) is another way
of saying that xn+1 and xn are approximately equal; and our discussion
indicates that a relation of “approximately equal” would be more useful than
the traditional relation of equality, when floating point computations are
involved, if we could only define a suitable approximation relation.

In other words, the fact that strict equality of floating point values is of
little importance implies that we ought to have a new operation, floating
point comparison, which is intended to help assess the relative values of
two floating point quantities. The following definitions seem to be
appropriate for base b, excess q, floating point numbers u = (eu, fu) and v =
(ev, fv):

These definitions apply to unnormalized values as well as to normalized
ones. Notice that exactly one of the conditions u ≺ v (definitely less than), u

~ v (approximately equal to), or u ≻ v (definitely greater than) must always
hold for any given pair of values u and v. The relation u ≈ v is somewhat
stronger than u ~ v, and it might be read “u is essentially equal to v.” All of
the relations are specified in terms of a positive real number ∈ that measures
the degree of approximation being considered.

One way to view the definitions above is to associate a “neighborhood”
set N(u) = {x | |x – u| ≤ εbeu–q} with each floating point number u; thus, N(u)
represents a set of values near u based on the exponent of u’s floating point
representation. In these terms, we have u ≺ v if and only if N(u) < v and u <
N(v); u ~ v if and only if u ∊ N(v) or v ∊ N(u); u ≻ v if and only if u > N(v)
and N(u) > v; u ≈ v if and only if u ∊ N(v) and v ∊ N(u). (Here we are
assuming that the parameter ε, which measures the degree of approximation,
is a constant; a more complete notation would indicate the dependence of
N(u) upon ε.)

Here are some simple consequences of definitions (21)–(24):

Moreover, we can prove without difficulty that

and conversely, for normalized floating point numbers u and v, when ε < 1,

Let ε0 = b1–p be one ulp. The derivation of (17) establishes the inequality
|x – round min(|x|, |round(x)|), hence

it follows that , etc. The approximate associative
law for multiplication derived above can be recast as follows: We have

by (19), and the same inequality is valid with (u ⊗ v) ⊗ w and u ⊗ (v ⊗ w)
interchanged. Hence by (34),

whenever . For example, if b = 10 and p = 8 we may
take ε = 0.00000021.

The relations ≺, ~, ≻, and ≈ are useful within numerical algorithms, and
it is therefore a good idea to provide routines for comparing floating point
numbers as well as for doing arithmetic on them.

Let us now shift our attention back to the question of finding exact
relations that are satisfied by the floating point operations. It is interesting to
note that floating point addition and subtraction are not completely
intractable from an axiomatic standpoint, since they do satisfy the nontrivial
identities stated in the following theorems.
Theorem A. Let u and v be normalized floating point numbers. Then

provided that no exponent overflow or underflow occurs.
This rather cumbersome-looking identity can be rewritten in a simpler
manner: Let

Intuitively, u′ and u″ should be approximations to u, and v′ and v″ should be
approximations to v. Theorem A tells us that

This is a stronger statement than the identity

which follows by rounding (42).

Proof. Let us say that t is a tail of x modulo be if

thus, x – round(x) is always a tail of x. The proof of Theorem A rests largely
on the following simple fact proved in exercise 11:
Lemma T. If t is a tail of the floating point number x, then x ⊖ t = x – t.

Let w = u ⊕ v. Theorem A holds trivially when w = 0. By multiplying all
variables by a suitable power of b, we may assume without loss of generality
that ew = p. Then u + v = w + r, where r is a tail of u + v modulo 1.
Furthermore u′ = round(w – v) = round(u – r) = u – r – t, where t is a tail of
u – r modulo be and e = eu′ – p.

If e ≤ 0, then t ≡ u – r ≡ –v (modulo be), hence t is a tail of –v and v″ =
round(w – u′) = round(v + t) = v + t; this proves (40). If e > 0, then

; and since , we have |u| ≥ bp − 1. It follows that
u is an integer, so r is a tail of v modulo 1. If u′ = u, then t = –r is a tail of –v.
Otherwise the relation round(u – r) ≠ u implies that

, |u′| = bp, t = r; again t is a tail of –v.
Theorem A exhibits a regularity property of floating point addition, but it

doesn’t seem to be an especially useful result. The following identity is more
significant:
Theorem B. Under the hypotheses of Theorem A and (41),

Proof. In fact, we can show that u ⊖ u′ = u – u′, v ⊖ v″ = v – v″, and (u – u′)
⊕ (v – v″) = (u – u′) + (v – v″), hence (45) will follow from Theorem A.
Using the notation of the preceding proof, these relations are respectively
equivalent to

Exercise 12 establishes the theorem in the special case |eu – ev| ≥ p.
Otherwise u + v has at most 2p significant digits and it is easy to see that
round(r) = r. If now e > 0, the proof of Theorem A shows that t = –r or t = r
= ± . If e ≤ 0 we have t + r ≡ u and t ≡ –v (modulo be); this is enough to
prove that t + r and t round to themselves, provided that eu ≥ e and ev ≥ e.

But either eu < 0 or ev < 0 would contradict our hypothesis that |eu – ev| < p,
since ew = p.

Theorem B gives an explicit formula for the difference between u + v
and u ⊕ v, in terms of quantities that can be calculated directly using five
operations of floating point arithmetic. If the radix b is 2 or 3, we can
improve on this result, obtaining the exact value of the correction term with
only two floating point operations and one (fixed point) comparison of
absolute values:
Theorem C. If b ≤ 3 and |u| ≥ |v|, then

Proof. Following the conventions of preceding proofs again, we wish to
show that v ⊖ v′ = r. It suffices to show that v′ = w – u, because (46) will
then yield v ⊖ v′ = round(v – v′) = round(u + v – w) = round(r) = r.

We shall in fact prove (47) whenever b ≤ 3 and eu ≥ ev. If eu ≥ p, then r
is a tail of v modulo 1, hence v′ = w ⊖ u = v ⊖ r = v – r = w – u as desired. If
eu < p, then we must have eu = p − 1, and w – u is a multiple of b−1; it will
therefore round to itself if its magnitude is less than bp−1 + b−1. Since b ≤ 3,
we have indeed

.
This completes the proof.

The proofs of Theorems A, B, and C do not rely on the precise
definitions of round(x) in the ambiguous cases when x is exactly midway
between consecutive floating point numbers; any way of resolving the
ambiguity will suffice for the validity of everything we have proved so far.

No rounding rule can be best for every application. For example, we
generally want a special rule when computing our income tax. But for most
numerical calculations the best policy appears to be the rounding scheme
specified in Algorithm 4.2.1N, which insists that the least significant digit
should always be made even (or always odd) when an ambiguous value is
rounded. This is not a trivial technicality, of interest only to nit-pickers; it is
an important practical consideration, since the ambiguous case arises
surprisingly often and a biased rounding rule produces significantly poor
results. For example, consider decimal arithmetic and assume that

remainders of 5 are always rounded upwards. Then if u = 1.0000000 and v =
0.55555555 we have u⊕v = 1.5555556; and if we floating-subtract v from
this result we get u′ = 1.0000001. Adding and subtracting v from u′ gives
1.0000002, and the next time we get 1.0000003, etc.; the result keeps
growing although we are adding and subtracting the same value.

This phenomenon, called drift, will not occur when we use a stable
rounding rule based on the parity of the least significant digit. More
precisely:
Theorem D. (((u ⊕ v) ⊖ v) ⊕ v) ⊖ v = (u ⊕ v) ⊖ v.
For example, if u = 1.2345679 and v = –0.23456785, we find

The proof for general u and v seems to require a case analysis even more
detailed than that in the theorems above; see the references below.

Theorem D is valid both for “round to even” and “round to odd”; how
should we choose between these possibilities? When the radix b is odd,
ambiguous cases never arise except during floating point division, and the
rounding in such cases is comparatively unimportant. For even radices, there
is reason to prefer the following rule: “Round to even when b/2 is odd, round
to odd when b/2 is even.” The least significant digit of a floating point
fraction occurs frequently as a remainder to be rounded off in subsequent
calculations, and this rule avoids generating the digit b/2 in the least
significant position whenever possible; its effect is to provide some memory
of an ambiguous rounding so that subsequent rounding will tend to be
unambiguous. For example, if we were to round to odd in the decimal
system, repeated rounding of the number 2.44445 to one less place each time
leads to the sequence 2.4445, 2.445, 2.45, 2.5, 3; if we round to even, such
situations do not occur, although repeated rounding of a number like 2.5454
will lead to almost as much error. [See Roy A. Keir, Inf. Proc. Letters 3
(1975), 188–189.] Some people prefer rounding to even in all cases, so that
the least significant digit will tend to be 0 more often. Exercise 23
demonstrates this advantage of round-to-even. Neither alternative
conclusively dominates the other; fortunately the base is usually b = 2 or b =
10, when everyone agrees that round-to-even is best.

A reader who has checked some of the details of the proofs above will
realize the immense simplification that has been afforded by the simple rule u
⊕ v = round(u + v). If our floating point addition routine would fail to give
this result even in a few rare cases, the proofs would become enormously
more complicated and perhaps they would even break down completely.

Theorem B fails if truncation arithmetic is used in place of rounding, that
is, if we let u ⊕ v = trunc(u + v) and u ⊖ v = trunc(u – v), where trunc(x) for
a positive real x is the largest floating point number ≤ x. An exception to
Theorem B would then occur for cases such as (20, +.10000001) ⊕ (10,
–.10000001) = (20, +.10000000), when the difference between u+v and u⊕v
cannot be expressed exactly as a floating point number; and also for cases
such as 12345678 ⊕ .012345678, when it can be.

Many people feel that, since floating point arithmetic is inexact by
nature, there is no harm in making it just a little bit less exact in certain rather
rare cases, if it is convenient to do so. This policy saves a few cents in the
design of computer hardware, or a small percentage of the average running
time of a subroutine. But our discussion shows that such a policy is mistaken.
We could save about five percent of the running time of the FADD subroutine,
Program 4.2.1A, and about 25 percent of its space, if we took the liberty of
rounding incorrectly in a few cases, but we are much better off leaving it as it
is. The reason is not to glorify “bit chasing”; a more fundamental issue is at
stake here: Numerical subroutines should deliver results that satisfy
simple, useful mathematical laws whenever possible. The crucial formula u
⊕ v = round(u + v) is a regularity property that makes a great deal of
difference between whether mathematical analysis of computational
algorithms is worth doing or worth avoiding. Without any underlying
symmetry properties, the job of proving interesting results becomes
extremely unpleasant. The enjoyment of one’s tools is an essential
ingredient of successful work.
B. Unnormalized floating point arithmetic. The policy of normalizing all
floating point numbers may be construed in two ways: We may look on it
favorably by saying that it is an attempt to get the maximum possible
accuracy obtainable with a given degree of precision, or we may consider it
to be potentially dangerous since it tends to imply that the results are more
accurate than they really are. When we normalize the result of (1,

+.31428571) ⊖ (1, +.31415927) to (–2, +.12644000), we are suppressing
information about the possibly greater inaccuracy of the latter quantity. Such
information would be retained if the answer were left as (1, +.00012644).

The input data to a problem is frequently not known as precisely as the
floating point representation allows. For example, the values of Avogadro’s
number and Planck’s constant are not known to eight significant digits, and it
might be more appropriate to denote them, respectively, by

instead of by (24, +.60221400) and (–26, +.66261000). It would be nice if
we could give our input data for each problem in an unnormalized form that
expresses how much precision is assumed, and if the output would indicate
just how much precision is known in the answer. Unfortunately, this is a
terribly difficult problem, although the use of unnormalized arithmetic can
help to give some indication. For example, we can say with a fair degree of
certainty that the product of Avogadro’s number by Planck’s constant is (1,
+.00039903), and that their sum is (27, +.00060221). (The purpose of this
example is not to suggest that any important physical significance should be
attached to the sum and product of these fundamental constants; the point is
that it is possible to preserve a little of the information about precision in the
result of calculations with imprecise quantities, when the original operands
are independent of each other.)

The rules for unnormalized arithmetic are simply this: Let lu be the
number of leading zeros in the fraction part of u = (eu, fu), so that lu is the
largest integer ≤ p with |fu| < b−lu . Then addition and subtraction are
performed just as in Algorithm 4.2.1A, except that all scaling to the left is
suppressed. Multiplication and division are performed as in Algorithm
4.2.1M, except that the answer is scaled right or left so that precisely max(lu,
lv) leading zeros appear. Essentially the same rules have been used in manual
calculation for many years.

It follows that, for unnormalized computations,

When the result of a calculation is zero, an unnormalized zero (often called
an “order of magnitude zero”) is given as the answer; this indicates that the
answer may not truly be zero, we just don’t know any of its significant digits.

Error analysis takes a somewhat different form with unnormalized
floating point arithmetic. Let us define

This quantity depends on the representation of u, not just on the value beu–qfu.
Our rounding rule tells us that

These inequalities apply to normalized as well as unnormalized arithmetic;
the main difference between the two types of error analysis is the definition
of the exponent of the result of each operation (Eqs. (48) to (50)).

We have remarked that the relations ≺, ~, ≻, and ≈ defined earlier in this
section are valid and meaningful for unnormalized numbers as well as for
normalized numbers. As an example of the use of these relations, let us prove
an approximate associative law for unnormalized addition, analogous to
(39):

for suitable ε. We have

A similar formula holds for |u ⊕ (v ⊕ w) – (u + v + w)|. Now since e(u⊕v)⊕w

= max(eu, ev, ew) + (0, 1, or 2), we have δ(u⊕v)⊕w ≤ b2δu⊕(v⊕w). Therefore
we find that (52) is valid when ε ≥ b2–p + b−p; unnormalized addition is not
as erratic as normalized addition with respect to the associative law.

It should be emphasized that unnormalized arithmetic is by no means a
panacea. There are examples where it indicates greater accuracy than is
present (for example, addition of a great many small quantities of about the
same magnitude, or evaluation of xn for large n); and there are many more

examples when it indicates poor accuracy while normalized arithmetic
actually does produce good results. There is an important reason why no
straightforward one-operation-ata-time method of error analysis can be
completely satisfactory, namely the fact that operands are usually not
independent of each other. This means that errors tend to cancel or reinforce
each other in strange ways. For example, suppose that x is approximately
1/2, and suppose that we have an approximation y = x + δ with absolute error
δ. If we now wish to compute x(1 – x), we can form y(1 – y); if
we find y(1 – y) = x(1 – x) – 2εδ – δ2, so the absolute error has decreased
substantially: It has been multiplied by a factor of 2ε + δ. This is just one
case where multiplication of imprecise quantities can lead to a quite accurate
result when the operands are not independent of each other. A more obvious
example is the computation of x ⊖ x, which can be obtained with perfect
accuracy regardless of how bad an approximation to x we begin with.

The extra information that unnormalized arithmetic gives us can often be
more important than the information it destroys during an extended
calculation, but (as usual) we must use it with care. Examples of the proper
use of unnormalized arithmetic are discussed by R. L. Ashenhurst and N.
Metropolis in Computers and Computing, AMM, Slaught Memorial Papers
10 (February 1965), 47–59; by N. Metropolis in Numer. Math. 7 (1965),
104–112; and by R. L. Ashenhurst in Error in Digital Computation 2, edited
by L. B. Rall (New York: Wiley, 1965), 3–37. Appropriate methods for
computing standard mathematical functions with both input and output in
unnormalized form are given by R. L. Ashenhurst in JACM 11 (1964), 168–
187. An extension of unnormalized arithmetic, which remembers that certain
values are known to be exact, has been discussed by N. Metropolis in IEEE
Trans. C-22 (1973), 573–576.
C. Interval arithmetic. Another approach to the problem of error
determination is the so-called interval or range arithmetic, in which rigorous
upper and lower bounds on each number are maintained during the
calculations. Thus, for example, if we know that u0 ≤ u ≤ u1 and v0 ≤ v ≤ v1,
we represent this by the interval notation u = [u0 . . u1], v = [v0 . . v1]. The
sum u⊕v is [u0 + v0 . . u1 + v1], where denotes “lower floating point
addition,” the greatest representable number less than or equal to the true
sum, and is defined similarly (see exercise 4.2.1–13). Furthermore u ⊖ v

= [u0 v1 . . u1 v0]; and if u0 and v0 are positive, we have u ⊗ v = [u0
v0..u1 v1], u ⊘ v = [u0 v1..u1 v0]. For example, we might represent
Avogadro’s number and Planck’s constant as

their sum and product would then turn out to be

If we try to divide by [v0 . . v1] when v0 < 0 < v1, there is a possibility of
division by zero. Since the philosophy underlying interval arithmetic is to
provide rigorous error estimates, a divide-by-zero error should be signalled
in this case. However, overflow and underflow need not be treated as fatal
errors in interval arithmetic, if special conventions are introduced as
discussed in exercise 24.

Interval arithmetic takes only about twice as long as ordinary arithmetic,
and it provides truly reliable error estimates. Considering the difficulty of
mathematical error analyses, this is indeed a small price to pay. Since the
intermediate values in a calculation often depend on each other, as explained
above, the final estimates obtained with interval arithmetic will tend to be
pessimistic; and iterative numerical methods often have to be redesigned if
we want to deal with intervals. However, the prospects for effective use of
interval arithmetic look very good, so efforts should be made to increase its
availability and to make it as user-friendly as possible.
D. History and bibliography. Jules Tannery’s classic treatise on decimal
calculations, Leçons d’Arithmétique (Paris: Colin, 1894), stated that
positive numbers should be rounded upwards if the first discarded digit is 5
or more; since exactly half of the decimal digits are 5 or more, he felt that
this rule would round upwards exactly half of the time, on the average, so it
would produce compensating errors. The idea of “round to even” in the
ambiguous cases seems to have been mentioned first by James B.
Scarborough in the first edition of his pioneering book Numerical
Mathematical Analysis (Baltimore: Johns Hopkins Press, 1930), 2; in the
second (1950) edition he amplified his earlier remarks, stating that “It should

be obvious to any thinking person that when a 5 is cut off, the preceding digit
should be increased by 1 in only half the cases,” and he recommended round-
to-even in order to achieve this.

The first analysis of floating point arithmetic was given by F. L. Bauer
and K. Samelson, Zeitschrift für angewandte Math. und Physik 4 (1953),
312–316. The next publication was not until over five years later: J. W. Carr
III, CACM 2, 5 (May 1959), 10–15. See also P. C. Fischer, Proc. ACM Nat.
Meeting 13 (1958), Paper 39. The book Rounding Errors in Algebraic
Processes (Englewood Cliffs: Prentice–Hall, 1963), by J. H. Wilkinson,
shows how to apply error analysis of the individual arithmetic operations to
the error analysis of large-scale problems; see also his treatise on The
Algebraic Eigenvalue Problem (Oxford: Clarendon Press, 1965).

Additional early work on floating point accuracy is summarized in two
important papers that can be especially recommended for further study: W.
M. Kahan, Proc. IFIP Congress (1971), 2, 1214–1239; R. P. Brent, IEEE
Trans. C-22 (1973), 601–607. Both papers include useful theory and
demonstrate that it pays off in practice.

The relations ≺, ~, ≻, ≈ introduced in this section are similar to ideas
published by A. van Wijngaarden in BIT 6 (1966), 66–81. Theorems A and B
above were inspired by some related work of Ole Møller, BIT 5 (1965), 37–
50, 251–255; Theorem C is due to T. J. Dekker, Numer. Math. 18 (1971),
224–242. Extensions and refinements of all three theorems have been
published by S. Linnainmaa, BIT 14 (1974), 167–202. W. M. Kahan
introduced Theorem D in some unpublished notes; for a complete proof and
further commentary, see J. F. Reiser and D. E. Knuth, Inf. Proc. Letters 3
(1975), 84–87, 164.

Unnormalized floating point arithmetic was recommended by F. L. Bauer
and K. Samelson in the article cited above, and it was independently used by
J. W. Carr III at the University of Michigan in 1953. Several years later, the
MANIAC III computer was designed to include both kinds of arithmetic in its
hardware; see R. L. Ashenhurst and N. Metropolis, JACM 6 (1959), 415–
428, IEEE Trans. EC-12 (1963), 896–901; R. L. Ashenhurst, Proc. Spring
Joint Computer Conf. 21 (1962), 195–202. See also H. L. Gray and C.
Harrison, Jr., Proc. Eastern Joint Computer Conf. 16 (1959), 244–248, and

W. G. Wadey, JACM 7 (1960), 129–139, for further early discussions of
unnormalized arithmetic.

For early developments in interval arithmetic, and some modifications,
see A. Gibb, CACM 4 (1961), 319–320; B. A. Chartres, JACM 13 (1966),
386–403; and the book Interval Analysis by Ramon E. Moore (Prentice–
Hall, 1966). The subsequent flourishing of this subject is described in
Moore’s later book, Methods and Applications of Interval Analysis
(Philadelphia: SIAM, 1979).

An extension of the Pascal language that allows variables to be of type
“interval” was developed at the University of Karlsruhe in the early 1980s.
For a description of this language, which also includes numerous other
features for scientific computing, see Pascal-SC by Bohlender, Ullrich, Wolff
von Gudenberg, and Rall (New York: Academic Press, 1987).

The book Grundlagen des numerischen Rechnens: Mathematische
Begrün-dung der Rechnerarithmetik by Ulrich Kulisch (Mannheim: Bibl.
Inst., 1976) is entirely devoted to the study of floating point arithmetic
systems. See also Kulisch’s article in IEEE Trans. C-26 (1977), 610–621,
and his more recent book written jointly with W. L. Miranker, entitled
Computer Arithmetic in Theory and Practice (New York: Academic Press,
1981).

An excellent summary of more recent work on floating point error
analysis appears in the book Accuracy and Stability of Numerical
Algorithms by N. J. Higham (Philadelphia: SIAM, 1996).

Exercises

Note: Normalized floating point arithmetic is assumed unless the contrary is
specified.

1. [M18] Prove that identity (7) is a consequence of (2) through (6).
2. [M20] Use identities (2) through (8) to prove that (u ⊕ x) ⊕ (v ⊕ y) ≥ u

⊕ v whenever x ≥ 0 and y ≥ 0.
3. [M20] Find eight-digit floating decimal numbers u, v, and w such that

and such that no exponent overflow or underflow occurs during the
computations.

4. [10] Is it possible to have floating point numbers u, v, and w for which
exponent overflow occurs during the calculation of u ⊗ (v ⊗ w) but not
during the calculation of (u ⊗ v) ⊗ w?

5. [M20] Is u ⊘ v = u ⊗ (1 ⊘ v) an identity, for all floating point numbers
u and v ≠ 0 such that no exponent overflow or underflow occurs?

6. [M22] Are either of the following two identities valid for all floating
point numbers u? (a) 0 ⊖ (0 ⊖ u) = u; (b) 1 ⊘ (1 ⊘ u) = u.

7. [M21] Let stand for u ⊗ u. Find floating binary numbers u and v
such that .
 8. [20] Let ε = 0.0001; which of the relations

hold for the following pairs of base 10, excess 0, eight-digit floating point
numbers?

a) u = (1, +.31415927), v = (1, +.31416000);
b) u = (0, +.99997000), v = (1, +.10000039);
c) u = (24, +.60221400), v = (27, +.00060221);
d) u = (24, +.60221400), v = (31, +.00000006);
e) u = (24, +.60221400), v = (28, +.00000000).

9. [M22] Prove (33), and explain why the conclusion cannot be
strengthened to the relation u ≈ w (ε1 + ε2).
 10. [M25] (W. M. Kahan.) A certain computer performs floating point

arithmetic without proper rounding, and, in fact, its floating point
multiplication routine ignores all but the first p most significant digits of
the 2p-digit product fufv. (Thus when fufv < 1/b, the least-significant digit
of u ⊗ v always comes out to be zero, due to subsequent normalization.)
Show that this causes the monotonicity of multiplication to fail; in other
words, exhibit positive normalized floating point numbers u, v, and w such
that u < v but u ⊗ w > v ⊗ w on this machine.
11. [M20] Prove Lemma T.
12. [M24] Carry out the proof of Theorem B and (46) when |eu – ev| ≥ p.

 13. [M25] Some programming languages (and even some computers) make
use of floating point arithmetic only, with no provision for exact
calculations with integers. If operations on integers are desired, we can, of
course, represent an integer as a floating point number; and when the
floating point operations satisfy the basic definitions in (9), we know that
all floating point operations will be exact, provided that the operands and
the answer can each be represented exactly with p significant digits.
Therefore—so long as we know that the numbers aren’t too large—we can
add, subtract, or multiply integers with no inaccuracy due to rounding
errors.

But suppose that a programmer wants to determine if m is an exact
multiple of n, when m and n ≠ 0 are integers. Suppose further that a
subroutine is available to calculate the quantity round

 for any given floating point number u, as in
exercise 4.2.1–15. One good way to determine whether or not m is a
multiple of n might be to test whether or not , using
the assumed subroutine; but perhaps rounding errors in the floating point
calculations will invalidate this test in certain cases.

Find suitable conditions on the range of integer values n ≠ 0 and m,
such that m is a multiple of n if and only if . In other
words, show that if m and n are not too large, this test is valid.
14. [M27] Find a suitable ε such that (u⊗v)⊗w ≈ u⊗(v ⊗ w) (ε), when
unnormalized multiplication is being used. (This generalizes (39), since
unnormalized multiplication is exactly the same as normalized
multiplication when the input operands u, v, and w are normalized.)

 15. [M24] (H. Björk.) Does the computed midpoint of an interval always
lie between the endpoints? (In other words, does u ≤ v imply that u ≤ (u ⊕
v) ⊘ 2 ≤ v?)
16. [M28] (a) What is (... ((x1⊕x2)⊕x3)⊕...⊕xn) when n = 106 and xk =
1.1111111 for all k, using eight-digit floating decimal arithmetic? (b) What
happens when Eq. (14) is used to calculate the standard deviation of these
particular values xk? What happens when Eqs. (15) and (16) are used
instead? (c) Prove that Sk ≥ 0 in (16), for all choices of x1, . . . , xk.

17. [28] Write a MIX subroutine, FCMP, that compares the floating point
number u in location ACC with the floating point number v in register A,
setting the comparison indicator to LESS, EQUAL, or GREATER
according as u ≺ v, u ~ v, or u ≻ v (ε); here ε is stored in location
EPSILON as a nonnegative fixed point quantity with the radix point
assumed at the left of the word. Assume normalized inputs.
18. [M40] In unnormalized arithmetic is there a suitable number ε such that

 19. [M30] (W. M. Kahan.) Consider the following procedure for floating
point summation of x1, x2, . . . , xn:

Let the relative errors in these operations be defined by the equations

where |ηk |, |σk |, |γk |, |δk | ≤ ε. Prove that ,
where |θk | ≤ 2ε + O(nε2). [Theorem C says that if b = 2 and |sk−1| ≥ |yk| we
have sk−1 +yk = sk – ck exactly. But in this exercise we want to obtain an
estimate that is valid even when floating point operations are not
carefully rounded, assuming only that each operation has bounded relative
error.]
20. [25] (S. Linnainmaa.) Find all u and v for which |u| ≥ |v| and (47) fails.
21. [M35] (T. J. Dekker.) Theorem C shows how to do exact addition of
floating binary numbers. Explain how to do exact multiplication: Express
the product uv in the form w + w′, where w and w′ are computed from two
given floating binary numbers u and v, using only the operations ⊕, ⊖, and
⊗.
22. [M30] Can drift occur in floating point multiplication/division?
Consider the sequence x0 = u, x2n+1 = x2n ⊗ v, x2n+2 = x2n+1 ⊘ v, given u
and v ≠ 0; what is the largest subscript k such that xk ≠ xk+2 is possible?

 23. [M26] Prove or disprove: , for all floating
point u.

24. [M27] Consider the set of all intervals [ul . . ur], where ul and ur are
either nonzero floating point numbers or the special symbols +0, –0, +∞, –
∞; each interval must have ul ≤ ur, and ul = ur is allowed only when ul is
finite and nonzero. The interval [ul . . ur] stands for all floating point x such
that ul ≤ x ≤ ur, where we agree that

for all positive x. (Thus, [1 . . 2] means 1 ≤ x ≤ 2; [+0 . . 1] means 0 < x ≤
1; [–0 . . 1] means 0 ≤ x ≤ 1; [–0 . . +0] denotes the single value 0; and [–∞
. . +∞] stands for everything.) Show how to define appropriate arithmetic
operations on all such intervals, without resorting to overflow or
underflow or other anomalous indications except when dividing by an
interval that includes zero.

 25. [15] When people speak about inaccuracy in floating point arithmetic
they often ascribe errors to “cancellation” that occurs during the
subtraction of nearly equal quantities. But when u and v are approximately
equal, the difference u ⊖ v is obtained exactly, with no error. What do
these people really mean?
26. [M21] Given that u, u′, v, and v′ are positive floating point numbers
with u ~ u′ (ε) and v ~ v′ (ε), prove that there’s a small ε′ such that u ⊕ v ~
u′ ⊕ v′ (ε′), assuming normalized arithmetic.
27. [M27] (W. M. Kahan.) Prove that 1 ⊘ (1 ⊘ (1 ⊘ u)) = 1 ⊘ u for all u
≠ 0.
28. [HM30] (H. G. Diamond.) Suppose f(x) is a strictly increasing function
on some interval [x0 . . x1], and let g(x) be the inverse function. (For
example, f and g might be “exp” and “ln”, or “tan” and “arctan”.) If x is a
floating point number such that x0 ≤ x ≤ x1, let (x) = round(f(x)), and if y
is another such that f(x0) ≤ y ≤ f(x1), let ĝ(y) = round(g(y)); furthermore, let
h(x) = ĝ((x)), whenever this is defined. Although h(x) won’t always be
equal to x, due to rounding, we expect h(x) to be fairly near x.

Prove that if the precision bp is at least 3, and if f is strictly concave or
strictly convex (that is, f″(x) has the same sign for all x in [x0 . . x1]), then
repeated application of h will be stable in the sense that

for all x such that both sides of this equation are defined. In other words,
there will be no “drift” if the subroutines are properly implemented.

 29. [M25] Give an example to show that the condition bp ≥ 3 is necessary
in the previous exercise.
30. [M30] (W. M. Kahan.) Let f(x) = 1 + x + ... + x106 = (1 – x107)/(1 – x)
for x < 1, and let for 0 < y < 1.
Evaluate g(y) on one or more pocket calculators, for y = 10−3, 10−4, 10−5,
10−6, and explain all inaccuracies in the results you obtain. (Since most
present-day calculators do not round correctly, the results are often
surprising. Note that g(ε) = 107 – 10491.35ε2 + 659749.9625ε4 –
30141386.26625ε6 + O(ε8).)
31. [M25] (U. Kulisch.) When the polynomial 2y2 + 9x4 – y4 is evaluated
for x = 408855776 and y = 708158977 using standard 53-bit double-
precision floating point arithmetic, the result is ≈ –3.7 × 1019. Evaluating it
in the alternative form 2y2 + (3x2 – y2)(3x2 + y2) gives ≈ +1.0 × 1018. The
true answer, however, is 1.0 (exactly). Explain how to construct similar
examples of numerical instability.
32. [M21] For what pairs (a, b) is round_to_even(x) = ⌊ax + b⌋ + ⌈ax – b⌉
for all x?

*4.2.3. Double-Precision Calculations
Up to now we have considered “single-precision” floating point arithmetic,
which essentially means that the floating point values we have dealt with can
be stored in a single machine word. When single-precision floating point
arithmetic does not yield sufficient accuracy for a given application, the
precision can be increased by suitable programming techniques that use two
or more words of memory to represent each number.

Although we shall discuss the general question of high-precision
calculations in Section 4.3, it is appropriate to give a separate discussion of
double-precision here. Special techniques apply to double precision that are
comparatively inappropriate for higher precisions; and double precision is a
reasonably important topic in its own right, since it is the first step beyond
single precision and it is applicable to many problems that do not require
extremely high precision.

 Well, that paragraph was true when the author wrote the first edition

of this book in the 1960s. But computers have evolved in such a way that
the old motivations for double-precision floating point have mostly
disappeared; the present section is therefore primarily of historical
interest. In the planned fourth edition of this book, Section 4.2.1 will be
renamed “Normalized Calculations,” and the present Section 4.2.3 will be
replaced by a discussion of “Exceptional Numbers.” The new material will
focus on special aspects of ANSI/IEEE Standard 754: subnormal numbers,
infinities, and the so-called NaNs that represent undefined or otherwise
unusual quantities. (See the references at the end of Section 4.2.1.)
Meanwhile, let us take one last look at the older ideas, in order to see what
lessons they can still teach us.

Double-precision calculations are almost always required for floating
point rather than fixed point arithmetic, except perhaps in statistical work
where fixed point double-precision is commonly used to calculate sums of
squares and cross products; since fixed point versions of double-precision
arithmetic are simpler than floating point versions, we shall confine our
discussion here to the latter.

Double precision is quite frequently desired not only to extend the
precision of the fraction parts of floating point numbers, but also to increase
the range of the exponent part. Thus we shall deal in this section with the
following two-word format for double-precision floating point numbers in
the MIX computer:

Here two bytes are used for the exponent and eight bytes are used for the
fraction. The exponent is “excess b2/2,” where b is the byte size. The sign
will appear in the most significant word; it is convenient to ignore the sign of
the other word completely.

Our discussion of double-precision arithmetic will be quite machine-
oriented, because it is only by studying the problems involved in coding
these routines that a person can properly appreciate the subject. A careful
study of the MIX programs below is therefore essential to the understanding
of the material.

In this section we shall depart from the idealistic goals of accuracy
stated in the previous two sections; our double-precision routines will not
round their results, and a little bit of error will sometimes be allowed to
creep in. Users dare not trust these routines too much. There was ample
reason to squeeze out every possible drop of accuracy in the single-precision
case, but now we face a different situation: (a) The extra programming
required to ensure true double-precision rounding in all cases is
considerable; fully accurate routines would take, say, twice as much space
and half again as much time. It was comparatively easy to make our single-
precision routines perfect, but double precision brings us face to face with
our machine’s limitations. A similar situation occurs with respect to other
floating point subroutines; we can’t expect the cosine routine to compute
round(cos x) exactly for all x, since that turns out to be virtually impossible.
Instead, the cosine routine should provide the best relative error it can
achieve with reasonable speed, for all reasonable values of x. Of course, the
designer of the routine should try to make the computed function satisfy
simple mathematical laws whenever possible—for example,

(b) Single-precision arithmetic is a “staple food” that everybody who wants
to employ floating point arithmetic must use, but double precision is usually
for situations where such clean results aren’t as important. The difference
between sevenand eight-place accuracy can be noticeable, but we rarely care
about the difference between 15and 16-place accuracy. Double precision is
most often used for intermediate steps during the calculation of single-
precision results; its full potential isn’t needed. (c) It will be instructive for
us to analyze these procedures in order to see how inaccurate they can be,
since they typify the types of short cuts generally taken in bad single-
precision routines (see exercises 7 and 8).

Let us now consider addition and subtraction operations from this
standpoint. Subtraction is, of course, converted to addition by changing the
sign of the second operand. Addition is performed by separately adding
together the least-significant halves and the most-significant halves,
propagating “carries” appropriately.

A difficulty arises, however, since we are doing signed magnitude
arithmetic: it is possible to add the least-significant halves and to get the
wrong sign (namely, when the signs of the operands are opposite and the

least-significant half of the smaller operand is bigger than the least-
significant half of the larger operand). The simplest solution is to anticipate
the correct sign; so in step A2 of Algorithm 4.2.1A we will now assume not
only that eu ≥ ev but also that |u| ≥ |v|. Then we can be sure that the final sign
will be the sign of u. In other respects, double-precision addition is very
much like its single-precision counterpart, except that everything needs to be
done twice.
Program A (Double-precision addition). The subroutine DFADD adds a
double-precision floating point number v, having the form (1), to a double-
precision floating point number u, assuming that v is initially in rAX
(registers A and X), and that u is initially stored in locations ACC and ACCX.
The answer appears both in rAX and in (ACC, ACCX). The subroutine
DFSUB subtracts v from u under the same conventions.

Both input operands are assumed to be normalized, and the answer is
normalized. The last portion of this program is a double-precision
normalization procedure that is used by other subroutines of this section.
Exercise 5 shows how to improve the program significantly.

When the least-significant halves are added together in this program, an
extra digit “1” is inserted at the left of the word that is known to have the
correct sign. After the addition, this byte can be 0, 1, or 2, depending on the
circumstances, and all three cases are handled simultaneously in this way.
(Compare this with the rather cumbersome method of complementation that is
used in Program 4.2.1A.)

It is worth noting that register A can be zero after the instruction on line
40 has been performed; and, because of the way MIX defines the sign of a
zero result, the accumulator contains the correct sign that is to be attached to
the result if register X is nonzero. If lines 39 and 40 were interchanged, the
program would be incorrect, even though both instructions are ‘ADD’!

Now let us consider double-precision multiplication. The product has
four components, shown schematically in Fig. 4. Since we need only the
leftmost eight bytes, it is convenient to ignore the digits to the right of the
vertical line in the diagram; in particular, we need not even compute the
product of the two least-significant halves.

Fig. 4. Double-precision multiplication of eight-byte fraction parts.

Program M (Double-precision multiplication). The input and output
conventions for this subroutine are the same as for Program A.

Notice the careful treatment of signs in this program, and note also the
fact that the range of exponents makes it impossible to compute the final
exponent using an index register. Program M is perhaps too slipshod in
accuracy, since it uses only the information to the left of the vertical line in

Fig. 4; this can make the least significant byte as much as 2 in error. A little
more accuracy can be achieved as discussed in exercise 4.

Double-precision floating division is the most difficult routine, or at
least the most frightening prospect we have encountered so far in this chapter.
Actually, it is not terribly complicated, once we see how to do it; let us write
the numbers to be divided in the form (um + εul)/(vm + εvl), where ε is the
reciprocal of the word size of the computer, and where vm is assumed to be
normalized. The fraction can now be expanded as follows:

Since 0 ≤ |vl| < 1 and 1/b ≤ |vm| < 1, we have |vl/vm| < b, and the error from
dropping terms involving ε2 can be disregarded. Our method therefore is to
compute wm + εwl = (um + εul)/vm, and then to subtract ε times wmvl/vm from
the result.

In the following program, lines 27–32 do the lower half of a double-
precision addition, using another method for forcing the appropriate sign as
an alternative to the trick of Program A.
Program D (Double-precision division). This program adheres to the same
conventions as Programs A and M.

Here is a table of the approximate average computation times for these
double-precision subroutines, compared to the single-precision subroutines
that appear in Section 4.2.1:

For extension of the methods of this section to triple-precision floating
point fraction parts, see Y. Ikebe, CACM 8 (1965), 175–177.

Exercises

1. [16] Try the double-precision division technique by hand, with
, when dividing 180000 by 314159. (Thus, let (um, ul) = (.180,

.000) and (vm, vl) = (.314, .159), and find the quotient using the method
suggested in the text following (2).)

2. [20] Would it be a good idea to insert the instruction ‘ENTX 0’
between lines 30 and 31 of Program M, in order to keep unwanted
information left over in register X from interfering with the accuracy of the
results?

3. [M20] Explain why overflow cannot occur during Program M.
4. [22] How should Program M be changed so that extra accuracy is

achieved, essentially by moving the vertical line in Fig. 4 over to the right
one position? Specify all changes that are required, and determine the
difference in execution time caused by these changes.
 5. [24] How should Program A be changed so that extra accuracy is
achieved, essentially by working with a nine-byte accumulator instead of an
eight-byte accumulator to the right of the radix point? Specify all changes
that are required, and determine the difference in execution time caused by
these changes.

6. [23] Assume that the double-precision subroutines of this section and
the single-precision subroutines of Section 4.2.1 are being used in the same
main program. Write a subroutine that converts a single-precision floating
point number into double-precision form (1), and write another subroutine

that converts a double-precision floating point number into single-precision
form (reporting exponent overflow or underflow if the conversion is
impossible).
 7. [M30] Estimate the accuracy of the double-precision subroutines in this
section, by finding bounds δ1, δ2, and δ3 on the relative errors

8. [M28] Estimate the accuracy of the “improved” double-precision
subroutines of exercises 4 and 5, in the sense of exercise 7.

9. [M42] T. J. Dekker [Numer. Math. 18 (1971), 224–242] has suggested
an alternative approach to double precision, based entirely on single-
precision floating binary calculations. For example, Theorem 4.2.2C states
that u + v = w + r, where w = u ⊕ v and r = (u ⊖ w) ⊕ v, if |u| ≥ |v| and the
radix is 2; here |r| ≤ |w|/2p, so the pair (w, r) may be considered a double-
precision version of u + v. To add two such pairs (u, u′) ⊕ (v, v′), where |u′|
≤ |u|/2p and |v′| ≤ |v|/2p and |u| ≥ |v|, Dekker suggests computing u + v = w + r
(exactly), then s = (r ⊕ v′) ⊕ u′ (an approximate remainder), and finally
returning the value (w ⊕ s, (w ⊖ (w ⊕ s)) ⊕ s).

Study the accuracy and efficiency of this approach when it is used
recursively to produce quadruple-precision calculations.

4.2.4. Distribution of Floating Point Numbers
In order to analyze the average behavior of floating point arithmetic
algorithms (and in particular to determine their average running time), we
need some statistical information that allows us to determine how often
various cases arise. The purpose of this section is to discuss the empirical
and theoretical properties of the distribution of floating point numbers.
A. Addition and subtraction routines. The execution time for a floating
point addition or subtraction depends largely on the initial difference of
exponents, and also on the number of normalization steps required (to the left
or to the right). No way is known to give a good theoretical model that tells
what characteristics to expect, but extensive empirical investigations have
been made by D. W. Sweeney [IBM Systems J. 4 (1965), 31–42].

By means of a special tracing routine, Sweeney ran six “typical” large-
scale numerical programs, selected from several different computing
laboratories, and examined each floating addition or subtraction operation
very carefully. Over 250,000 floating point addition-subtractions were
involved in gathering this data. About one out of every ten instructions
executed by the tested programs was either FADD or FSUB.

Subtraction is the same as addition preceded by negating the second
operand, so we can give all the statistics as if we were merely doing
addition. Sweeney’s results can be summarized as follows:

One of the two operands to be added was found to be equal to zero about
9 percent of the time, and this was usually the accumulator (ACC). The other
91 percent of the cases split about equally between operands of the same or
of opposite signs, and about equally between cases where |u| ≤ |v| or |v| ≤ |u|.
The computed answer was zero about 1.4 percent of the time.

The difference between exponents had a behavior approximately given
by the probabilities shown in Table 1, for various radices b. (The “over 5”
line of that table includes essentially all of the cases when one operand was
zero, but the “average” line does not include these cases.)

Table 1 Empirical Data for Operand Alignments Before Addition

When u and v have the same sign and are normalized, then u + v either
requires one shift to the right (for fraction overflow), or no normalization
shifts whatever. When u and v have opposite signs, we have zero or more left
shifts during the normalization. Table 2 gives the observed number of shifts
required; the last line of that table includes all cases where the result was

zero. The average number of left shifts per normalization was about 0.9 when
b = 2; about 0.2 when b = 10 or 16; and about 0.1 when b = 64.

Table 2 Empirical Data for Normalization After Addition

B. The fraction parts. Further analysis of floating point routines can be
based on the statistical distribution of the fraction parts of randomly
chosen normalized floating point numbers. The facts are quite surprising, and
there is an interesting theory that accounts for the unusual phenomena that are
observed.

For convenience let us assume temporarily that we are dealing with
floating decimal arithmetic (radix 10); modifications of the following
discussion to any other positive integer base b will be very straightforward.
Suppose we are given a “random” positive normalized number (e, f) = 10e ·
f. Since f is normalized, we know that its leading digit is 1, 2, 3, 4, 5, 6, 7, 8,
or 9, and we might naturally expect each of these nine possible leading digits
to occur about one-ninth of the time. But, in fact, the behavior in practice is
quite different. For example, the leading digit tends to be equal to 1 more
than 30 percent of the time!

One way to test the assertion just made is to take a table of physical
constants (like the speed of light or the acceleration of gravity) from some
standard reference. If we look at the Handbook of Mathematical Functions
(U.S. Dept of Commerce, 1964), for example, we find that 8 of the 28
different physical constants given in Table 2.3, roughly 29 percent, have
leading digit equal to 1. The decimal values of n! for 1 ≤ n ≤ 100 include
exactly 30 entries beginning with 1; so do the decimal values of 2n and of Fn,
for 1 ≤ n ≤ 100. We might also try looking at census reports, or a Farmer’s
Almanack (but not a telephone directory).

In the days before pocket calculators, the pages in well-used tables of
logarithms tended to get quite dirty in the front, while the last pages stayed
relatively clean and neat. This phenomenon was apparently first mentioned in
print by the astronomer Simon Newcomb [Amer. J. Math. 4 (1881), 39–40],
who gave good grounds for believing that the leading digit d occurs with
probability log10(1 + 1/d). The same distribution was discovered
empirically, many years later, by Frank Benford, who reported the results of
20,229 observations taken from many different sources [Proc. Amer.
Philosophical Soc. 78 (1938), 551–572].

In order to account for this leading-digit law, let’s take a closer look at
the way we write numbers in floating point notation. If we take any positive
number u, its fraction part is determined by the formula 10fu = 10(log10 u) mod
1; hence its leading digit is less than d if and only if

Now if we have a “random” positive number U, chosen from some
reasonable distribution that might occur in nature, we might expect that (log10
U) mod 1 would be uniformly distributed between zero and one, at least to a
very good approximation. (Similarly, we expect U mod 1, U2 mod 1,

 mod 1, etc., to be uniformly distributed. We expect a roulette
wheel to be unbiased, for essentially the same reason.) Therefore by (1) the
leading digit will be 1 with probability log10 2 ≈ 30.103 percent; it will be 2
with probability log10 3–log10 2 ≈ 17.609 percent; and, in general, if r is any
real value between 1 and 10, we ought to have 10fU ≤ r approximately log10
r of the time.

The fact that leading digits tend to be small makes the most obvious
techniques of “average error” estimation for floating point calculations
invalid. The relative error due to rounding is usually a little more than
expected.

Of course, it may justly be said that the heuristic argument above does
not prove the stated law. It merely shows us a plausible reason why the
leading digits behave the way they do. An interesting approach to the
analysis of leading digits has been suggested by R. Hamming: Let p(r) be the
probability that 10fU ≤ r, where 1 ≤ r ≤ 10 and fU is the normalized fraction
part of a random normalized floating point number U. If we think of random

quantities in the real world, we observe that they are measured in terms of
arbitrary units; and if we were to change the definition of a meter or a gram,
many of the fundamental physical constants would have different values.
Suppose then that all of the numbers in the universe are suddenly multiplied
by a constant factor c; our universe of random floating point quantities should
be essentially unchanged by this transformation, so p(r) should not be
affected.

Multiplying everything by c has the effect of transforming (log10 U) mod
1 into (log10 U + log10 c) mod 1. It is now time to set up formulas that
describe the desired behavior; we may assume that 1 ≤ c ≤ 10. By definition,

By our assumption, we should also have

Let us now extend the function p(r) to values outside the range 1 ≤ r ≤ 10, by
defining p(10nr) = p(r) + n; then if we replace 10/c by d, the last equation of
(2) may be written

If our assumption about invariance of the distribution under multiplication by
a constant factor is valid, then Eq. (3) must hold for all r > 0 and 1 ≤ d ≤ 10.
The facts that p(1) = 0 and p(10) = 1 now imply that

hence we deduce that p(10m/n) = m/n for all positive integers m and n. If we
now decide to require that p is continuous, we are forced to conclude that
p(r) = log10 r, and this is the desired law.

Although this argument may be more convincing than the first one, it
doesn’t really hold up under scrutiny if we stick to conventional notions of

probability. The traditional way to make the argument above rigorous is to
assume that there is some underlying distribution of numbers F(u) such that a
given positive number U is ≤ u with probability F(u); then the probability of
concern to us is

summed over all values –∞ < m < ∞. Our assumptions about scale invariance
and continuity have led us to conclude that

Using the same argument, we could “prove” that

for each integer b ≥ 2, when 1 ≤ r ≤ b. But there is no distribution function F
that satisfies this equation for all such b and r! (See exercise 7.)

One way out of the difficulty is to regard the logarithm law p(r) = log10 r
as only a very close approximation to the true distribution. The true
distribution itself may perhaps be changing as the universe expands,
becoming a better and better approximation as time goes on; and if we
replace 10 by an arbitrary base b, the approximation might be less accurate
(at any given time) as b gets larger. Another rather appealing way to resolve
the dilemma, by abandoning the traditional idea of a distribution function, has
been suggested by R. A. Raimi, AMM 76 (1969), 342–348.

The hedging in the last paragraph is probably a very unsatisfactory
explanation, and so the following further calculation (which sticks to
rigorous mathematics and avoids any intuitive, yet paradoxical, notions of
probability) should be welcome. Let us consider the distribution of the
leading digits of the positive integers, instead of the distribution for some
imagined set of real numbers. The investigation of this topic is quite
interesting, not only because it sheds some light on the probability
distributions of floating point data, but also because it makes a particularly
instructive example of how to combine the methods of discrete mathematics
with the methods of infinitesimal calculus.

In the following discussion, let r be a fixed real number, 1 ≤ r ≤ 10; we
will attempt to make a reasonable definition of p(r), the “probability” that the

representation 10eN ·fN of a “random” positive integer N has 10fN < r,
assuming infinite precision.

To start, let us try to find the probability using a limiting method like the
definition of “Pr” in Section 3.5. One nice way to rephrase that definition is
to define

Now P0(1), P0(2), . . . is an infinite sequence of zeros and ones, with ones to
represent the cases that contribute to the probability we are seeking. We can
try to “average out” this sequence, by defining

Thus if we generate a random integer between 1 and n using the techniques of
Chapter 3, and convert it to floating decimal form (e, f), the probability that
10f < r is exactly P1(n). It is natural to let limn→∞ P1(n) be the “probability”
p(r) we are after, and that is just what we did in Definition 3.5A.

But in this case the limit does not exist. For example, let us consider the
subsequence

where s is a real number, 1 ≤ s ≤ 10. If s ≤ r, we find that

As n → ∞, P1(10ns) therefore approaches the limiting value 1+(r−10)/9s.
The same calculation is valid for the case s > r if we replace ⌊10ns⌋ + 1 by
⌈10nr⌉; thus we obtain the limiting value 10(r − 1)/9s when s ≥ r. [See J.
Franel, Naturforschende Gesellschaft, Vierteljahrsschrift 62 (Zürich:
1917), 286–295.]

In other words, the sequence 〈P1(n)〉 has subsequences 〈P1(10ns)〉
whose limit goes from (r − 1)/9 up to 10(r − 1)/9r and down again to (r −

1)/9, as s goes from 1 to r to 10. We see that P1(n) has no limit as n → ∞;
and the values of P1(n) for large n are not particularly good approximations
to our conjectured limit log10 r either!

Since P1(n) doesn’t approach a limit, we can try to use the same idea as
(7) once again, to “average out” the anomalous behavior. In general, let

Then Pm+1(n) will tend to be a more well-behaved sequence than Pm(n). Let
us try to confirm this with quantitative calculations; our experience with the
special case m = 0 indicates that it might be worthwhile to consider the
subsequence Pm+1(10ns). The following results can, in fact, be derived:
Lemma Q. For any integer m ≥ 1 and any real number ε > 0, there are
functions Qm(s), Rm(s) and an integer Nm(ε), such that whenever n > Nm(ε)
and 1 ≤ s ≤ 10, we have

Furthermore the functions Qm(s) and Rm(s) satisfy the relations

Proof. Consider the functions Qm(s) and Rm(s) defined by (11), and let

We will prove the lemma by induction on m.
First note that Q1(s) = (1 + (s − 1) – (10 – r)/9)/s = 1 + (r − 10)/9s, and

R1(s) = (r – s)/s. From (8) we find that |P1(10ns) – S1(s)| = O(n)/10n; this
establishes the lemma when m = 1.

Now for m > 1, we have

and we want to approximate this quantity. By induction, the difference

is less than qε when 1 ≤ q ≤ 10 and j > Nm−1(ε). Since Sm−1(t) is continuous,
it is a Riemann-integrable function; and the difference

is less than ε for all j greater than some number N, independent of q, by the
definition of integration. We may choose N to be > Nm−1(ε). Therefore for n >
N, the difference

is bounded by , if M
is an upper bound for (13) + (14) that is valid for all positive integers j.
Finally, the sum ∑0≤j<n(1/10n−j), which appears in (15), is equal to (1 –
1/10n)/9; so

can be made smaller than, say, 20ε, if n is taken large enough. Comparing this
with (10) and (11) completes the proof.

The gist of Lemma Q is that we have the limiting relationship

Also, since Sm(s) is not constant as s varies, the limit

(which would be our desired “probability”) does not exist for any m. The
situation is shown in Fig. 5, which shows the values of Sm(s) when m is
small and r = 2.

Fig. 5. The probability that the leading digit is 1.
Even though Sm(s) is not a constant, so that we do not have a definite

limit for Pm(n), notice that already for m = 3 in Fig. 5 the value of Sm(s) stays
very close to log10 2 ≈ 0.30103. Therefore we have good reason to suspect
that Sm(s) is very close to log10 r for all large m, and, in fact, that the
sequence of functions 〈Sm(s)〉 converges uniformly to the constant function
log10 r.

It is interesting to prove this conjecture by explicitly calculating Qm(s)
and Rm(s) for all m, as in the proof of the following theorem:
Theorem F. Let Sm(s) be the limit defined in (16). For all ε > 0, there exists
a number N(ε) such that

whenever m > N(ε).
Proof. In view of Lemma Q, we can prove this result if we can show that
there is a number M depending on ε such that, for 1 ≤ s ≤ 10 and for all m >
M, we have

It is not difficult to solve the recurrence formula (11) for Rm : We have
R0(s) = –1, R1(s) = –1 + r/s, R2(s) = –1 + (r/s)(1 + ln(s/r)), and in general

For the stated range of s, this converges uniformly to –1+(r/s) exp(ln(s/r)) =
0.

The recurrence (11) for Qm takes the form

where

And the solution to recurrence (20) is easily found by trying out the first few
cases and guessing at a formula that can be proved by induction; we find that

It remains for us to calculate the coefficients cm, which by (19), (21), and
(22) satisfy the relations

This sequence appears at first to be very complicated, but actually we can
analyze it without difficulty with the help of generating functions. Let

then since 10z = 1 + z ln 10 + (1/2!)(z ln 10)2 + ... , we deduce that

is the coefficient of zm+1 in the function

This condition holds for all values of m, so (24) must equal C(z), and we
obtain the explicit formula

We want to study asymptotic properties of the coefficients of C(z), to
complete our analysis. The large parenthesized factor in (25) approaches
ln(10/r)/ln 10 = 1 – log10 r as z → 1, so we see that

is an analytic function of the complex variable z in the circle

In particular, R(z) converges for z = 1, so its coefficients approach zero. This
proves that the coefficients of C(z) behave like those of (log10 r − 1)/(1 – z),
that is,

Finally, we may combine this with (22), to show that Qm(s) approaches

uniformly for 1 ≤ s ≤ 10.
Therefore we have established the logarithmic law for integers by direct

calculation, at the same time seeing that it is an extremely good
approximation to the average behavior although it is never precisely
achieved.

The proofs of Lemma Q and Theorem F given above are slight
simplifications and amplifications of methods due to B. J. Flehinger, AMM
73 (1966), 1056–1061. Many authors have written about the distribution of
initial digits, showing that the logarithmic law is a good approximation for
many underlying distributions; see the surveys by Ralph A. Raimi, AMM 83
(1976), 521–538, and Peter Schatte, J. Information Processing and

Cybernetics 24 (1988), 443–455, for a comprehensive review of the
literature.

Exercise 17 discusses an approach to the definition of probability under
which the logarithmic law holds exactly, over the integers. Furthermore,
exercise 18 demonstrates that any reasonable definition of probability over
the integers must lead to the logarithmic law, if it assigns a value to the
probability of leading digits.

Floating point computations operate primarily on noninteger numbers, of
course; we have studied integers because of their familiarity and their
simplicity. When arbitrary real numbers are considered, theoretical results
are more difficult to obtain, but evidence is accumulating that the same
statistics apply, in the sense that repeated calculations with real numbers will
nearly always tend to yield better and better approximations to a logarithmic
distribution of fraction parts. For example, Peter Schatte [Zeitschrift für
angewandte Math. und Mechanik 53 (1973), 553–565] showed that, under
mild restrictions, the products of independent, identically distributed random
real variables approach the logarithmic distribution. The sums of such
variables do too, but only in the sense of repeated averaging. Similar results
have been obtained by J. L. Barlow and E. H. Bareiss, Computing 34
(1985), 325–347. See also A. Berger, L. A. Bunimovich, and T. P. Hill,
Trans. Amer. Math. Soc. 357 (2004), 197–219.

Exercises

1. [13] Given that u and v are nonzero floating decimal numbers with the
same sign, what is the approximate probability that fraction overflow occurs
during the calculation of u ⊕ v, according to Tables 1 and 2?

2. [42] Make further tests of floating point addition and subtraction, to
confirm or improve on the accuracy of Tables 1 and 2.

3. [15] What is the probability that the two leading digits of a floating
decimal number are “23”, according to the logarithmic law?

4. [M18] The text points out that the front pages of a well-used table of
logarithms get dirtier than the back pages do. What if we had an
antilogarithm table instead, namely a table that tells us the value of x when
log10 x is given; which pages of such a table would be the dirtiest?

 5. [M20] Let U be a random real number that is uniformly distributed in
the interval 0 < U < 1. What is the distribution of the leading digits of U?

6. [23] If we have binary computer words containing n + 1 bits, we might
use p bits for the fraction part of floating binary numbers, one bit for the sign,
and n – p bits for the exponent. This means that the range of values
representable, namely the ratio of the largest positive normalized value to the
smallest, is essentially 22n−p. The same computer word could be used to
represent floating hexadecimal numbers, that is, floating point numbers with
radix 16, with p + 2 bits for the fraction part ((p + 2)/4 hexadecimal digits)
and n – p – 2 bits for the exponent; then the range of values would be 162n−p−2

= 22n−p, the same as before, and with more bits in the fraction part. This may
sound as if we are getting something for nothing, but the normalization
condition for base 16 is weaker in that there may be up to three leading zero
bits in the fraction part; thus not all of the p + 2 bits are “significant.”

On the basis of the logarithmic law, what are the probabilities that the
fraction part of a positive normalized radix 16 floating point number has
exactly 0, 1, 2, and 3 leading zero bits? Discuss the desirability of
hexadecimal versus binary.

7. [HM28] Prove that there is no distribution function F(u) that satisfies
(5) for each integer b ≥ 2, and for all real values r in the range 1 ≤ r ≤ b.

8. [HM23] Does (10) hold when m = 0 for suitable N0(ε)?

9. [HM25] (P. Diaconis.) Let P1(n), P2(n), . . . be any sequence of
functions defined by repeatedly averaging a given function P0(n) according
to Eq. (9). Prove that limm→∞ Pm(n) = P0(1) for all fixed n.
 10. [HM28] The text shows that cm = log10 r − 1 + εm, where εm

approaches zero as m → ∞. Obtain the next term in the asymptotic
expansion of cm.
11. [M15] Given that U is a random variable distributed according to the
logarithmic law, prove that 1/U is also.
12. [HM25] (R. W. Hamming.) The purpose of this exercise is to show that
the result of floating point multiplication tends to obey the logarithmic law
more perfectly than the operands do. Let U and V be random, normalized,
positive floating point numbers, whose fraction parts are independently

distributed with the respective density functions f(x) and g(x). Thus, fu ≤ r
and fv ≤ s with probability , for 1/b ≤ r, s ≤ 1. Let
h(x) be the density function of the fraction part of U × V (unrounded).
Define the abnormality A(f) of a density function f to be the maximum
relative error,

where l(x) = 1/(x ln b) is the density of the logarithmic distribution.
Prove that A(h) ≤ min(A(f), A(g)). (In particular, if either factor has

logarithmic distribution the product does also.)
 13. [M20] The floating point multiplication routine, Algorithm 4.2.1M,

requires zero or one left shifts during normalization, depending on whether
fufv ≥ 1/b or not. Assuming that the input operands are independently
distributed according to the logarithmic law, what is the probability that no
left shift is needed for normalization of the result?

 14. [HM30] Let U and V be random, normalized, positive floating point
numbers whose fraction parts are independently distributed according to
the logarithmic law, and let pk be the probability that the difference in their
exponents is k. Assuming that the distribution of the exponents is
independent of the fraction parts, give an equation for the probability that
“fraction overflow” occurs during the floating point addition of U ⊕ V,in
terms of the base b and the quantities p0, p1, p2, Compare this result
with exercise 1. (Ignore rounding.)
15. [HM28] Let U, V,p0, p1, . . . be as in exercise 14, and assume that radix
10 arithmetic is being used. Show that regardless of the values of p0, p1,
p2, . . . , the sum U ⊕ V will not obey the logarithmic law exactly, and in
fact the probability that U ⊕ V has leading digit 1 is always strictly less
than log10 2.

16. [HM28] (P. Diaconis.) Let P0(n) be 0 or 1 for each n, and define
“probabilities” Pm+1(n) by repeated averaging, as in (9). Show that if
limn→∞ P1(n) does not exist, neither does limn→∞ Pm(n) for any m. [Hint:

Prove that an → 0 whenever we have (a1 + ... + an)/n → 0 and an+1 ≤ an +
M/n, for some fixed constant M > 0.]

 17. [HM25] (M. Tsuji.) Another way to define the value of Pr(S(n)) is to
evaluate the quantity ; it can be shown that
this harmonic probability exists and is equal to Pr(S(n)), whenever the
latter exists according to Definition 3.5A. Prove that the harmonic
probability of the statement “(log10 n) mod 1 < r” exists and equals r.
(Thus, initial digits of integers satisfy the logarithmic law exactly in this
sense.)

 18. [HM30] Let P (S) be any real-valued function defined on sets S of
positive integers, but not necessarily on all such sets, satisfying the
following rather weak axioms:
i) If P (S) and P (T) are defined and S ∩ T = , then P (S ∪ T) = P (S) + P

(T).
ii) If P (S) is defined, then P (S + 1) = P (S), where S + 1 = {n + 1 | n ∊

S}.
iii) If P (S) is defined, then P (2S) = P (S), where 2S = {2n | n ∊ S}.
iv) If S is the set of all positive integers, then P (S) = 1.
v) If P (S) is defined, then P (S) ≥ 0.

Assume furthermore that P (La) is defined for all positive integers a,
where La is the set of all integers whose decimal representation begins
with a:

(In this definition, m may be negative; for example, 1 is an element of L10,
but not of L11.) Prove that P (La) = log10(1 + 1/a) for all integers a ≥ 1.
19. [HM25] (R. L. Duncan.) Prove that the leading digits of Fibonacci
numbers obey the logarithmic law of fraction parts: Pr(10fFn < r) = log10 r.

20. [HM40] Sharpen (16) by finding the asymptotic behavior of Pm(10ns) –
Sm(s) as n → ∞.

4.3. Multiple-Precision Arithmetic
Let us now consider operations on numbers that have arbitrarily high
precision. For simplicity in exposition, we shall assume that we are working
with integers, instead of with numbers that have an embedded radix point.

4.3.1. The Classical Algorithms
In this section we shall discuss algorithms for

a) addition or subtraction of n-place integers, giving an n-place answer
and a carry;

b) multiplication of an m-place integer by an n-place integer, giving an
(m + n)-place answer;

c) division of an (m + n)-place integer by an n-place integer, giving an (m
+ 1)-place quotient and an n-place remainder.

These may be called the classical algorithms, since the word “algorithm”
was used only in connection with these processes for several centuries. The
term “n-place integer” means any nonnegative integer less than bn, where b is
the radix of ordinary positional notation in which the numbers are expressed;
such numbers can be written using at most n “places” in this notation.

It is a straightforward matter to apply the classical algorithms for
integers to numbers with embedded radix points or to extended-precision
floating point numbers, in the same way that arithmetic operations defined for
integers in MIX are applied to these more general problems.

In this section we shall study algorithms that do operations (a), (b), and
(c) above for integers expressed in radix b notation, where b is any given
integer that is 2 or more. Thus the algorithms are quite general definitions of
arithmetic processes, and as such they are unrelated to any particular
computer. But the discussion in this section will also be somewhat machine-
oriented, since we are chiefly concerned with efficient methods for doing
high-precision calculations by computer. Although our examples are based
on the mythical MIX, essentially the same considerations apply to nearly
every other machine.

The most important fact to understand about extended-precision numbers
is that they may be regarded as numbers written in radix w notation, where w
is the computer’s word size. For example, an integer that fills 10 words on a

computer whose word size is w = 1010 has 100 decimal digits; but we will
consider it to be a 10-place number to the base 1010. This viewpoint is
justified for the same reason that we may convert, say, from binary to
hexadecimal notation, simply by grouping the bits together. (See Eq. 4.1–
(5).)

In these terms, we are given the following primitive operations to work
with:

a0) addition or subtraction of one-place integers, giving a one-place
answer and a carry;

b0) multiplication of a one-place integer by another one-place integer,
giving a two-place answer;

c0) division of a two-place integer by a one-place integer, provided that
the quotient is a one-place integer, and yielding also a one-place
remainder.

By adjusting the word size, if necessary, nearly all computers will have these
three operations available; so we will construct algorithms (a), (b), and (c)
mentioned above in terms of the primitive operations (a0), (b0), and (c0).

Since we are visualizing extended-precision integers as base b numbers,
it is sometimes helpful to think of the situation when b = 10, and to imagine
that we are doing the arithmetic by hand. Then operation (a0) is analogous to
memorizing the addition table; (b0) is analogous to memorizing the
multiplication table; and (c0) is essentially memorizing the multiplication
table in reverse. The more complicated operations (a), (b), (c) on high-
precision numbers can now be done using the simple addition, subtraction,
multiplication, and long-division procedures that children are taught in
elementary school. In fact, most of the algorithms we shall discuss in this
section are essentially nothing more than mechanizations of familiar pencil-
and-paper operations. Of course, we must state the algorithms much more
precisely than they have ever been stated in the fifth grade, and we should
also attempt to minimize computer memory and running time requirements.

To avoid a tedious discussion and cumbersome notations, we shall
assume first that all the numbers we deal with are nonnegative. The
additional work of computing the signs, etc., is quite straightforward,
although some care is necessary when dealing with complemented numbers

on computers that do not use a signed magnitude representation. Such issues
are discussed near the end of this section.

First comes addition, which of course is very simple, but it is worth
careful study since the same ideas occur also in the other algorithms.
Algorithm A (Addition of nonnegative integers). Given nonnegative n-place
integers (un−1 . . . u1u0)b and (vn−1 . . . v1v0)b, this algorithm forms their
radix-b sum, (wnwn–1 . . . w1w0)b. Here wn is the carry, and it will always be
equal to 0 or 1.

A1. [Initialize.] Set j ← 0, k ← 0. (The variable j will run through the
various digit positions, and the variable k will keep track of carries at
each step.)

A2. [Add digits.] Set wj ← (uj + vj + k) mod b, and k ← ⌊(uj + vj + k)/b⌋.
(By induction on the computation, we will always have

Thus k is being set to 1 or 0, depending on whether a carry occurs or
not; equivalently, k ← [uj + vj + k ≥ b].)

A3. [Loop on j.] Increase j by one. Now if j < n, go back to step A2;
otherwise set wn ← k and terminate the algorithm.

For a formal proof that Algorithm A is valid, see exercise 4.
A MIX program for this addition process might take the following form:

Program A (Addition of nonnegative integers). Let LOC(uj) ≡ U+j, LOC(vj)
≡ V + j, LOC(wj) ≡ W + j, rI1 ≡ j – n, rA ≡ k, word size ≡ b, N ≡ n.

The running time for this program is 10N + 6 cycles, independent of the
number of carries, K. The quantity K is analyzed in detail at the close of this
section.

Many modifications of Algorithm A are possible, and only a few of these
are mentioned in the exercises below. A chapter on generalizations of this
algorithm might be entitled “How to design addition circuits for a digital
computer.”

The problem of subtraction is similar to addition, but the differences are
worth noting:
Algorithm S (Subtraction of nonnegative integers). Given nonnegative n-
place integers (un−1 . . . u1u0)b ≥ (vn−1 . . . v1v0)b, this algorithm forms their
nonnegative radix-b difference, (wn−1 . . . w1w0)b.

S1. [Initialize.] Set j ← 0, k ← 0.
S2. [Subtract digits.] Set wj ← (uj – vj + k) mod b, and k ← ⌊(uj – vj +

k)/b⌋. (In other words, k is set to –1 or 0, depending on whether a
borrow occurs or not, namely whether uj – vj + k < 0 or not. In the
calculation of wj, we must have –b = 0 – (b − 1) + (–1) ≤ uj – vj + k ≤
(b − 1) – 0 + 0 < b; hence 0 ≤ uj – vj + k + b < 2b, and this suggests the
method of computer implementation explained below.)

S3. [Loop on j.] Increase j by one. Now if j < n, go back to step S2;
otherwise terminate the algorithm. (When the algorithm terminates, we

should have k = 0; the condition k = –1 will occur if and only if (vn−1 . .
. v1v0)b > (un−1 . . . u1u0)b, contrary to the given assumptions. See
exercise 12.)

In a MIX program to implement subtraction, it is most convenient to
retain the value 1 + k instead of k throughout the algorithm, so that we can
calculate uj – vj + (1 + k) + (b − 1) in step S2. (Recall that b is the word
size.) This is illustrated in the following code.
Program S (Subtraction of nonnegative integers). This program is
analogous to the code in Program A, but with rA ≡ 1 + k. Here, as in other
programs of this section, location WM1 contains the constant b − 1, the largest
possible value that can be stored in a MIX word; see Program 4.2.3D, lines
38–39.

The running time for this program is 12N + 3 cycles, slightly longer than the
corresponding amount for Program A.

The reader may wonder if it would not be worthwhile to have a
combined addition-subtraction routine in place of the two algorithms A and
S. But an examination of the code shows that it is generally better to use two
different routines, so that the inner loops of the computations can be
performed as rapidly as possible, since the programs are so short.

Our next problem is multiplication, and here we carry the ideas used in
Algorithm A a little further:

Algorithm M (Multiplication of nonnegative integers). Given nonnegative
integers (um−1 . . . u1u0)b and (vn−1 . . . v1v0)b, this algorithm forms their
radix-b product (wm+n−1 . . . w1w0)b. (The conventional pencil-and-paper
method is based on forming the partial products (um−1 . . . u1u0)b × vj first,
for 0 ≤ j < n, and then adding these products together with appropriate scale
factors; but in a computer it is simpler to do the addition concurrently with
the multiplication, as described in this algorithm.)

M1. [Initialize.] Set wm−1, wm−2, . . . , w0 all to zero. Set j ← 0. (If those
positions were not cleared to zero in this step, one can show that the
steps below would set

This more general multiply-and-add operation is often useful.)
M2. [Zero multiplier?] If vj = 0, set wj+m ← 0 and go to step M6. (This test

might save time if there is a reasonable chance that vj is zero, but it may
be omitted without affecting the validity of the algorithm.)

M3. [Initialize i.] Set i ← 0, k ← 0.
M4. [Multiply and add.] Set t ← ui × vj + wi+j + k; then set wi+j ← t mod b

and k ← ⌊t/b⌋. (Here the carry k will always be in the range 0 ≤ k < b;
see below.)

M5. [Loop on i.] Increase i by one. Now if i < m, go back to step M4;
otherwise set wj+m ← k.

M6. [Loop on j.] Increase j by one. Now if j < n, go back to step M2;
otherwise the algorithm terminates.

Algorithm M is illustrated in Table 1, assuming that b = 10, by showing
the states of the computation at the beginning of steps M5 and M6. A proof of
Algorithm M appears in the answer to exercise 14.

Table 1 Multiplication of 914 by 84

The two inequalities

are crucial for an efficient implementation of this algorithm, since they point
out how large a register is needed for the computations. These inequalities
may be proved by induction as the algorithm proceeds, for if we have k < b
at the start of step M4, we have

The following MIX program shows the considerations that are necessary
when Algorithm M is implemented on a computer. The coding for step M4
would be a little simpler if our computer had a “multiply-and-add”
instruction, or if it had a double-length accumulator for addition.
Program M (Multiplication of nonnegative integers). This program is
analogous to Program A. rI1 ≡ i – m, rI2 ≡ j – n, rI3 ≡ i + j,
CONTENTS(CARRY) ≡ k.

The execution time of Program M depends on the number of places, M,
in the multiplicand u; the number of places, N, in the multiplier v; the number
of zeros, Z, in the multiplier; and the number of carries, K and K′, that occur
during the addition to the lower half of the product in the computation of t. If
we approximate both K and K′ by the reasonable (although somewhat
pessimistic) values (N – Z)M, we find that the total running time comes to
28MN + 4M + 10N + 3 – Z(28M + 3) cycles. If step M2 were deleted, the
running time would be 28MN + 4M + 7N + 3 cycles, so that step is
advantageous only if the density of zero positions within the multiplier is Z/N
> 3/(28M + 3). If the multiplier is chosen completely at random, the ratio Z/N

is expected to be only about 1/b, which is extremely small. We conclude that
step M2 is usually not worthwhile, unless b is small.

Algorithm M is not the fastest way to multiply when m and n are large,
although it has the advantage of simplicity. Speedier but more complicated
methods are discussed in Section 4.3.3; it is possible to multiply numbers
faster than Algorithm M even when m = n = 4.

The final algorithm of concern to us in this section is long division, in
which we want to divide (m + n)-place integers by n-place integers. Here the
ordinary pencil-and-paper method involves a certain amount of guesswork
and ingenuity on the part of the person doing the division; we must either
eliminate this guesswork from the algorithm or develop some theory to
explain it more carefully.

A moment’s reflection about the ordinary process of long division shows
that the general problem breaks down into simpler steps, each of which is the
division of an (n + 1)-place dividend u by the n-place divisor v, where 0 ≤
u/v < b; the remainder r after each step is less than v, so we may use the
quantity rb + (next place of dividend) as the new u in the succeeding step.
For example, if we are asked to divide 3142 by 53, we first divide 314 by
53, getting 5 and a remainder of 49; then we divide 492 by 53, getting 9 and a
remainder of 15; thus we have a quotient of 59 and a remainder of 15. It is
clear that this same idea works in general, and so our search for an
appropriate division algorithm reduces to the following problem (Fig. 6):

Let u = (unun–1 . . . u1u0)b and v = (vn−1 . . . v1v0)b be nonnegative
integers in radix-b notation, where u/v < b. Find an algorithm to
determine q = ⌊u/v⌋.

Fig. 6. Wanted: a way to determine q rapidly.
We may observe that the condition u/v < b is equivalent to the condition that
u/b < v, which is the same as ⌊u/b⌋ < v. This is simply the condition that

(unun–1 . . . u1)b < (vn−1vn−2 . . . v0)b. Furthermore, if we write r = u – qv,
then q is the unique integer such that 0 ≤ r < v.

The most obvious approach to this problem is to make a guess about q,
based on the most significant digits of u and v. It isn’t obvious that such a
method will be reliable enough, but it is worth investigating; let us therefore
set

This formula says that is obtained by dividing the two leading digits of u by
the leading digit of v; and if the result is b or more we can replace it by (b −
1).

It is a remarkable fact, which we will now investigate, that this value
is always a very good approximation to the desired answer q, so long as vn−1
is reasonably large. In order to analyze how close comes to q, we will first
prove that is never too small.
Theorem A. In the notation above, ≥ q.
Proof. Since q ≤ b − 1, the theorem is certainly true if = b − 1. Otherwise
we have = ⌊(unb + un−1)/vn−1⌋, hence vn−1 ≥ unb + un−1 – vn−1 + 1. It
follows that

Since u – v < v, we must have ≥ q.
We will now prove that cannot be much larger than q in practical

situations. Assume that ≥ q + 3. We have

(The case v = bn−1 is impossible, for if v = (100 . . . 0)b then q = .)
Furthermore, the relation q > (u/v) – 1 implies that

Therefore

Finally, since b – 4 ≥ – 3 ≥ q = ⌊u/v⌋ ≥ 2(vn−1 – 1), we have vn−1 < ⌊b/2⌋.
This proves the result we seek:
Theorem B. If vn–1 ≥ ⌊b/2⌋, then – 2 ≤ q ≤ .

The most important part of this theorem is that the conclusion is
independent of b; no matter how large the radix is, the trial quotient will
never be more than 2 in error.

The condition that vn−1 ≥ ⌊b/2⌋ is very much like a normalization
requirement; in fact, it is exactly the condition of floating-binary
normalization in a binary computer. One simple way to ensure that vn−1 is
sufficiently large is to multiply both u and v by ⌊b/(vn−1 + 1)⌋; this does not
change the value of u/v, nor does it increase the number of places in v, and
exercise 23 proves that it will always make the new value of vn−1 large
enough. (Another way to normalize the divisor is discussed in exercise 28.)

Now that we have armed ourselves with all of these facts, we are in a
position to write the desired long-division algorithm. This algorithm uses a
slightly improved choice of in step D3, which guarantees that q = or –
1; in fact, the improved choice of made here is almost always accurate.
Algorithm D (Division of nonnegative integers). Given nonnegative
integers u = (um+n−1 . . . u1u0)b and v = (vn−1 . . . v1v0)b, where vn−1 ≠ 0 and n
> 1, we form the radix-b quotient ⌊u/v⌋ = (qmqm–1 . . . q0)b and the remainder
u mod v = (rn−1 . . . r1r0)b. (When n = 1, the simpler algorithm of exercise 16
should be used.)

D1. [Normalize.] Set d ← ⌊b/(vn−1 + 1)⌋. Then set (um+num+n−1 . . . u1u0)b
equal to (um+n−1 . . . u1u0)b times d; similarly, set (vn−1 . . . v1v0)b equal
to (vn−1 . . . v1v0)b times d. (Notice the introduction of a new digit
position um+n at the left of um+n−1; if d = 1, all we need to do in this step
is to set um+n ← 0. On a binary computer it may be preferable to choose
d to be a power of 2 instead of using the value suggested here; any

value of d that results in vn−1 ≥ ⌊b/2⌋ will suffice. See also exercise
37.)

D2. [Initialize j.] Set j ← m. (The loop on j, steps D2 through D7, will be
essentially a division of (uj+n . . . uj+1uj)b by (vn−1 . . . v1v0)b to get a
single quotient digit qj; see Fig. 6.)

D3. [Calculate .] Set ← ⌊(uj+nb + uj+n−1)/vn−1⌋ and let be the
remainder, (uj+nb + uj+n−1) mod vn−1. Now test if ≥ b or vn−2 > b +
uj+n−2; if so, decrease by 1, increase by vn−1, and repeat this test if
< b. (The test on vn−2 determines at high speed most of the cases in
which the trial value is one too large, and it eliminates all cases
where is two too large; see exercises 19, 20, 21.)

D4. [Multiply and subtract.] Replace (uj+nuj+n−1 . . . uj)b by

This computation (analogous to steps M3, M4, and M5 of Algorithm M)
consists of a simple multiplication by a one-place number, combined with a
subtraction. The digits (uj+n, uj+n−1, . . . , uj) should be kept positive; if the
result of this step is actually negative, (uj+nuj+n−1 . . . uj)b should be left as
the true value plus bn+1, namely as the b’s complement of the true value, and
a “borrow” to the left should be remembered.

Fig. 7. Long division.

D5. [Test remainder.] Set qj ← . If the result of step D4 was negative, go
to step D6; otherwise go on to step D7.

D6. [Add back.] (The probability that this step is necessary is very small,
on the order of only 2/b, as shown in exercise 21; test data to activate
this step should therefore be specifically contrived when debugging.
See exercise 22.) Decrease qj by 1, and add (0vn−1 . . . v1v0)b to
(uj+nuj+n−1 . . . uj+1uj)b. (A carry will occur to the left of uj+n, and it
should be ignored since it cancels with the borrow that occurred in D4.)

D7. [Loop on j.] Decrease j by one. Now if j ≥ 0, go back to D3.
D8. [Unnormalize.] Now (qm . . . q1q0)b is the desired quotient, and the

desired remainder may be obtained by dividing (un−1 . . . u1u0)b by d.

The representation of Algorithm D as a MIX program has several points
of interest:
Program D (Division of nonnegative integers). The conventions of this
program are analogous to Program A; rI1 ≡ i – n, rI2 ≡ j, rI3 ≡ i + j.

Note how easily the rather complex-appearing calculations and
decisions of step D3 can be handled inside the machine. Notice also that the
program for step D4 is analogous to Program M, except that the ideas of
Program S have also been incorporated.

The running time for Program D can be estimated by considering the
quantities M, N, E, K, and K′ shown in the program. (These quantities ignore
several situations that occur only with very low probability; for example, we
may assume that lines 048–050, 063–064, and step D6 are never executed.)
Here M + 1 is the number of words in the quotient; N is the number of words
in the divisor; E is the number of times is adjusted downwards in step D3;
K and K′ are the number of times certain carry adjustments are made during
the multiply-subtract loop. If we assume that K + K′ is approximately (N + 1)
(M + 1), and that E is approximately M, we get a total running time of
approximately 30MN + 30N + 89M + 111 cycles, plus 67N + 23.5M + 4
more if d > 1. (The program segments of exercises 25 and 26 are included in
these totals.) When M and N are large, this is only about seven percent longer
than the time needed by Program M to multiply the quotient by the divisor.

When the radix b is comparatively small, so that b2 is less than the
computer’s word size, multiprecision division can be speeded up by not
reducing individual digits of intermediate results to the range [0 . . b); see D.
M. Smith, Math. Comp. 65 (1996), 157–163. Further commentary on
Algorithm D appears in the exercises at the close of this section.

It is possible to debug programs for multiple-precision arithmetic by
using the multiplication and addition routines to check the result of the
division routine, etc. The following type of test data is occasionally useful:

If m < n, this number has the radix-t expansion

for example, (103 – 1)(108 – 1) = 99899999001. In the case of Program D, it
is also necessary to find some test cases that cause the rarely executed parts
of the program to be exercised; some portions of that program would
probably never get tested even if a million random test cases were tried.
(See exercise 22.)

Now that we have seen how to operate with signed magnitude numbers,
let us consider what approach should be taken to the same problems when a
computer with complement notation is being used. For two’s complement and
ones’ complement notations, it is usually best to let the radix b be one half of
the word size; thus for a 32-bit computer word we would use b = 231 in the
algorithms above. The sign bit of all but the most significant word of a
multiple-precision number will be zero, so that no anomalous sign correction
takes place during the computer’s multiplication and division operations. In
fact, the basic meaning of complement notation requires that we consider all
but the most significant word to be nonnegative. For example, assuming an 8-
bit word, the two’s complement number

(where the sign bit is shown only in the most significant word) is properly
thought of as

On the other hand, some binary computers that work with two’s
complement notation also provide true unsigned arithmetic as well. For
example, let x and y be 32-bit operands. A computer might regard them as
two’s complement numbers in the range –231 ≤ x, y < 231, or as unsigned
numbers in the range 0 ≤ x, y < 232. If we ignore overflow, the 32-bit sum (x
+ y) mod 232 is the same under either interpretation; but overflow occurs in
different circumstances when we change the assumed range. If the computer
allows easy computation of the carry bit ⌊(x + y)/232⌋ in the unsigned
interpretation, and if it provides a full 64-bit product of unsigned 32-bit
integers, we can use b = 232 instead of b = 231 in our high-precision
algorithms.

Addition of signed numbers is slightly easier when complement notations
are being used, since the routine for adding n-place nonnegative integers can
be used for arbitrary n-place integers; the sign appears only in the first word,
so the less significant words may be added together irrespective of the actual
sign. (Special attention must be given to the leftmost carry when ones’
complement notation is being used, however; it must be added into the least
significant word, and possibly propagated further to the left.) Similarly, we
find that subtraction of signed numbers is slightly simpler with complement
notation. On the other hand, multiplication and division seem to be done most
easily by working with nonnegative quantities and doing suitable
complementation operations beforehand to make sure that both operands are
nonnegative. It may be possible to avoid this complementation by devising
some tricks for working directly with negative numbers in a complement
notation, and it is not hard to see how this could be done in double-precision
multiplication; but care should be taken not to slow down the inner loops of
the subroutines when high precision is required.

Let us now turn to an analysis of the quantity K that arises in Program A,
namely the number of carries that occur when two n-place numbers are being
added together. Although K has no effect on the total running time of Program
A, it does affect the running time of the Program A’s counterparts that deal
with complement notations, and its analysis is interesting in itself as a
significant application of generating functions.

Suppose that u and v are independent random n-place integers, uniformly
distributed in the range 0 ≤ u, v < bn. Let pnk be the probability that exactly k
carries occur in the addition of u to v, and that one of these carries occurs in
the most significant position (so that u + v ≥ bn). Similarly, let qnk be the
probability that exactly k carries occur, but that there is no carry in the most
significant position. Then it is not hard to see that, for all k and n,

this happens because (b − 1)/2b is the probability that un−1 + vn−1 ≥ b and
(b+1)/2b is the probability that un−1 + vn−1 +1 ≥ b, when un−1 and vn−1 are

independently and uniformly distributed integers in the range 0 ≤ un−1, vn−1 <
b.

To obtain further information about these quantities pnk and qnk, we set
up the generating functions

From (3) we have the basic relations

These two equations are readily solved for P (z, t) and Q(z, t); and if we let

where Gn(z) is the generating function for the total number of carries when n-
place numbers are added, we find that

Note that G(1, t) = 1/(1 – t), and this checks with the fact that Gn(1) must
equal 1 (it is the sum of all the possible probabilities). Taking partial
derivatives of (5) with respect to z, we find that

Now let us put z = 1 and expand in partial fractions:

It follows that the average number of carries, the mean value of K, is

the variance is

So the number of carries is just slightly less than n under these assumptions.
History and bibliography. The early history of the classical algorithms
described in this section is left as an interesting project for the reader, and
only the history of their implementation on computers will be traced here.

The use of 10n as an assumed radix when multiplying large numbers on a
desk calculator was discussed by D. N. Lehmer and J. P. Ballantine, AMM
30 (1923), 67–69.

Double-precision arithmetic on digital computers was first treated by J.
von Neumann and H. H. Goldstine in their introductory notes on
programming, originally published in 1947 [J. von Neumann, Collected
Works 5, 142–151]. Theorems A and B above are due to D. A. Pope and M.
L. Stein [CACM 3 (1960), 652–654], whose paper also contains a
bibliography of earlier work on double-precision routines. Other ways of
choosing the trial quotient have been discussed by A. G. Cox and H. A.
Luther, CACM 4 (1961), 353 [divide by vn−1+1 instead of vn−1], and by M. L.
Stein, CACM 7 (1964), 472–474 [divide by vn−1 or vn−1 + 1 according to the
magnitude of vn−2]; E. V. Krishnamurthy [CACM 8 (1965), 179–181] showed
that examination of the single-precision remainder in the latter method leads
to an improvement over Theorem B. Krishnamurthy and Nandi [CACM 10
(1967), 809–813] suggested a way to replace the normalization and
unnormalization operations of Algorithm D by a calculation of based on
several leading digits of the operands. G. E. Collins and D. R. Musser have
carried out an interesting analysis of the original Pope and Stein algorithm
[Information Processing Letters 6 (1977), 151–155].

Several alternative approaches to division have also been suggested:
1) “Fourier division” [J. Fourier, Analyse des Équations Déterminées

(Paris: 1831), §2.21]. This method, which was often used on desk
calculators, essentially obtains each new quotient digit by increasing the

precision of the divisor and the dividend at each step. Some rather extensive
tests by the author have indicated that such a method is inferior to the divide-
and-correct technique above, but there may be some applications in which
Fourier division is practical. See D. H. Lehmer, AMM 33 (1926), 198–206;
J. V. Uspensky, Theory of Equations (New York: McGraw–Hill, 1948),
159–164.

2) “Newton’s method” for evaluating the reciprocal of a number was
extensively used in early computers when there was no single-precision
division instruction. The idea is to find some initial approximation x0 to the
number 1/v, then to let . This method converges rapidly
to 1/v, since xn = (1 – ε)/v implies that xn+1 = (1 – ε2)/v. Convergence to third
order, with ε replaced by O(ε3) at each step, can be obtained using the
formula

and similar formulas hold for fourth-order convergence, etc.; see P.
Rabinowitz, CACM 4 (1961), 98. For calculations on extremely large
numbers, Newton’s second-order method and subsequent multiplication by u
can actually be considerably faster than Algorithm D, if we increase the
precision of xn at each step and if we also use the fast multiplication routines
of Section 4.3.3. (See Algorithm 4.3.3R for details.) Some related iterative
schemes have been discussed by E. V. Krishnamurthy, IEEE Trans. C-19
(1970), 227–231.

3) Division methods have also been based on the evaluation of

See H. H. Laughlin, AMM 37 (1930), 287–293. We have used this idea in the
double-precision case (Eq. 4.2.3–(2)).

Besides the references just cited, the following early articles concerning
multiple-precision arithmetic are also of interest: High-precision routines for
floating point calculations using ones’ complement arithmetic were
described by A. H. Stroud and D. Secrest, Comp. J. 6 (1963), 62–66.
Extended-precision subroutines for use in FORTRAN programs were

described by B. I. Blum, CACM 8 (1965), 318–320, and for use in ALGOL
by M. Tienari and V. Suokonautio, BIT 6 (1966), 332–338. Arithmetic on
integers with unlimited precision, making use of linked memory allocation
techniques, was elegantly introduced by G. E. Collins, CACM 9 (1966),
578–589. For a much larger repertoire of multiple-precision operations,
including logarithms and trigonometric functions, see R. P. Brent, ACM
Trans. Math. Software 4 (1978), 57–81; D. M. Smith, ACM Trans. Math.
Software 17 (1991), 273–283, 24 (1998), 359–367.

Human progress in calculation has traditionally been measured by the
number of decimal digits of π that were known at a given point in history.
Section 4.1 mentions some of the early developments; by 1719, Thomas
Fantet de Lagny had computed π to 127 decimal places [Mémoires Acad. Sci.
(Paris, 1719), 135–145; a typographical error affected the 113th digit]. After
better formulas were discovered, a famous mental calculator from Hamburg
named Zacharias Dase needed less than two months to calculate 200 decimal
digits correctly in 1844 [Crelle 27 (1844), 198]. Then William Shanks
published 607 decimals of π in 1853, and continued to extend his
calculations until he had obtained 707 digits in 1873. [See W. Shanks,
Contributions to Mathematics (London: 1853); Proc. Royal Soc. London 21
(1873), 318–319; 22 (1873), 45–46; J. C. V. Hoffmann, Zeit. für math. und
naturwiss. Unterricht 26 (1895), 261–264.] Shanks’s 707-place value was
widely quoted in mathematical reference books for many years, but D. F.
Ferguson noticed in 1945 that it contained several mistakes beginning at the
528th decimal place [Math. Gazette 30 (1946), 89–90]. G. Reitwiesner and
his colleagues used 70 hours of computing time on ENIAC during Labor Day
weekend in 1949 to obtain 2037 correct decimals [Math. Tables and Other
Aids to Comp. 4 (1950), 11–15]. F. Genuys reached 10,000 digits in 1958,
after 100 minutes on an IBM 704 [Chiffres 1 (1958), 17–22]; shortly
afterwards, the first 100,000 digits were published by D. Shanks [no relation
to William] and J. W. Wrench, Jr. [Math. Comp. 16 (1962), 76–99], after
about 8 hours on an IBM 7090 and another 4.5 hours for checking. Their
check actually revealed a transient hardware error, which went away when
the computation was repeated. One million digits of π were computed by
Jean Guilloud and Martine Bouyer of the French Atomic Energy Commission
in 1973, after nearly 24 hours of computer time on a CDC 7600 [see A.
Shibata, Surikagaku 20 (1982), 65–73]. Amazingly, Dr. I. J. Matrix had

correctly predicted seven years earlier that the millionth digit would turn out
to be “5” [Martin Gardner, New Mathematical Diversions (Simon and
Schuster, 1966), addendum to Chapter 8]. The billion-digit barrier was
passed in 1989 by Gregory V. Chudnovsky and David V. Chudnovsky, and
independently by Yasumasa Kanada and Yoshiaki Tamura; the Chudnovskys
extended their calculation to two billion digits in 1991, after 250 hours of
computation on a home-built parallel machine. [See Richard Preston, The
New Yorker 68, 2 (2 March 1992), 36–67. The novel formula used by the
Chudnovskys is described in Proc. Nat. Acad. Sci. 86 (1989), 8178–8182.]
Yasumasa Kanada and Daisuke Takahashi obtained more than 51.5 billion
digits in July, 1997, using two independent methods that required
respectively 29.0 and 37.1 hours on a HITACHI SR2201 computer with 1024
processing elements. By 2011 the world record had risen to ten trillion
digits(!), obtained by A. J. Yee and S. Kondo using the Chudnovsky formula
together with exercise 39.

We have restricted our discussion in this section to arithmetic techniques
for use in computer programming. Many algorithms for hardware
implementation of arithmetic operations are also quite interesting, but they
appear to be inapplicable to high-precision software routines; see, for
example, G. W. Reitwiesner, “Binary Arithmetic,” Advances in Computers 1
(New York: Academic Press, 1960), 231–308; O. L. MacSorley, Proc. IRE
49 (1961), 67–91; G. Metze, IRE Trans. EC-11 (1962), 761–764; H. L.
Garner, “Number Systems and Arithmetic,” Advances in Computers 6 (New
York: Academic Press, 1965), 131–194. An infamous but very instructive
bug in the division routine of the 1994 Pentium chip is discussed by A.
Edelman in SIAM Review 39 (1997), 54–67. The minimum achievable
execution time for hardware addition and multiplication operations has been
investigated by S. Winograd, JACM 12 (1965), 277–285, 14 (1967), 793–
802; by R. P. Brent, IEEE Trans. C-19 (1970), 758–759; and by R. W. Floyd,
FOCS 16 (1975), 3–5. See also Section 4.3.3E.

Exercises

1. [42] Study the early history of the classical algorithms for arithmetic by
looking up the writings of, say, Sun Tsŭ, al-Khwārizmī, al-Uqlīdisī,
Fibonacci, and Robert Recorde, and by translating their methods as faithfully
as possible into precise algorithmic notation.

2. [15] Generalize Algorithm A so that it does “column addition,”
obtaining the sum of m nonnegative n-place integers. (Assume that m ≤ b.)

3. [21] Write a MIX program for the algorithm of exercise 2, and estimate
its running time as a function of m and n.

4. [M21] Give a formal proof of the validity of Algorithm A, using the
method of inductive assertions explained in Section 1.2.1.

5. [21] Algorithm A adds the two inputs by going from right to left, but
sometimes the data is more readily accessible from left to right. Design an
algorithm that produces the same answer as Algorithm A, but that generates
the digits of the answer from left to right, going back to change previous
values if a carry occurs to make a previous value incorrect. [Note: Early
Hindu and Arabic manuscripts dealt with addition from left to right in this
way, probably because it was customary to work from left to right on an
abacus; the right-to-left addition algorithm was a refinement due to al-
Uqlīdisī, perhaps because Arabic is written from right to left.]
 6. [22] Design an algorithm that adds from left to right (as in exercise 5),
but never stores a digit of the answer until this digit cannot possibly be
affected by future carries; there is to be no changing of any answer digit
once it has been stored. [Hint: Keep track of the number of consecutive (b −
1)’s that have not yet been stored in the answer.] This sort of algorithm
would be appropriate, for example, in a situation where the input and output
numbers are to be read and written from left to right on magnetic tapes, or if
they appear in straight linear lists.

7. [M26] Determine the average number of times the algorithm of exercise
5 will find that a carry makes it necessary to go back and change k digits of
the partial answer, for k = 1, 2, . . . , n. (Assume that both inputs are
independently and uniformly distributed between 0 and bn − 1.)

8. [M26] Write a MIX program for the algorithm of exercise 5, and
determine its average running time based on the expected number of carries
as computed in the text.
 9. [21] Generalize Algorithm A to obtain an algorithm that adds two n-
place numbers in a mixed-radix number system, with bases b0, b1, . . . (from
right to left). Thus the least significant digits lie between 0 and b0 − 1, the
next digits lie between 0 and b1 − 1, etc.; see Eq. 4.1–(9).

10. [18] Would Program S work properly if the instructions on lines 06 and
07 were interchanged? If the instructions on lines 05 and 06 were
interchanged?
11. [10] Design an algorithm that compares two nonnegative n-place
integers u = (un−1 . . . u1u0)b and v = (vn−1 . . . v1v0)b, to determine whether
u < v, u = v, or u > v.
12. [16] Algorithm S assumes that we know which of the two input
operands is the larger; if this information is not known, we could go ahead
and perform the subtraction anyway, and we would find that an extra
borrow is still present at the end of the algorithm. Design another algorithm
that could be used (if there is a borrow present at the end of Algorithm S)
to complement (wn−1 . . . w1w0)b and therefore to obtain the absolute value
of the difference of u and v.
13. [21] Write a MIX program that multiplies (un−1 . . . u1u0)b by v, where
v is a single-precision number (that is, 0 ≤ v < b), producing the answer
(wn . . . w1w0)b. How much running time is required?

 14. [M22] Give a formal proof of the validity of Algorithm M, using the
method of inductive assertions explained in Section 1.2.1. (See exercise
4.)
15. [M20] If we wish to form the product of two n-place fractions, (.u1u2 .
. . un)b × (.v1v2 . . . vn)b, and to obtain only an n-place approximation
(.w1w2 . . . wn)b to the result, Algorithm M could be used to obtain a 2n-
place answer that is subsequently rounded to the desired approximation.
But this involves about twice as much work as is necessary for reasonable
accuracy, since the products uivj for i + j > n + 2 contribute very little to
the answer.

Give an estimate of the maximum error that can occur, if these products
uivj for i + j > n + 2 are not computed during the multiplication, but are
assumed to be zero.

 16. [20] (Short division.) Design an algorithm that divides a nonnegative
n-place integer (un − 1 . . . u1u0)b by v, where v is a single-precision
number (that is, 0 < v < b), producing the quotient (wn − 1 . . . w1w0)b and
remainder r.

17. [M20] In the notation of Fig. 6, assume that vn − 1 ≥ ⌊b/2⌋; show that if
un = vn − 1, we must have q = b − 1 or b – 2.

18. [M20] In the notation of Fig. 6, show that if q′ = ⌊(unb + un − 1)/(vn − 1 +
1)⌋, then q′ ≤ q.

 19. [M21] In the notation of Fig. 6, let be an approximation to q, and let
 = unb + un − 1 – vn − 1. Assume that vn − 1 > 0. Show that if vn – 2 > b +

un – 2, then q < . [Hint: Strengthen the proof of Theorem A by examining
the influence of vn – 2.]
20. [M22] Using the notation and assumptions of exercise 19, show that if

vn – 2 ≤ b + un – 2 and < b, then = q or q = – 1.

 21. [M23] Show that if vn − 1 ≥ ⌊b/2⌋, and if vn – 2 ≤ b + un – 2 but ≠ q
in the notation of exercises 19 and 20, then u mod v ≥ (1 – 2/b)v. (The
latter event occurs with approximate probability 2/b, so that when b is the
word size of a computer we must have qj = in Algorithm D except in very
rare circumstances.)

 22. [24] Find an example of a four-digit number divided by a three-digit
number for which step D6 is necessary in Algorithm D, when the radix b is
10.
23. [M23] Given that v and b are integers, and that 1 ≤ v < b, prove that we
always have ⌊b/2⌋ ≤ v⌊b/(v + 1)⌋ < (v + 1)⌊b/(v + 1)⌋ ≤ b.
24. [M20] Using the law of the distribution of leading digits explained in
Section 4.2.4, give an approximate formula for the probability that d = 1 in
Algorithm D. (When d = 1, we can omit most of the calculation in steps D1
and D8.)
25. [26] Write a MIX routine for step D1, which is needed to complete
Program D.
26. [21] Write a MIX routine for step D8, which is needed to complete
Program D.
27. [M20] Prove that at the beginning of step D8 in Algorithm D, the
unnormalized remainder (un − 1 . . . u1u0)b is always an exact multiple of d.

28. [M30] (A. Svoboda, Stroje na Zpracování Informací 9 (1963), 25–
32.) Let v = (vn − 1 . . . v1v0)b be any radix b integer, where vn − 1 ≠ 0.
Perform the following operations:

N1. If vn − 1 < b/2, multiply v by ⌊(b + 1)/(vn − 1 + 1)⌋. Let the result of
this step be (vnvn–1 . . . v1v0)b.

N2. If vn = 0, set v ← v + (1/b)⌊b(b – vn − 1)/(vn − 1 + 1)⌋v; let the result
of this step be (vnvn–1 . . . v0.v–1 . . .)b. Repeat step N2 until vn ≠ 0.

Prove that step N2 will be performed at most three times, and that we must
always have vn = 1, vn − 1 = 0 at the end of the calculations.

[Note: If u and v are both multiplied by the constants above, we do not
change the value of the quotient u/v, and the divisor has been converted
into the form (10vn – 2 . . . v0.v–1v–2v–3)b. This form of the divisor is very
convenient because, in the notation of Algorithm D, we may simply take
= uj+n as a trial divisor at the beginning of step D3, or = b − 1 when
(uj+n+1, uj+n) = (1, 0).]
29. [15] Prove or disprove: At the beginning of step D7 of Algorithm D,
we always have uj+n = 0.

 30. [22] If memory space is limited, it may be desirable to use the same
storage locations for both input and output during the performance of some
of the algorithms in this section. Is it possible to have w0, w1, . . . , wn − 1
stored in the same respective locations as u0, . . . , un − 1 or v0, . . . , vn − 1
during Algorithm A or S? Is it possible to have the quotient q0, . . . , qm
occupy the same locations as un, . . . , um+n in Algorithm D? Is there any
permissible overlap of memory locations between input and output in
Algorithm M?
31. [28] Assume that b = 3 and that u = (um+n − 1 . . . u1u0)3, v = (vn − 1 . . .
v1v0)3 are integers in balanced ternary notation (see Section 4.1), vn − 1 ≠
0. Design a long-division algorithm that divides u by v, obtaining a
remainder whose absolute value does not exceed |v|. Try to find an
algorithm that would be efficient if incorporated into the arithmetic
circuitry of a balanced ternary computer.

32. [M40] Assume that b = 2i and that u and v are complex numbers
expressed in the quater-imaginary number system. Design algorithms that
divide u by v, perhaps obtaining a suitable remainder of some sort, and
compare their efficiency.
33. [M40] Design an algorithm for taking square roots, analogous to
Algorithm D and to the traditional pencil-and-paper method for extracting
square roots.
34. [40] Develop a set of computer subroutines for doing the four
arithmetic operations on arbitrary integers, putting no constraint on the size
of the integers except for the implicit assumption that the total memory
capacity of the computer should not be exceeded. (Use linked memory
allocation, so that no time is wasted in finding room to put the results.)
35. [40] Develop a set of computer subroutines for “decuple-precision
floating point” arithmetic, using excess 0, base b, nine-place floating point
number representation, where b is the computer word size, and allowing a
full word for the exponent. (Thus each floating point number is represented
in 10 words of memory, and all scaling is done by moving full words
instead of by shifting within the words.)
36. [M25] Explain how to compute ln φ to high precision, given a suitably
precise approximation to φ, using only multiprecision addition,
subtraction, and division by small numbers.

 37. [20] (E. Salamin.) Explain how to avoid the normalization and
unnormalization steps of Algorithm D, when d is a power of 2 on a binary
computer, without changing the sequence of trial quotient digits computed
by that algorithm. (How can be computed in step D3 if the normalization
of step D1 hasn’t been done?)
38. [M35] Suppose u and v are integers in the range 0 ≤ u, v < 2n. Devise a
way to compute the geometric mean by doing O(n) operations
of addition, subtraction, and comparison of (n + 2)-bit numbers. [Hint: Use
a “pipeline” to combine the classical methods of multiplication and square
rooting.]
39. [25] (D. Bailey, P. Borwein, and S. Plouffe, 1996.) Explain how to
compute the nth bit of the binary representation of π without knowing the
previous n − 1 bits, by using the identity

and doing O(n log n) arithmetic operations on O(log n)-bit integers.
(Assume that the binary digits of π do not have surprisingly long stretches
of consecutive 0s or 1s.)
40. [M24] Sometimes we want to divide u by v when we know that the
remainder will be zero. Show that if u is a 2n-place number and v is an n-
place number with u mod v = 0, we can save about 75% of the work of
Algorithm D if we compute half of the quotient from left to right and the
other half from right to left.

 41. [M26] Many applications of high-precision arithmetic require
repeated calculations modulo a fixed n-place number w, where w is
relatively prime to the base b. We can speed up such calculations by using
a trick due to Peter L. Montgomery [Math. Comp. 44 (1985), 519–521],
which streamlines the remaindering process by essentially working from
right to left instead of left to right.

a) Given u = ±(um+n − 1 . . . u1u0)b, w = (wn − 1 . . . w1w0)b, and a number
w′ such that w0w′ mod b = 1, show how to compute v = ±(vn − 1 . . .
v1v0)b such that bmv mod w = u mod w.

b) Given n-place signed integers u, v, w with |u|, |v| < w, and given w′ as
in (a), show how to calculate an n-place integer t such that |t| < w and
bnt ≡ uv (modulo w).

c) How do the algorithms of (a) and (b) facilitate arithmetic mod w?
42. [HM35] Given m and b, let Pnk be the probability that ⌊(u1 + ... +
um)/bn⌋ = k, when u1, . . . , um are random n-place integers in radix b. (This
is the distribution of wn in the column addition algorithm of exercise 2.)
Show that , where is an Eulerian number
(see Section 5.1.3).

 43. [22] Shades of gray or components of color values in digitized images
are usually represented as 8-bit numbers u in the range [0 . . 255], denoting
the fraction u/255. Given two such fractions u/255 and v/255, graphical
algorithms often need to compute their approximate product w/255, where

w is the nearest integer to uv/255. Prove that w can be obtained from the
efficient formula

*4.3.2. Modular Arithmetic
Another interesting alternative is available for doing arithmetic on large
integer numbers, based on some simple principles of number theory. The idea
is to have several moduli m1, m2, . . . , mr that contain no common factors,
and to work indirectly with residues u mod m1, u mod m2, . . . , u mod mr
instead of directly with the number u.

For convenience in notation throughout this section, let

It is easy to compute (u1, u2, . . . , ur) from an integer number u by means of
division; and it is important to note that no information is lost in this process
(if u isn’t too large), since we can recompute u from (u1, u2, . . . , ur). For
example, if 0 ≤ u < v ≤ 1000, it is impossible to have (u mod 7, u mod 11, u
mod 13) equal to (v mod 7, v mod 11, v mod 13). This is a consequence of
the “Chinese remainder theorem” stated below.

We may therefore regard (u1, u2, . . . , ur) as a new type of internal
computer representation, a “modular representation,” of the integer u.

The advantages of a modular representation are that addition,
subtraction, and multiplication are very simple:

To derive (4), for example, we need to show that

for each modulus mj. But this is a basic fact of elementary number theory: x
mod mj = y mod mj if and only if x ≡ y (modulo mj); furthermore if x ≡ x′ and
y ≡ y′, then xy ≡ x′y′ (modulo mj); hence (u mod mj)(v mod mj) ≡ uv (modulo
mj).

The main disadvantage of a modular representation is that we cannot
easily test whether (u1, . . . , ur) is greater than (v1, . . . , vr). It is also
difficult to test whether or not overflow has occurred as the result of an
addition, subtraction, or multiplication, and it is even more difficult to
perform division. When such operations are required frequently in
conjunction with addition, subtraction, and multiplication, the use of modular
arithmetic can be justified only if fast means of conversion to and from the
modular representation are available. Therefore conversion between
modular and positional notation is one of the principal topics of interest to us
in this section.

The processes of addition, subtraction, and multiplication using (2), (3),
and (4) are called residue arithmetic or modular arithmetic. The range of
numbers that can be handled by modular arithmetic is equal to m = m1m2 . . .
mr, the product of the moduli; and if each mj is near our computer’s word
size we can deal with n-place numbers when r ≈ n. Therefore we see that the
amount of time required to add, subtract, or multiply n-place numbers using
modular arithmetic is essentially proportional to n (not counting the time to
convert in and out of modular representation). This is no advantage at all
when addition and subtraction are considered, but it can be a considerable
advantage with respect to multiplication since the conventional method of
Section 4.3.1 requires an execution time proportional to n2.

Moreover, on a computer that allows many operations to take place
simultaneously, modular arithmetic can be a significant advantage even for
addition and subtraction; the operations with respect to different moduli can
all be done at the same time, so we obtain a substantial increase in speed.
The same kind of decrease in execution time could not be achieved by the
conventional techniques discussed in the previous section, since carry
propagation must be considered. Perhaps highly parallel computers will
someday make simultaneous operations commonplace, so that modular
arithmetic will be of significant importance in “real-time” calculations when
a quick answer to a single problem requiring high precision is needed. (With
highly parallel computers, it is often preferable to run k separate programs
simultaneously, instead of running a single program k times as fast, since the
latter alternative is more complicated but does not utilize the machine any
more efficiently. “Real-time” calculations are exceptions that make the
inherent parallelism of modular arithmetic more significant.)

Now let us examine the basic fact that underlies the modular
representation of numbers:
Theorem C. (Chinese Remainder Theorem). Let m1, m2, . . . , mr be positive
integers that are relatively prime in pairs; that is,

Let m = m1m2 . . . mr, and let a, u1, u2, . . . , ur be integers. Then there is
exactly one integer u that satisfies the conditions

Proof. If u ≡ v (modulo mj) for 1 ≤ j ≤ r, then u – v is a multiple of mj for all
j, so (5) implies that u – v is a multiple of m = m1m2 . . . mr. This argument
shows that there is at most one solution of (6). To complete the proof we
must now show the existence of at least one solution, and this can be done in
two simple ways:
Method 1 (“Nonconstructive” proof). As u runs through the m distinct values
a ≤ u < a + m, the r-tuples (u mod m1, . . . , u mod mr) must also run through
m distinct values, since (6) has at most one solution. But there are exactly
m1m2 . . . mr possible r-tuples (v1, . . . , vr) such that 0 ≤ vj < mj. Therefore
each r-tuple must occur exactly once, and there must be some value of u for
which (u mod m1, . . . , u mod mr) = (u1, . . . , ur).
Method 2 (“Constructive” proof). We can find numbers Mj for 1 ≤ j ≤ r such
that

This follows because (5) implies that mj and m/mj are relatively prime, so
we may take

by Euler’s theorem (exercise 1.2.4–28). Now the number

satisfies all the conditions of (6).
A very special case of this theorem was stated by the Chinese

mathematician Sun , who gave a rule called tái-yen (“great
generalization”). The date of his writing is very uncertain; it is thought to be
between A.D. 280 and 473. Mathematicians in mediæval India developed the

techniques further, with their methods of (see Section 4.5.2), but
Theorem C was first stated and proved in its proper generality by Ch’in
Chiu-Shao in his Shu Shu Chiu Chang (1247); the latter work considers also
the case where the moduli might have common factors as in exercise 3. [See
J. Needham, Science and Civilisation in China 3 (Cambridge University
Press, 1959), 33–34, 119–120; Y. Li and S. Du, Chinese Mathematics
(Oxford: Clarendon, 1987), 92–94, 105, 161–166; K. Shen, Archive for
History of Exact Sciences 38 (1988), 285–305.] Numerous early
contributions to this theory have been summarized by L. E. Dickson in his
History of the Theory of Numbers 2 (Carnegie Inst. of Washington, 1920),
57–64.

As a consequence of Theorem C, we may use modular representation for
numbers in any consecutive interval of m = m1m2. . . mr integers. For
example, we could take a = 0 in (6), and work only with nonnegative integers
u less than m. On the other hand, when addition and subtraction are being
done, as well as multiplication, it is usually most convenient to assume that
all of the moduli m1, m2, . . .,mr are odd numbers, so that m = m1m2. . . mr is
odd, and to work with integers in the range

which is completely symmetrical about zero.
In order to perform the basic operations listed in (2), (3), and (4), we

need to compute (uj + vj) mod mj, (uj − vj) mod mj, and uj vj mod mj, when 0
≤ uj, vj < mj. If mj is a single-precision number, it is most convenient to form
ujvj mod mj by doing a multiplication and then a division operation. For
addition and subtraction, the situation is a little simpler, since no division is
necessary; the following formulas may conveniently be used:

(See Section 3.2.1.1.) Since we want m to be as large as possible, it is
easiest to let m1 be the largest odd number that fits in a computer word, to let
m2 be the largest odd number < m1 that is relatively prime to m1, to let m3 be
the largest odd number < m2 that is relatively prime to both m1 and m2, and
so on until enough mj’s have been found to give the desired range m. Efficient

ways to determine whether or not two integers are relatively prime are
discussed in Section 4.5.2.

As a simple example, suppose that we have a decimal computer whose
words hold only two digits, so that the word size is 100. Then the procedure
described in the previous paragraph would give

and so on.
On binary computers it is sometimes desirable to choose the mj in a

different way, by selecting

In other words, each modulus is one less than a power of 2. Such a choice of
mj often makes the basic arithmetic operations simpler, because it is
relatively easy to work modulo 2ej – 1, as in ones’ complement arithmetic.
When the moduli are chosen according to this strategy, it is helpful to relax
the condition 0 ≤ uj < mj slightly, so that we require only

Thus, the value uj = mj = 2ej – 1 is allowed as an optional alternative to uj =
0; this does not affect the validity of Theorem C, and it means we are
allowing uj to be any ej-bit binary number. Under this assumption, the
operations of addition and multiplication modulo mj become the following:

(Here ⊕ and ⊗ refer to the operations done on the individual components of
(u1, . . . , ur) and (v1, . . . , vr) when adding or multiplying, respectively, using
the convention (15).) Equation (12) is still good for subtraction, or we can
use

These operations can be performed efficiently even when 2ej is larger than
the computer’s word size, since it is a simple matter to compute the
remainder of a positive number modulo a power of 2, or to divide a number
by a power of 2. In (17) we have the sum of the “upper half” and the “lower
half” of the product, as discussed in exercise 3.2.1.1–8.

If moduli of the form 2ej – 1 are to be used, we must know under what
conditions the number 2e – 1 is relatively prime to the number 2f − 1.
Fortunately, there is a very simple rule:

This formula states in particular that 2e − 1 and 2f − 1 are relatively prime if
and only if e and f are relatively prime. Equation (19) follows from Euclid’s
algorithm and the identity

(See exercise 6.) On a computer with word size 232, we could therefore
choose m1 = 232 – 1, m2 = 231 – 1, m3 = 229 – 1, m4 = 227 – 1, m5 = 225 – 1;
this would permit efficient addition, subtraction, and multiplication of
integers in a range of size m1m2m3m4m5 > 2143.

As we have already observed, the operations of conversion to and from
modular representation are very important. If we are given a number u, its
modular representation (u1, . . . , ur) may be obtained by simply dividing u by
m1, . . . , mr and saving the remainders. A possibly more attractive
procedure, if u = (vmvm–1 . . . v0)b, is to evaluate the polynomial

using modular arithmetic. When b = 2 and when the modulus mj has the
special form 2ej – 1, both of these methods reduce to quite a simple
procedure: Consider the binary representation of u with blocks of ej bits
grouped together,

where A = 2ej and 0 ≤ ak < 2ej for 0 ≤ k ≤ t. Then

since A ≡ 1, so we obtain uj by adding the ej-bit numbers at ⊕ ... ⊕ a1 ⊕ a0,
using (16). This process is similar to the familiar device of “casting out
nines” that determines u mod 9 when u is expressed in the decimal system.

Conversion back from modular form to positional notation is somewhat
more difficult. It is interesting in this regard to notice how the study of
computation changes our viewpoint towards mathematical proofs: Theorem

C tells us that the conversion from (u1, . . . , ur) to u is possible, and two
proofs are given. The first proof we considered is a classical one that relies
only on very simple concepts, namely the facts that

i) any number that is a multiple of m1, of m2, . . . , and of mr, must be a
multiple of m1m2 . . . mr when the mj’s are pairwise relatively prime;
and

ii) if m pigeons are put into m pigeonholes with no two pigeons in the
same hole, then there must be one in each hole.

By traditional notions of mathematical aesthetics, this is no doubt the nicest
proof of Theorem C; but from a computational standpoint it is completely
worthless. It amounts to saying, “Try u = a, a + 1, . . . until you find a value
for which u ≡ u1 (modulo m1), . . . , u ≡ ur (modulo mr).”

The second proof of Theorem C is more explicit; it shows how to
compute r new constants M1, . . . , Mr, and to get the solution in terms of
these constants by formula (9). This proof uses more complicated concepts
(for example, Euler’s theorem), but it is much more satisfactory from a
computational standpoint, since the constants M1, . . . , Mr need to be
determined only once. On the other hand, the determination of Mj by Eq. (8)
is certainly not trivial, since the evaluation of Euler’s ϕ-function requires, in
general, the factorization of mj into prime powers. There are much better
ways to compute Mj than to use (8); in this respect we can see again the
distinction between mathematical elegance and computational efficiency. But
even if we find Mj by the best possible method, we’re stuck with the fact that
Mj is a multiple of the huge number m/mj. Thus, (9) forces us to do a lot of
high-precision calculation, and such calculation is just what we wished to
avoid by modular arithmetic in the first place.

So we need an even better proof of Theorem C if we are going to have a
really usable method of conversion from (u1, . . . , ur) to u. Such a method
was suggested by H. L. Garner in 1958; it can be carried out using
constants cij for 1 ≤ i < j ≤ r, where

These constants cij are readily computed using Euclid’s algorithm, since for
any given i and j Algorithm 4.5.2X will determine a and b such that ami +

bmj = gcd(mi, mj) = 1, and we may take cij = a. When the moduli have the
special form 2ej – 1, a simple method of determining cij is given in exercise
6.

Once the cij have been determined satisfying (23), we can set

Then

is a number satisfying the conditions

(See exercise 8; another way of rewriting (24) that does not involve as many
auxiliary constants is given in exercise 7.) Equation (25) is a mixed-radix
representation of u, which can be converted to binary or decimal notation
using the methods of Section 4.4. If 0 ≤ u < m is not the desired range, an
appropriate multiple of m can be added or subtracted after the conversion
process.

The advantage of the computation shown in (24) is that the calculation of
vj can be done using only arithmetic mod mj, which is already built into the
modular arithmetic algorithms. Furthermore, (24) allows parallel
computation: We can start with (v1, . . . , vr) ← (u1 mod m1, . . . , ur mod mr),
then at time j for 1 ≤ j < r we simultaneously set vk ← (vk – vj)cjk mod mk
for j < k ≤ r. An alternative way to compute the mixed-radix representation,
allowing similar possibilities for parallelism, has been discussed by A. S.
Fraenkel, Proc. ACM Nat. Conf. 19 (Philadelphia: 1964), E1.4.

It is important to observe that the mixed-radix representation (25) is
sufficient to compare the magnitudes of two modular numbers. For if we
know that 0 ≤ u < m and 0 ≤ u′ < m, then we can tell if u < u′ by first doing
the conversion to (v1, . . . , vr) and , then testing if , or
if and , etc., according to lexicographic order. It is

not necessary to convert all the way to binary or decimal notation if we only
want to know whether (u1, . . . , ur) is less than .

The operation of comparing two numbers, or of deciding if a modular
number is negative, is intuitively very simple, so we would expect to have a
much easier way to make this test than the conversion to mixed-radix form.
But the following theorem shows that there is little hope of finding a
substantially better method, since the range of a modular number depends
essentially on all bits of all the residues (u1, . . . , ur):

Theorem S. (Nicholas Szabó, 1961). In terms of the notation above,
assume that m1 < , and let L be any value in the range

Let g be any function such that the set {g(0), g(1), . . . , g(m1 – 1)} contains
fewer than m1 values. Then there are numbers u and v such that

Proof. By hypothesis, there must exist numbers u ≠ v satisfying (28), since g
must take on the same value for two different residues. Let (u, v) be a pair of
values with 0 ≤ u < v < m satisfying (28), for which u is a minimum. Since u′
= u – m1 and v′ = v – m1 also satisfy (28), we must have u′ < 0 by the
minimality of u. Hence u < m1 ≤ L; and if (29) does not hold, we must have v
< L. But v > u, and v – u is a multiple of m2 . . . mr = m/m1, so v ≥ v – u ≥
m/m1 > m1. Therefore, if (29) does not hold for (u, v), it will be satisfied for
the pair (u″, v″) = (v – m1, u + m – m1).

Of course, a similar result can be proved for any mj in place of m1; and
we could also replace (29) by the condition “a ≤ u < a + L ≤ v < a + m” with
only minor changes in the proof. Therefore Theorem S shows that many
simple functions cannot be used to determine the range of a modular number.

Let us now reiterate the main points of the discussion in this section:
Modular arithmetic can be a significant advantage for applications in which
the predominant calculations involve exact multiplication (or raising to a
power) of large integers, combined with addition and subtraction, but where
there is very little need to divide or compare numbers, or to test whether
intermediate results “overflow” out of range. (It is important not to forget

the latter restriction; methods are available to test for overflow, as in
exercise 12, but they are so complicated that they nullify the advantages of
modular arithmetic.) Several applications of modular computations have
been discussed by H. Takahasi and Y. Ishibashi, Information Proc. in Japan
1 (1961), 28–42.

An example of such an application is the exact solution of linear
equations with rational coefficients. For various reasons it is desirable in
this case to assume that the moduli m1, m2, . . . , mr are all prime numbers; the
linear equations can be solved independently modulo each mj. A detailed
discussion of this procedure has been given by I. Borosh and A. S. Fraenkel
[Math. Comp. 20 (1966), 107–112], with further improvements by A. S.
Fraenkel and D. Loewenthal [J. Res. National Bureau of Standards 75B
(1971), 67–75]. By means of their method, the nine independent solutions of
a system of 111 linear equations in 120 unknowns were obtained exactly in
less than 20 minutes on a CDC 1604 computer. The same procedure is
worthwhile also for solving simultaneous linear equations with floating point
coefficients, when the matrix of coefficients is ill-conditioned. The modular
technique (treating the given floating point coefficients as exact rational
numbers) gives a method for obtaining the true answers in less time than
conventional methods can produce reliable approximate answers! [See M. T.
McClellan, JACM 20 (1973), 563–588, for further developments of this
approach; and see also E. H. Bareiss, J. Inst. Math. and Appl. 10 (1972),
68–104, for a discussion of its limitations.]

The published literature concerning modular arithmetic is mostly
oriented towards hardware design, since the carry-free properties of modular
arithmetic make it attractive from the standpoint of high-speed operation. The
idea was first published by A. Svoboda and M. Valach in the
Czechoslovakian journal Stroje na Zpracování Informací (Information
Processing Machines) 3 (1955), 247–295; then independently by H. L.
Garner [IRE Trans. EC-8 (1959), 140–147]. The use of moduli of the form
2ej – 1 was suggested by A. S. Fraenkel [JACM 8 (1961), 87–96], and
several advantages of such moduli were demonstrated by A. Schönhage
[Computing 1 (1966), 182–196]. See the book Residue Arithmetic and Its
Applications to Computer Technology by N. S. Szabó and R. I. Tanaka (New
York: McGraw–Hill, 1967), for additional information and a comprehensive
bibliography of the subject. A Russian book published in 1968 by I. Y.

Akushsky and D. I. Yuditsky includes a chapter about complex moduli [see
Rev. Roumaine de Math. Pures et Appl. 15 (1970), 159–160].

Further discussion of modular arithmetic can be found in Section 4.3.3B.

The notice-board had said he was in Room 423, but the
numbering system, nominally consecutive, seemed to have

been applied on a plan that could only have been the work of
a lunatic or a mathematician.

— ROBERT BARNARD, The Case of the Missing Brontë (1983)

Exercises

1. [20] Find all integers u that satisfy all of the following conditions: u
mod 7 = 1, u mod 11 = 6, u mod 13 = 5, 0 ≤ u < 1000.

2. [M20] Would Theorem C still be true if we allowed a, u1, u2, . . . , ur
and u to be arbitrary real numbers (not just integers)?
 3. [M26] (Generalized Chinese Remainder Theorem.) Let m1, m2, . . . ,
mr be positive integers. Let m be the least common multiple of m1, m2, . . . ,
mr, and let a, u1, u2, . . . , ur be any integers. Prove that there is exactly one
integer u that satisfies the conditions

provided that

and there is no such integer u when the latter condition fails to hold.
4. [20] Continue the process shown in (13); what would m7, m8, m9, . . .

be?
 5. [M23] (a) Suppose that the method of (13) is continued until no more
mj can be chosen. Does this “greedy” method give the largest attainable
value m1m2 . . . mr such that the mj are odd positive integers less than 100
that are relatively prime in pairs? (b) What is the largest possible m1m2 . . .
mr when each residue uj must fit in eight bits of memory?

6. [M22] Let e, f, and g be nonnegative integers.

a) Show that 2e ≡ 2f (modulo 2g − 1) if and only if e ≡ f (modulo g).
b) Given that e mod f = d and ce mod f = 1, prove the identity

(Thus, we have a comparatively simple formula for the inverse of 2e −
1, modulo 2f − 1, as required in (23).)

 7. [M21] Show that (24) can be rewritten as follows:

If the formulas are rewritten in this way, we see that only r − 1 constants
Cj = c1j . . . c(j−1)j mod mj are needed instead of r(r − 1)/2 constants cij
as in (24). Discuss the relative merits of this version of the formula as
compared to (24), from the standpoint of computer calculation.

8. [M21] Prove that the number u defined by (24) and (25) satisfies (26).
9. [M20] Show how to go from the values v1, . . . , vr of the mixed-radix

notation (25) back to the original residues u1, . . . , ur, using only arithmetic
mod mj to compute the value of uj.

10. [M25] An integer u that lies in the symmetrical range (10) might be
represented by finding the numbers u1, . . . , ur such that u ≡ uj (modulo mj)
and –mj/2 < uj < mj/2, instead of insisting that 0 ≤ uj < mj as in the text.
Discuss the modular arithmetic procedures that would be appropriate in
connection with such a symmetrical representation (including the
conversion process, (24)).
11. [M23] Assume that all the mj are odd, and that u = (u1, . . . , ur) is
known to be even, where 0 ≤ u < m. Find a reasonably fast method to
compute u/2 using modular arithmetic.
12. [M10] Prove that, if 0 ≤ u, v < m, the modular addition of u and v
causes overflow (lies outside the range allowed by the modular

representation) if and only if the sum is less than u. (Thus the overflow
detection problem is equivalent to the comparison problem.)

 13. [M25] (Automorphic numbers.) An n-digit decimal number x > 1 is
called an “automorph” by recreational mathematicians if the last n digits of
x2 are equal to x. For example, 9376 is a 4-digit automorph, since 93762 =
87909376. [See Scientific American 218, 1 (January 1968), 125.]

a) Prove that an n-digit number x > 1 is an automorph if and only if x mod
5n = 0 or 1 and x mod 2n = 1 or 0, respectively. (Thus, if m1 = 2n and
m2 = 5n, the only two n-digit automorphs are the numbers M1 and M2 in
(7).)

b) Prove that if x is an n-digit automorph, then (3x2 – 2x3) mod 102n is a
2n-digit automorph.

c) Given that cx ≡ 1 (modulo y), find a simple formula for a number c′
depending on c and x but not on y, such that c′x2 ≡ 1 (modulo y2).

 14. [M30] (Mersenne multiplication.) The cyclic convolution of (x0, x1, .
. . , xn − 1) and (y0, y1, . . . , yn − 1) is defined to be (z0, z1, . . . , zn − 1),
where

We will study efficient algorithms for cyclic convolution in Sections 4.3.3
and 4.6.4.

Consider q-bit integers u and v that are represented in the form

where 0 ≤ uk, vk < 2⌊(k+1)q/n⌋–⌊kq/n⌋. (This representation is a mixture of
radices 2⌊q/n⌋ and 2⌈q/n⌉.) Suggest a good way to find the representation of

using an appropriate cyclic convolution. [Hint: Do not be afraid of floating
point arithmetic.]

*4.3.3. How Fast Can We Multiply?
The conventional procedure for multiplication in positional number systems,
Algorithm 4.3.1M, requires approximately cmn operations to multiply an m-
place number by an n-place number, where c is a constant. In this section, let
us assume for convenience that m = n, and let us consider the following
question: Does every general computer algorithm for multiplying two n-
place numbers require an execution time proportional to n2, as n
increases?

(In this question, a “general” algorithm means one that accepts, as input,
the number n and two arbitrary n-place numbers in positional notation; the
algorithm is supposed to output their product in positional form. Certainly if
we were allowed to choose a different algorithm for each value of n, the
question would be of no interest, since multiplication could be done for any
specific value of n by a “table-lookup” operation in some huge table. The
term “computer algorithm” is meant to imply an algorithm that is suitable for
implementation on a digital computer like MIX, and the execution time is to
be the time it takes to perform the algorithm on such a computer.)
A. Digital methods. The answer to the question above is, rather surprisingly,
“No,” and, in fact, it is not very difficult to see why. For convenience, let us
assume throughout this section that we are working with integers expressed
in binary notation. If we have two 2n-bit numbers u = (u2n − 1 . . . u1u0)2 and
v = (v2n − 1 . . . v1v0)2, we can write

where U1 = (u2n − 1 . . . un)2 is the “most significant half” of the number u and
U0 = (un − 1 . . . u0)2 is the “least significant half”; similarly V1 = (v2n − 1 . . .
vn)2 and V0 = (vn − 1 . . . v0)2. Now we have

This formula reduces the problem of multiplying 2n-bit numbers to three
multiplications of n-bit numbers, namely U1V1, (U1 – U0)(V0 – V1), and U0V0,
plus some simple shifting and adding operations.

Formula (2) can be used to multiply double-precision inputs when we
want a quadruple-precision result, and it will be just a little faster than the
traditional method on many machines. But the main advantage of (2) is that
we can use it to define a recursive process for multiplication that is

significantly faster than the familiar order-n2 method when n is large: If T(n)
is the time required to perform multiplication of n-bit numbers, we have

for some constant c, since the right-hand side of (2) uses just three
multiplications plus some additions and shifts. Relation (3) implies by
induction that

if we choose c to be large enough so that this inequality is valid when k = 1;
therefore we have

Relation (5) shows that the running time for multiplication can be reduced
from order n2 to order nlg 3 ≈ n1.585, so the recursive method is much faster
than the traditional method when n is large. Exercise 18 discusses an
implementation of this approach.

(A similar but slightly more complicated method for doing multiplication
with running time of order nlg 3 was apparently first suggested by A.
Karatsuba in Doklady Akad. Nauk SSSR 145 (1962), 293–294 [English
translation in Soviet Physics–Doklady 7 (1963), 595–596]. Curiously, this
idea does not seem to have been discovered before 1962; none of the
“calculating prodigies” who have become famous for their ability to multiply
large numbers mentally have been reported to use any such method, although
formula (2) adapted to decimal notation would seem to lead to a reasonably
easy way to multiply eight-digit numbers in one’s head.)

The running time can be reduced still further, in the limit as n approaches
infinity, if we observe that the method just used is essentially the special case
r = 1 of a more general method that yields

for any fixed r. This more general method can be obtained as follows: Let

be broken into r + 1 pieces,

where each Uj and each Vj is an n-bit number. Consider the polynomials

and let

Since u = U(2n) and v = V(2n), we have uv = W(2n), so we can easily
compute uv if we know the coefficients of W(x). The problem is to find a
good way to compute the coefficients of W(x) by using only 2r + 1
multiplications of n-bit numbers plus some further operations that involve
only an execution time proportional to n. This can be done by computing

The coefficients of a polynomial of degree 2r can be written as a linear
combination of the values of that polynomial at 2r + 1 distinct points;
computing such a linear combination requires an execution time at most
proportional to n. (Actually, the products U(j)V(j) are not strictly products of
n-bit numbers, but they are products of at most (n + t)-bit numbers, where t is
a fixed value depending on r. It is easy to design a multiplication routine for
(n + t)-bit numbers that requires only T(n) + c1n operations, where T(n) is
the number of operations needed for n-bit multiplications, since two products
of t-bit by n-bit numbers can be done in c2n operations when t is fixed.)
Therefore we obtain a method of multiplication satisfying (6).

Relation (6) implies that T(n) ≤ c3nlogr + 1(2r + 1) < c3n1 + logr + 1 2, if we
argue as in the derivation of (5), so we have now proved the following
result:
Theorem A. Given ε > 0, there exists a multiplication algorithm such that
the number of elementary operations T (n) needed to multiply two n-bit
numbers satisfies

for some constant c(ε) independent of n.
This theorem is still not the result we are after. It is unsatisfactory for

practical purposes because the method becomes quite complicated as ε → 0
(and therefore as r → ∞), causing c(ε) to grow so rapidly that extremely huge
values of n are needed before we have any significant improvement over (5).
And it is unsatisfactory for theoretical purposes because it does not make use
of the full power of the polynomial method on which it is based. We can
obtain a better result if we let r vary with n, choosing larger and larger
values of r as n increases. This idea is due to A. L. Toom [Doklady Akad.

Nauk SSSR 150 (1963), 496–498, English translation in Soviet Mathematics
4 (1963), 714–716], who used it to show that computer circuitry for the
multiplication of n-bit numbers can be constructed with a fairly small number
of components as n grows. S. A. Cook [On the Minimum Computation Time
of Functions (Thesis, Harvard University, 1966), 51–77] showed later that
Toom’s method can be adapted to fast computer programs.

Before we discuss the Toom–Cook algorithm any further, let us study a
small example of the transition from U(x) and V(x) to the coefficients of
W(x). This example will not demonstrate the efficiency of the method, since
the numbers are too small, but it reveals some useful simplifications that we
can make in the general case. Suppose that we want to multiply u = 1234
times v = 2341; in binary notation this is

Let r = 2; the polynomials U(x) and V(x) in (8) are

Hence we find, for W(x) = U(x)V(x),

Our job is to compute the five coefficients of W(x) from the latter five values.
An attractive little algorithm can be used to compute the coefficients of a

polynomial W(x) = Wm − 1xm − 1 + ... + W1x + W0 when the values W(0), W(1),
. . . , W(m − 1) are given. Let us first write

where xk = x(x − 1) ... (x – k + 1), and where the coefficients aj are unknown.
The falling factorial powers have the important property that

hence by induction we find that, for all k ≥ 0,

Denoting the left-hand side of (15) by (1/k!) Δk W (x), we see that

and (1/k!) Δk W (0) = ak. So the coefficients aj can be evaluated using a very
simple method, illustrated here for the polynomial W(x) in (13):

The leftmost column of this tableau is a listing of the given values of W(0),
W(1), . . . , W(4); the kth succeeding column is obtained by computing the
difference between successive values of the preceding column and dividing
by k. The coefficients aj appear at the top of the columns, so that a0 = 10, a1
= 294, . . . , a4 = 36, and we have

In general, we can write

and this formula shows how the coefficients Wm − 1, . . . , W1, W0 can be
obtained from the a’s:

Here the numbers below the horizontal lines successively show the
coefficients of the polynomials

From this tableau we have

so the answer to our original problem is 1234 · 2341 = W(16) = 2888794,
where W(16) is obtained by adding and shifting. A generalization of this
method for obtaining coefficients is discussed in Section 4.6.4.

The basic Stirling number identity of Eq. 1.2.6–(45),

shows that if the coefficients of W(x) are nonnegative, so are the numbers aj,
and in such a case all of the intermediate results in the computation above
are nonnegative. This further simplifies the Toom–Cook multiplication
algorithm, which we will now consider in detail. (Impatient readers should,
however, skip to subsection C below.)
Algorithm T (High-precision multiplication of binary numbers). Given a
positive integer n and two nonnegative n-bit integers u and v, this algorithm
forms their 2n-bit product, w. Four auxiliary stacks are used to hold the long
numbers that are manipulated during the procedure:

These stacks may contain either binary numbers or special control symbols
called code-1, code-2, and code-3. The algorithm also constructs an
auxiliary table of numbers qk, rk; this table is maintained in such a manner
that it may be stored as a linear list, where a single pointer that traverses the
list (moving back and forth) can be used to access the current table entry of
interest.

(Stacks C and W are used to control the recursive mechanism of this
multiplication algorithm in a reasonably straightforward manner that is a
special case of general procedures discussed in Chapter 8.)

T1. [Compute q, r tables.] Set stacks U, V, C, and W empty. Set

Now if qk − 1 + qk < n, set

and repeat this operation until qk − 1 + qk ≥ n. (Note: The calculation of
R ← ⌊ ⌋ does not require a square root to be taken, since we may
simply set R ← R + 1 if (R + 1)2 ≤ Q and leave R unchanged if (R + 1)2

> Q; see exercise 2. In this step we build the sequences

The multiplication of 70000-bit numbers would cause this step to
terminate with k = 6, since 70000 < 213 + 216.)

T2. [Put u, v on stack.] Put code-1 on stack C, then place u and v onto stack
C as numbers of exactly qk − 1 + qk bits each.

T3. [Check recursion level.] Decrease k by 1. If k = 0, the top of stack C
now contains two 32-bit numbers, u and v; remove them, set w ← uv
using a built-in routine for multiplying 32-bit numbers, and go to step
T10. If k > 0, set r ← rk, q ← qk, p ← qk–1 + qk, and go on to step T4.

Fig. 8. The Toom–Cook algorithm for high-precision multiplication.

T4. [Break into r + 1 parts.] Let the number at the top of stack C be
regarded as a list of r + 1 numbers with q bits each, (Ur . . . U1U0)2q .
(The top of stack C now contains an (r + 1)q = (qk + qk+1)-bit number.)
For j = 0, 1, . . . , 2r, compute the p-bit numbers

and successively put these values onto stack U. (The bottom of stack U
now contains U(0), then comes U(1), etc., with U(2r) on top. We have

by exercise 3.) Then remove Ur . . . U1U0 from stack C.
Now the top of stack C contains another list of r + 1 q-bit numbers, Vr

. . . V1V0, and the p-bit numbers

should be put onto stack V in the same way. After this has been done,
remove Vr . . . V1V0 from stack C.

T5. [Recurse.] Successively put the following items onto stack C, at the
same time emptying stacks U and V :

Go back to step T3.
T6. [Save one product.] (At this point the multiplication algorithm has set w

to one of the products W(j) = U(j)V(j).) Put w onto stack W. (This
number w contains 2(qk + qk − 1) bits.) Go back to step T3.

T7. [Find a’s.] Set r ← rk, q ← qk, p ← qk–1 + qk. (At this point stack W
contains a sequence of numbers ending with W(0), W(1), . . . , W(2r)
from bottom to top, where each W(j) is a 2p-bit number.)

Now for j = 1, 2, 3, . . . , 2r, perform the following loop: For t = 2r,
2r − 1, 2r – 2, . . . , j, set W(t) ← (W(t) – W(t − 1))/j. (Here j must
increase and t must decrease. The quantity (W(t)–W(t−1))/j will always
be a nonnegative integer that fits in 2p bits; see (16).)

T8. [Find W’s.] For j = 2r − 1, 2r – 2, . . . , 1, perform the following loop:
For t = j, j + 1, . . . , 2r − 1, set W(t) ← W(t) – jW (t + 1). (Here j must
decrease and t must increase. The result of this operation will again be
a nonnegative 2p-bit integer; see (18).)

T9. [Set answer.] Set w to the 2(qk + qk+1)-bit integer

Remove W(2r), . . . , W(0) from stack W.
T10. [Return.] Set k ← k + 1. Remove the top of stack C. If it is code-3, go

to step T6. If it is code-2, put w onto stack W and go to step T7. And if
it is code-1, terminate the algorithm (w is the answer).

Let us now estimate the running time, T(n), for Algorithm T, in terms of
some things we shall call “cycles,” that is, elementary machine operations.
Step T1 takes O(qk) cycles, even if we represent the number qk internally as
a long string of qk bits followed by some delimiter, since qk + qk − 1 + ... + q0
will be O(qk). Step T2 obviously takes O(qk) cycles.

Now let tk denote the amount of computation required to get from step T3
to step T10 for a particular value of k (after k has been decreased at the
beginning of step T3). Step T3 requires O(q) cycles at most. Step T4
involves r multiplications of q-bit numbers by (lg 2r)-bit numbers, and r
additions of p-bit numbers, all repeated 4r + 2 times. Thus we need a total of
O(r2q log r) cycles. Step T5 requires moving 4r+2 p-bit numbers, so it
involves O(rq) cycles. Step T6 requires O(q) cycles, and it is done 2r + 1
times per iteration. The recursion involved when the algorithm essentially
invokes itself (by returning to step T3) requires tk − 1 cycles, 2r + 1 times.
Step T7 requires O(r2) subtractions of p-bit numbers and divisions of 2p-bit
by (lg 2r)-bit numbers, so it requires O(r2q log r) cycles. Similarly, step T8
requires O(r2q log r) cycles. Step T9 involves O(rq) cycles, and T10 takes
hardly any time at all.

Summing up, we have T(n) = O(qk) + O(qk) + tk − 1, where (if q = qk and
r = rk) the main contribution to the running time satisfies

Thus there is a constant c such that

To complete the estimation of tk we can prove by brute force that

for some constant C. Let us choose C > 20c, and let us also take C large
enough so that (20) is valid for k ≤ k0, where k0 will be specified below.
Then when k > k0, let Qk = lg qk, Rk = lg rk; we have by induction

where

since

as k → ∞. It follows that we can find k0 such that η2 < 0.95 for all k > k0, and
this completes the proof of (20) by induction.

Finally, therefore, we are ready to estimate T(n). Since n > qk − 1 + qk – 2,
we have qk − 1 < n; hence

Thus

and, since T(n) = O(qk) + tk − 1, we have derived the following theorem:
Theorem B. There is a constant c0 such that the execution time of
Algorithm T is less than cycles.

Since , this result is noticeably stronger
than Theorem A. By adding a few complications to the algorithm, pushing the
ideas to their apparent limits (see exercise 5), we can improve the estimated
execution time to

*B. A modular method. There is another way to multiply large numbers very
rapidly, based on the ideas of modular arithmetic as presented in Section
4.3.2. It is very hard to believe at first that this method can be of advantage,
since a multiplication algorithm based on modular arithmetic must include

the choice of moduli and the conversion of numbers into and out of modular
representation, besides the actual multiplication operation itself. In spite of
these formidable difficulties, A. Schönhage discovered that all of these
operations can be carried out quite rapidly.

In order to understand the essential mechanism of Schönhage’s method,
we shall look at a special case. Consider the sequence defined by the rules

so that . We will study a
procedure that multiplies pk-bit numbers, where pk = (18qk + 8), in terms of
a method for multiplying pk − 1-bit numbers. Thus, if we know how to
multiply numbers having p0 = 26 bits, the procedure to be described will
show us how to multiply numbers of p1 = 44 bits, then 98 bits, then 260 bits,
etc., eventually increasing the number of bits by almost a factor of 3 at each
step.

When multiplying pk-bit numbers, the idea is to use the six moduli

These moduli are relatively prime, by Eq. 4.3.2–(19), since the exponents

are always relatively prime (see exercise 6). The six moduli in (23) are
capable of representing numbers up to m = m1m2m3m4m5m6 > 236qk

+16 = 22pk,
so there is no chance of overflow in the multiplication of pk-bit numbers u
and v. Thus we can use the following method, when k > 0:

a) Compute u1 = u mod m1, . . . , u6 = u mod m6; and v1 = v mod m1, . . . ,
v6 = v mod m6.

b) Multiply u1 by v1, u2 by v2, . . . , u6 by v6. These are numbers of at most
6qk + 7 = 18qk − 1 + 1 < pk − 1 bits, so the multiplications can be
performed by using the assumed pk − 1-bit multiplication procedure.

c) Compute w1 = u1v1 mod m1, w2 = u2v2 mod m2, . . . , w6 = u6v6 mod m6.
d) Compute w such that 0 ≤ w < m, w mod m1 = w1, . . . , w mod m6 = w6.

Let tk be the amount of time needed for this process. It is not hard to see
that operation (a) takes O(pk) cycles, since the determination of u mod
(2e−1) is quite simple (like “casting out nines”), as shown in Section 4.3.2.
Similarly, operation (c) takes O(pk) cycles. Operation (b) requires
essentially 6tk − 1 cycles. This leaves us with operation (d), which seems to
be quite a difficult computation; but Schönhage has found an ingenious way to
perform step (d) in O(pk log pk) cycles, and this is the crux of the method. As
a consequence, we have

Since pk = 3k + 2 + 17, we can show that the time for n-bit multiplication is

(See exercise 7.)
Although the modular method is more complicated than the O(nlg 3)

procedure discussed at the beginning of this section, Eq. (25) shows that it
does, in fact, lead to an execution time substantially better than O(n2) for the
multiplication of n-bit numbers. Thus we have seen how to improve on the
classical method by using either of two completely different approaches.

Let us now analyze operation (d) above. Assume that we are given a set
of positive integers e1 < e2 < ... < er, relatively prime in pairs; let

We are also given numbers w1, . . . , wr such that 0 ≤ wj ≤ mj. Our job is to
determine the binary representation of the number w that satisfies the
conditions

The method is based on (24) and (25) of Section 4.3.2. First we compute

for j = 2, . . . , r, where mod m1; then we compute

Here cij is a number such that cijmi ≡ 1 (modulo mj); these numbers cij are not
given, they must be determined from the ej’s.

The calculation of (28) for all j involves additions modulo mj, each
of which takes O(er) cycles, plus multiplications by cij, modulo mj. The
calculation of w by formula (29) involves r additions and r multiplications
by mj; it is easy to multiply by mj, since this is just adding, shifting, and
subtracting, so it is clear that the evaluation of Eq. (29) takes O(r2er) cycles.
We will soon see that each of the multiplications by cij, modulo mj, requires
only O(er log er) cycles, and therefore it is possible to complete the entire
job of conversion in O(r2er log er) cycles.

These observations leave us with the following problem to solve: Given
relatively prime positive integers e and f with e < f, and a nonnegative
integer u < 2f,compute the value of (cu) mod (2f − 1), where c is the number
such that (2e − 1)c ≡ 1 (modulo 2f − 1); this entire computation must be done
in O(f log f) cycles. The result of exercise 4.3.2–6 gives a formula for c that
suggests a suitable procedure. First we find the least positive integer b such
that

Euclid’s algorithm will discover b in O((log f)3) cycles, since it requires
O(log f) iterations when applied to e and f, and each iteration requires O
((log f)2) cycles. Alternatively, we could be very sloppy here without
violating the total time constraint, by simply trying b = 1, 2, etc., until (30) is
satisfied; such a process would take O(f log f) cycles in all. Once b has been
found, exercise 4.3.2–6 tells us that

A brute-force multiplication of (cu) mod (2f − 1) would not be good
enough to solve the problem, since we do not know how to multiply general
f-bit numbers in O(f log f) cycles. But the special form of c provides a clue:
The binary representation of c is composed of bits in a regular pattern, and
Eq. (31) shows that the number c[2b] can be obtained in a simple way from
c[b]. This suggests that we can rapidly multiply a number u by c[b] if we
build c[b]u up in lg b steps in a suitably clever manner, such as the
following: Suppose b is

in binary notation; we can calculate four sequences ak, dk, uk, vk defined by

It is easy to prove by induction on k that

Hence the desired result, (c[b]u) mod (2f − 1), is vs. The calculation of ak,
dk, uk, and vk from ak−1, dk−1, uk−1, vk−1 takes O(log f) + O(log f) + O(f) +
O(f) = O(f) cycles; consequently the entire calculation can be done in s O(f)
= O(f log f) cycles as desired.

The reader will find it instructive to study the ingenious method
represented by (32) and (33) very carefully. Similar techniques are discussed
in Section 4.6.3.

Schönhage’s paper [Computing 1 (1966), 182–196] shows that these
ideas can be extended to the multiplication of n-bit numbers using

 moduli, obtaining a method analogous to Algorithm T. We shall
not dwell on the details here, since Algorithm T is always superior; in fact,
an even better method is next on our agenda.
C. Discrete Fourier transforms. The critical problem in high-precision
multiplication is the determination of “convolution products” such as

and there is an intimate relation between convolutions and an important
mathematical concept called “Fourier transformation.” If ω = exp(2πi/K) is a
K th root of unity, the one-dimensional Fourier transform of the sequence of
complex numbers (u0, u1 , . . . , uK − 1) is defined to be the sequence (û0, û1, .
. . , ûK − 1), where

Letting be defined in the same way, as the Fourier
transform of (v0, v1, . . ., vK − 1), it is not difficult to see that

 is the transform of (w0, w1, . . . , wK − 1),
where

When K ≥ 2n − 1 and un = un + 1 = ... = uK − 1 = vn = vn + 1 = ... = vK − 1 = 0,
the w’s are just what we need for multiplication, since the terms uK − 1vr + 1 +
... + ur + 1vK − 1 vanish when 0 ≤ r ≤ 2n – 2. In other words, the transform of
a convolution product is the ordinary product of the transforms. This idea
is actually a special case of Toom’s use of polynomials (see (10)), with x
replaced by roots of unity.

If K is a power of 2, the discrete Fourier transform (35) can be obtained
quite rapidly when the computations are arranged in a certain way, and so
can the inverse transform (determining the w’s from the ŵ’s). This property
of Fourier transforms was exploited by V. Strassen in 1968, who discovered
how to multiply large numbers faster than was possible under all previously
known schemes. He and A. Schönhage later refined the method and published
improved procedures in Computing 7 (1971), 281–292. Similar ideas, but
with all-integer methods, had been worked out independently by J. M.
Pollard [Math. Comp. 25 (1971), 365–374]. In order to understand their
approach to the problem, let us first take a look at the mechanism of fast
Fourier transforms.

Given a sequence of K = 2k complex numbers (u0, . . . , uK − 1), and given
the complex number

the sequence (û0, . . . , ûK –1) defined in (35) can be calculated rapidly by
carrying out the following scheme. (In these formulas the parameters sj and tj

are either 0 or 1, so that each “pass” represents 2k elementary computations.)
Pass 0. Let A[0](tk − 1, . . . , t0) = ut, where t = (tk − 1 . . . t0)2.

Pass 1. Set A[1](sk − 1, tk – 2, . . . , t0) ← A[0](0, tk – 2, . . . , t0) + ω2k− 1sk − 1 A[0]

(1, tk – 2, . . . , t0).

Pass 2. Set A[2](sk − 1, sk – 2, tk – 3, . . . , t0) ← A[1](sk − 1, 0, tk – 3, . . . , t0) +

ω2k− 2(sk – 2sk − 1)2 A[1](sk − 1, 1, tk – 3, . . . , t0).
. . .

Pass k. Set A[k](sk − 1, . . . , s1, s0) ← A[k−1](sk − 1, . . . , s1, 0) + ω(s0s1...sk–1)2

A[k−1](sk − 1, . . . , s1, 1).
It is fairly easy to prove by induction that we have

where t = (tk − 1 . . . t1t0)2, so that

(It is important to notice that the binary digits of s are reversed in the final
result (39). Section 4.6.4 contains further discussion of transforms such as
this.)

To get the inverse Fourier transform (u0, . . . , uK − 1) from the values of
(û0, . . . , ûK − 1), notice that the “double transform” is

since the geometric series sums to zero unless j is a multiple
of K. Therefore the inverse transform can be computed in the same way as
the transform itself, except that the final results must be divided by K and
shuffled slightly.

Returning to the problem of integer multiplication, suppose we wish to
compute the product of two n-bit integers u and v. As in Algorithm T we
shall work with groups of bits; let

and write

regarding u and v as K-place numbers in radix L so that each digit Uj or Vj is
an l-bit integer. Actually the leading digits Uj and Vj are zero for all j ≥ K/2,
because 2k−1l ≥ n. We will select appropriate values for k and l later; at the
moment our goal is to see what happens in general, so that we can choose k
and l intelligently when all the facts are before us.

The next step of the multiplication procedure is to compute the Fourier
transforms (û0, . . . , ûK − 1) and of the sequences (u0, . . . ,
uK − 1) and (v0, . . . , vK − 1), where we define

This scaling is done for convenience so that each ut and vt is less than 2−k,
ensuring that the absolute values |ûs| and will be less than 1 for all s.

An obvious problem arises here, since the complex number ω can’t be
represented exactly in binary notation. How are we going to compute a
reliable Fourier transform? By a stroke of good luck, it turns out that
everything will work properly if we do the calculations with only a modest
amount of precision. For the moment let us bypass this question and assume
that infinite-precision calculations are being performed; we shall analyze
later how much accuracy is actually needed.

Once the ûs and have been found, we let for 0 ≤ s < K
and determine the inverse Fourier transform (w0, . . . , wK − 1). As explained
above, we now have

so the integers Wr = 22k+2lwr are the coefficients in the desired product

Since 0 ≤ Wr < (r + 1)L2 < KL2, each Wr has at most k + 2l bits, so it will not
be difficult to compute the binary representation when the W’s are known
unless k is large compared to l.

For example, suppose we want to multiply u = 1234 times v = 2341
when the parameters are k = 3 and l = 4. The computation of (û0, . . . , û7)
from u proceeds as follows (see (12)):

Here α = 2 + 4i, β = 13ω, and ; this gives us the column
headed 27 ûs in Table 1. The column for is obtained from v in the same
way; then we multiply ûs by to get ŵs. Transforming again gives us ws and
Ws, using relation (40). Once again we obtain the convolution products in
(19), this time using complex numbers instead of sticking to an all-integer
method.

Table 1 Multiplication via Discrete Fourier Transformation
Let us try to estimate how much time this method takes on large numbers,

if m-bit fixed point arithmetic is used in calculating the Fourier transforms.
Exercise 10 shows that all of the quantities A[j] during all the passes of the
transform calculations will be less than 1 in magnitude because of the scaling
(43), hence it suffices to deal with m-bit fractions (.a−1 . . . a−m)2 for the real
and imaginary parts of all the intermediate quantities. Simplifications are
possible because the inputs ut and vt are real-valued; only K real values
instead of 2K need to be carried in each step (see exercise 4.6.4-14). We
will ignore such refinements in order to keep complications to a minimum.

The first job is to compute ω and its powers. For simplicity we shall
make a table of the values ω0, . . . , ωK−1. Let

so that ω1 = –1, ω2 = i, , ..., ωk = ω. If ωr = xr + iyr and r
≥ 2, we have ωr+1 = xr + 1 + iyr + 1 where

[See S. R. Tate, IEEE Transactions SP-43 (1995), 1709–1711.] The
calculation of ω1, ω2, . . . , ωk takes negligible time compared with the other
computations we need, so we can use any straightforward algorithm for
square roots. Once the ωr have been calculated we can compute all of the
powers ωj by noting that

This method of calculation keeps errors from propagating, since each ωj is a
product of at most k of the ωr’s. The total time to calculate all the ωj is
O(KM), where M is the time to do an m-bit complex multiplication, because
only one multiplication is needed to obtain each ωj from a previously
computed value. The subsequent steps will require more than O(KM) cycles,
so the powers of ω have been computed at negligible cost.

Each of the three Fourier transformations comprises k passes, each of
which involves K operations of the form a ← b + ωjc, so the total time to
calculate the Fourier transforms is

Finally, the work involved in computing the binary digits of u · v using (44)
is O(K(k + l)) = O(n + nk/l). Summing over all operations, we find that the
total time to multiply n-bit numbers u and v will be O(n) + O(Mnk/l).

Now let’s see how large the intermediate precision m needs to be, so that
we know how large M needs to be. For simplicity we shall be content with
safe estimates of the accuracy, instead of finding the best possible bounds. It
will be convenient to compute all the ωj in such a way that our
approximations (ωj)′ will satisfy |(ωj)′| ≤ 1; this condition is easy to
guarantee if we truncate towards zero instead of rounding, because

 in (46). The operations
we need to perform with m-bit fixed point complex arithmetic are all
obtained by replacing an exact computation of the form a ← b + ωjc by the
approximate computation

where b′, (ωj)′, and c′ are previously computed approximations; all of these
complex numbers and their approximations are bounded by 1 in absolute
value. If |b′ – b| ≤ δ1, |(ωj)′ – ωj| ≤ δ2, and |c′ – c| ≤ δ3, it is not difficult to see
that we will have |a′ – a| < δ + δ1 + δ2 + δ3, where

because we have |(ωj)′c′ – ωjc| = |((ωj)′ – ωj)c′ + ωj(c′ – c)| ≤ δ2 + δ3, and δ
exceeds the maximum truncation error. The approximations (ωj)′ are obtained
by starting with approximations ω′r to the numbers defined in (46), and we
may assume that (46) is performed with sufficient precision to make |ω′r –
ωr| < δ. Then (47) implies that |(ωj)′ – ωj| < (2k − 1)δ for all j, because the
error is due to at most k approximations and k − 1 truncations.

If we have errors of at most ε before any pass of the fast Fourier
transform, the operations of that pass therefore have the form (48) where δ1 =
δ3 = ∊ and δ2 = (2k − 1)δ; the errors after the pass will then be at most 2∊ +
2kδ. There is no error in Pass 0, so we find by induction on j that the
maximum error after Pass j is bounded by (2j − 1) · 2kδ, and the computed
values of ûs will satisfy |(ûs)′ – ûs| < (2k − 1) · 2kδ. A similar formula will
hold for ()′; and we will have

During the inverse transformation there is an additional accumulation of
errors, but the division by K = 2k ameliorates most of this; by the same
argument we find that the computed values will satisfy

We need enough precision to make round to the correct integer
Wr, hence we need

that is, m ≥ 3k + 2l + lg k + 7/2. This will hold if we simply require that

Relations (41) and (52) can be used to determine parameters k, l, m so that
multiplication takes O(n) + O(Mnk/l) units of time, where M is the time to
multiply m-bit fractions.

If we are using MIX, for example, suppose we want to multiply binary
numbers having n = 213 = 8192 bits each. We can choose k = 11, l = 8, m =
60, so that the necessary m-bit operations are nothing more than double-
precision arithmetic. The running time M needed to do fixed point m-bit
complex multiplication will therefore be comparatively small. With triple-
precision operations we can go up for example to k = l = 15, n ≤ 15 · 214,
which takes us way beyond MIX’s memory capacity. On a larger machine we
could multiply a pair of gigabit numbers if we took k = l = 27 and m = 144.

Further study of the choice of k, l, and m leads in fact to a rather
surprising conclusion: For all practical purposes we can assume that M is
constant, and the Schönhage–Strassen multiplication technique will have a
running time linearly proportional to n. The reason is that we can choose k
= l and m = 6k; this choice of k is always less than lg n, so we will never
need to use more than sextuple precision unless n is larger than the word size
of our computer. (In particular, n would have to be larger than the capacity of
an index register, so we probably couldn’t fit the numbers u and v in main
memory.)

The practical problem of fast multiplication is therefore solved, except
for improvements in the constant factor. In fact, the all-integer convolution
algorithm of exercise 4.6.4–59 is probably a better choice for practical high-
precision multiplication. Our interest in multiplying large numbers is partly
theoretical, however, because it is interesting to explore the ultimate limits of
computational complexity. So let’s forget practical considerations
momentarily and suppose that n is extremely huge, perhaps much larger than
the number of atoms in the universe. We can let m be approximately 6 lg n,
and use the same algorithm recursively to do the m-bit multiplications. The
running time will satisfy T(n) = O(nT (log n)); hence

where the product continues until reaching a factor with lg . . . lg n ≤ 2.
Schönhage and Strassen showed how to improve this theoretical upper

bound to O(n log n log log n) in their paper, by using integer numbers ω to
carry out fast Fourier transforms on integers, modulo numbers of the form 2e

+ 1. This upper bound applies to Turing machines, namely to computers with
bounded memory and a finite number of arbitrarily long tapes.

If we allow ourselves a more powerful computer, with random access to
any number of words of bounded size, Schönhage has pointed out that the
upper bound drops to O(n log n). For we can choose k = l and m = 6k, and
we have time to build a complete multiplication table of all possible
products xy for 0 ≤ x, y < 2⌈m/12⌉. (The number of such products is 2k or 2k+1,
and we can compute each table entry by addition from one of its
predecessors in O(k) steps, hence O(k2k) = O(n) steps will suffice for the
calculation.) In this case M is the time needed to do 12-place arithmetic in
radix 2⌈m/12⌉, and it follows that M = O(k) = O(log n) because 1-place
multiplication can be done by table lookup. (The time to access a word of
memory is assumed to be proportional to the number of bits in the address of
that word.)

Moreover, Schönhage discovered in 1979 that a pointer machine can
carry out n-bit multiplication in O(n) steps; see exercise 12. Such devices
(which are also called “storage modification machines” and “linking
automata”) seem to provide the best models of computation when n → ∞, as
discussed at the end of Section 2.6. So we can conclude that multiplication in
O(n) steps is possible for theoretical purposes as well as in practice.

An unusual general-purpose computer called Little Fermat, with a
special ability to multiply large integers rapidly, was designed in 1986 by D.
V. Chudnovsky, G. V. Chudnovsky, M. M. Denneau, and S. G. Younis. Its
hardware featured fast arithmetic modulo 2256 + 1 on 257-bit words; a
convolution of 256-word arrays could then be done using 256 single-word
multiplications, together with three discrete transforms that required only
addition, subtraction, and shifting. This made it possible to multiply two 106-
bit integers in less than 0.1 second, based on a pipelined cycle time of
approximately 60 nanoseconds [Proc. Third Int. Conf. on Supercomputing 2
(International Supercomputing Institute, 1988), 498–499; Contemporary
Math. 143 (1993), 136].
D. Division. Now that we have efficient routines for multiplication, let’s
consider the inverse problem. It turns out that division can be performed just
as fast as multiplication, except for a constant factor.

To divide an n-bit number u by an n-bit number v, we can first find an n-
bit approximation to 1/v, then multiply by u to get an approximation to u/v;
finally, we can make the slight correction necessary to to ensure that 0 ≤ u

– qv < v by using another multiplication. From this reasoning, we see that it
suffices to have an efficient way to approximate the reciprocal of an n-bit
number. The following algorithm does this, using “Newton’s method” as
explained at the end of Section 4.3.1.
Algorithm R (High-precision reciprocal). Let v have the binary
representation v = (0.v1v2v3 . . .)2, where v1 = 1. This algorithm computes an
approximation z to 1/v, such that

R1. [Initial approximation.] Set and k ←
0.

R2. [Newtonian iteration.] (At this point we have a number z of the binary
form (xx.xx . . . x)2 with 2k + 1 places after the radix point, and z ≤ 2.)
Calculate z2 = (xxx.xx . . . x)2 exactly, using a high-speed multiplication
routine. Then calculate Vk z2 exactly, where Vk = (0.v1v2 . . . v2k+1+3)2.

Then set z ← 2z – Vk z2 + r, where 0 ≤ r < 2−2k+1 – 1 is added if

necessary to round z up so that it is a multiple of 2−2k+1 − 1. Finally, set k
← k + 1.

R3. [Test for end.] If 2k < n, go back to step R2; otherwise the algorithm
terminates.

This algorithm is based on a suggestion by S. A. Cook. A similar
technique has been used in computer hardware [see Anderson, Earle,
Goldschmidt, and Powers, IBM J. Res. Dev. 11 (1967), 48-52]. Of course, it
is necessary to check the accuracy of Algorithm R quite carefully, because it
comes very close to being inaccurate. We will prove by induction that

at the beginning and end of step R2.
For this purpose, let δk = 1/v–zk, where zk is the value of z after k

iterations of step R2. To start the induction on k, we have

where v′ = (v1v2v3)2 and η1 = (v′ – 8v)/vv′, so that we have – < η1 ≤ 0 and 0
≤ η2 < . Hence |δ0| < . Now suppose that (55) has been verified for k; then

Now , and

so |δk+1| ≤ 2− 2k+1. We must still verify the first inequality of (55); to show that
zk+1 ≤ 2, there are three cases:

a) Vk = ; then zk+1 = 2.
b) Vk ≠ = Vk − 1; then zk = 2, so .

c) Vk− 1 ≠ ; then zk+1 = 1/v – δk+1 < 2 – 2−2k + 1 ≤ 1, since k > 0.
The running time of Algorithm R is bounded by

steps, where T(n) is an upper bound on the time needed to do a multiplication
of n-bit numbers. If T(n) has the form nf(n) for some monotonically
nondecreasing function f(n), we have

so division can be done with a speed comparable to that of multiplication
except for a constant factor.

R. P. Brent has shown that functions such as log x, exp x, and arctan x can
be evaluated to n significant bits in O(n) log n) steps, if it takes M(n) units of
time to multiply n-bit numbers [JACM 23 (1976), 242-251].
E. Multiplication in real time. It is natural to wonder if multiplication of n-
bit numbers can be accomplished in just n steps. We have come from order
n2 down to order n, so perhaps we can squeeze the time down to the absolute
minimum. In fact, it is actually possible to output the answer as fast as we
input the digits, if we leave the domain of conventional computer
programming and allow ourselves to build a computer that has an unlimited
number of components all acting at once.

A linear iterative array of automata is a set of devices M1, M2, M3, . . .
that can each be in a finite set of “states” at each step of a computation. The
machines M2, M3, . . . all have identical circuitry, and their state at time t + 1
is a function of their own state at time t as well as the states of their left and
right neighbors at time t. The first machine M1 is slightly different: Its state at
time t + 1 is a function of its own state and that of M2, at time t, and also of
the input at time t. The output of a linear iterative array is a function defined
on the states of M1.

Let u = (un−1 . . . u1u0)2, v = (vn−1 . . . v1v0)2, and q = (qn−1 . . . q1q0)2 be
binary numbers, and let uv + q = w = (w2n−1 . . . w1w0)2. It is a remarkable
fact that a linear iterative array can be constructed, independent of n, that
will output w0, w1, w2, . . . at times 1, 2, 3, . . . , if it is given the inputs (u0,
v0, q0), (u1, v1, q1), (u2, v2, q2), . . . at times 0, 1, 2,

We can state this phenomenon in the language of computer hardware by
saying that it is possible to design a single integrated circuit module with the
following property: If we wire together sufficiently many of these chips in a
straight line, with each module communicating only with its left and right
neighbors, the resulting circuitry will produce the 2n-bit product of n-bit
numbers in exactly 2n clock pulses.

The basic idea can be understood as follows. At time 0, machine M1
senses (u0, v0, q0) and it therefore is able to output (u0v0 + q0) mod 2 at time
1. Then it sees (u1, v1, q1) and it can output (u0v1 + u1v0 + q1 + k1) mod 2,
where k1 is the “carry” left over from the previous step, at time 2. Next it
sees (u2, v2, q2) and outputs (u0v2 + u1v1 + u2v0 + q2 + k2) mod 2;
furthermore, its state holds the values of u2 and v2 so that machine M2 will be
able to sense these values at time 3, and M2 will be able to compute u2v2 for
the benefit of M1 at time 4. Machine M1 essentially arranges to start M2
multiplying the sequence (u2, v2), (u3, v3), . . . , and M2 will ultimately give
M3 the job of multiplying (u4, v4), (u5, v5), etc. Fortunately, things just work
out so that no time is lost. The reader will find it interesting to deduce further
details from the formal description that follows.

Each automaton has 211 states (c, x0, y0, x1, y1, x, y, z2, z1, z0), where 0 ≤
c < 4 and each of the x’s, y’s, and z’s is either 0 or 1. Initially, all the devices

are in state (0, 0, 0, 0, 0, 0, 0, 0, 0, 0). Suppose that a machine Mj, for j > 1,
is in state (c, x0, y0, x1, y1, x, y, z2, z1, z0) at time t, and its left neighbor Mj−1
is in state () while its right neighbor
Mj+1 is in state () at that time. Then
machine Mj will go into state () at time t
+ 1, where

and is the binary notation for

The leftmost machine M1 behaves in almost the same way as the others; it
acts exactly as if there were a machine to its left in state (3, 0, 0, 0, 0, u, v, q,
0, 0) when it is receiving the inputs (u, v, q). The output of the array is the z0
component of M1.

Table 2 shows an example of this array acting on the inputs

Table 2 Multiplication in a Linear Iterative Array

The output sequence appears in the lower right portion of the states of M1:

representing the number (. . . 01000011100)2 from right to left.
This construction is based on a similar one first published by A. J.

Atrubin, IEEE Trans. EC-14 (1965), 394–399.
Fast as it is, the iterative array is optimum only when the input bits arrive

one at a time. If the input bits are all present simultaneously, we prefer
parallel circuitry that will obtain the product of two n-bit numbers after
O(log n) levels of delay. Efficient circuits of that kind have been described,
for example, by C. S. Wallace, IEEE Trans. EC-13 (1964), 14–17; D. E.
Knuth, The Stanford GraphBase (New York: ACM Press, 1994), 270–279.

S. Winograd [JACM 14 (1967), 793–802] has investigated the minimum
multiplication time achievable in a logical circuit when n is given and when
the inputs are available all at once in arbitrarily coded form. For similar
questions when multiplication and addition must both be supported
simultaneously, see A. C. Yao, STOC 13 (1981), 308–311; Mansour, Nisan,
and Tiwari, STOC 22 (1990), 235–243.

Multiplication is mie vexation,
And Division is quite as bad:

The Golden Rule is mie stumbling stule,
And Practice drives me mad.

— Manuscript collected by J. O. HALLIWELL (c. 1570)

Exercises

1. [22] The idea expressed in (2) can be generalized to the decimal
system, if the radix 2 is replaced by 10. Using this generalization, calculate
1234 times 2341 (reducing this product of four-digit numbers to three
products of two-digit numbers, and reducing each of the latter to products of
one-digit numbers).

2. [M22] Prove that, in step T1 of Algorithm T, the value of R either stays
the same or increases by one when we set . (Therefore, as
observed in that step, we need not calculate a square root.)

3. [M22] Prove that the sequences qk and rk defined in Algorithm T satisfy
the inequality , when k > 0.
 4. [28] (K. Baker.) Show that it is advantageous to evaluate the
polynomial W(x) at the points x = –r, . . . , 0, . . . , r instead of at the
nonnegative points x = 0, 1, . . . , 2r as in Algorithm T. The polynomial U(x)
can be written

and similarly V(x) and W(x) can be expanded in this way; show how to
exploit this idea, obtaining faster calculations in steps T7 and T8.

 5. [35] Show that if in step T1 of Algorithm T we set
instead of setting , with suitable initial values of q0, q1, r0, and
r1, then (20) can be improved to .

6. [M23] Prove that the six numbers in (24) are relatively prime in pairs.
7. [M23] Prove (25).
8. [M20] True or false: We can ignore the bit reversal (sk − 1, . . . , s0) →

(s0, . . . , sk − 1) in (39), because the inverse Fourier transform will reverse
the bits again anyway.

9. [M15] Suppose the Fourier transformation method of the text is applied
with all occurrences of ω replaced by ωq, where q is some fixed integer.
Find a simple relation between the numbers (ũ0, ũ1, . . . , ũK−1) obtained by
this general procedure and the numbers (û0, û1, . . . , ûK − 1) obtained when q
= 1.

10. [M26] The scaling in (43) makes it clear that all the complex numbers
A[j] computed by pass j of the transformation subroutine will be less than 2j

– k in absolute value, during the calculations of ûs and in the Schönhage–
Strassen multiplication algorithm. Show that all of the A[j] will be less than
1 in absolute value during the third Fourier transformation (the calculation
of).

 11. [M26] If n is fixed, how many of the automata in the linear iterative
array defined by (57) and (58) are needed to compute the product of n-bit
numbers? (Notice that the automaton Mj is influenced only by the
component of the machine on its right, so we may remove all automata
whose z0 component is always zero whenever the inputs are n-bit
numbers.)

 12. [M41] (A. Schönhage.) The purpose of this exercise is to prove that a
simple form of pointer machine can multiply n-bit numbers in O(n) steps.
The machine has no built-in facilities for arithmetic; all it does is work
with nodes and pointers. Each node has the same finite number of link
fields, and there are finitely many link registers. The only operations this
machine can do are:
i) read one bit of input and jump if that bit is 0;
ii) output 0 or 1;
iii) load a register with the contents of another register or with the

contents of a link field in a node pointed to by a register;
iv) store the contents of a register into a link field in a node pointed to by

a register;
v) jump if two registers are equal;
vi) create a new node and make a register point to it;
vii) halt.

Implement the Fourier-transform multiplication method efficiently on
such a machine. [Hints: First show that if N is any positive integer, it is
possible to create N nodes representing the integers {0, 1, . . . , N − 1},
where the node representing p has pointers to the nodes representing p +
1, ⌊p/2⌋, and 2p. These nodes can be created in O(N) steps. Show that
arithmetic with radix N can now be simulated without difficulty: For
example, it takes O(log N) steps to find the node for (p + q) mod N and
to determine if p + q ≥ N, given pointers to p and q; and multiplication
can be simulated in O(log N)2 steps. Now consider the algorithm in the
text, with k = l and m = 6k and N = 2⌈m/13⌉, so that all quantities in the
fixed point arithmetic calculations are 13-place integers with radix N.
Finally, show that each pass of the fast Fourier transformations can be
done in O(K + (N log N)2) = O(K) steps, using the following idea: Each
of the K necessary assignments can be “compiled” into a bounded list of
instructions for a simulated MIX-like computer whose word size is N,
and instructions for K such machines acting in parallel can be simulated
in O(K + (N log N)2) steps if they are first sorted so that all identical
instructions are performed together. (Two instructions are identical if
they have the same operation code, the same register contents, and the
same memory operand contents.) Note that N2 = O(n12/13), so (N log N)2

= O(K).]
13. [M25] (A. Schönhage.) What is a good upper bound on the time needed
to multiply an m-bit number by an n-bit number, when both m and n are
very large but n is much larger than m, based on the results discussed in
this section for the case m = n?
14. [M42] Write a program for Algorithm T, incorporating the
improvements of exercise 4. Compare it with a program for Algorithm
4.3.1M and with a program based on (2), to see how large n must be
before Algorithm T is an improvement.
15. [M49] (S. A. Cook.) A multiplication algorithm is said to be online if
the (k +1)st input bits of the operands, from right to left, are not read until
the kth output bit has been produced. What are the fastest possible online
multiplication algorithms achievable on various species of automata?

 16. [25] Prove that it takes only O(K log K) arithmetic operations to
evaluate the discrete Fourier transform (35), even when K is not a power

of 2. [Hint: Rewrite (35) in the form

and express this sum as a convolution product.]
17. [M26] Karatsuba’s multiplication scheme (2) does Kn 1-place
multiplications when it forms the product of n-place numbers, where K1 =
1, K2n = 3Kn, and K2n+1 = 2Kn + 1 + Kn for n ≥ 1. “Solve” this recurrence
by finding an explicit formula for Kn when n = 2e1 + 2e2 + . . . + 2et , e1 > e2
> . . . > et ≥ 0.

 18. [M30] Devise a scheme to allocate memory for the intermediate
results when multiplication is performed by a recursive algorithm based on
(2): Given two N-place integers u and v, each in N consecutive places of
memory, show how to arrange the computation so that the product uv
appears in the least significant 2N places of a (3N + O(log N))-place area
of working storage.

 19. [M23] Show how to compute uv mod m with a bounded number of
operations that meet the ground rules of exercise 3.2.1.1-11, if you are also
allowed to test whether one operand is less than another. Both u and v are
variable, but m is constant. Hint: Consider the decomposition in (2).

4.4. Radix Conversion
If OUR ANCESTORS had invented arithmetic by counting with their two fists or
their eight fingers, instead of their ten “digits,” we would never have to
worry about writing binary-decimal conversion routines. (And we would
perhaps never have learned as much about number systems.) In this section,
we shall discuss the conversion of numbers from positional notation with one
radix into positional notation with another radix; this process is, of course,
most important on binary computers when converting decimal input data into
binary form, and converting binary answers into decimal form.
A. The four basic methods. Binary-decimal conversion is one of the most
machine-dependent operations of all, since computer designers keep
inventing different ways to provide for it in the hardware. Therefore we shall
discuss only the general principles involved, from which programmers can
select the procedures that are best suited to their machines.

We shall assume that only nonnegative numbers enter into the conversion,
since the manipulation of signs is easily accounted for.

Let us assume that we are converting from radix b to radix B. (Mixed-
radix generalizations are considered in exercises 1 and 2.) Most radix-
conversion routines are based on multiplication and division, using one of
the four methods below. The first two methods apply to integers (radix point
at the right), and the others to fractions (radix point at the left). It is often
impossible to express a terminating radix-b fraction (0.u–1u–2 . . . u–m)b
exactly as a terminating radix-B fraction (0.U–1U–2 . . . U–M)B. For example,
the fraction has the infinite binary representation (0.0001100110011 . . .)2.
Therefore methods of rounding the result to M places are sometimes
necessary.
Method 1a (Division by B using radix-b arithmetic). Given an integer u, we
can obtain its radix-B representation (. . . U2U1U0)B as follows:

stopping when ⌊. . . ⌊⌊u/B⌋/B⌋ . . . /B⌋ = 0.
Method 1b (Multiplication by b using radix-B arithmetic). If u has the radix-
b representation (um . . . u1u0)b, we can use radix-B arithmetic to evaluate the
polynomial umbm + ... + u1b + u0 = u in the form

Method 2a (Multiplication by B using radix-b arithmetic). Given a fractional
number u, we can obtain the digits of its radix-B representation (.U–1U–2 . .
.)B as follows:

where {x} denotes x mod 1 = x – ⌊x⌋. If it is desired to round the result to M
places, the computation can be stopped after U–M has been calculated, and
U–M should be increased by unity if {. . . {{uB}B} . . . B} is greater than .
(Note, however, that this may cause carries to propagate, and these carries
must be incorporated into the answer using radix-B arithmetic. It would be
simpler to add the constant B−M to the original number u before the
calculation begins, but this may lead to an incorrect answer when B−M

cannot be represented exactly as a radix-b number inside the computer. Note
further that it is possible for the answer to round up to (1.00 . . . 0)B, if bm ≥
2BM .)

Exercise 3 shows how to extend this method so that M is variable, just
large enough to represent the original number to a specified accuracy. In this
case the problem of carries does not occur.
Method 2b (Division by b using radix-B arithmetic). If u has the radix-b
representation (0.u–1u–2 . . . u–m)b, we can use radix-B arithmetic to evaluate
u–1b−1 + u–2b−2 + ... + u–mb−m in the form

Care should be taken to control errors that might occur due to truncation or
rounding in the division by b; these are often negligible, but not always.

To summarize, Methods 1a, 1b, 2a, and 2b give us two ways to convert
integers and two ways to convert fractions; and it is certainly possible to
convert between integers and fractions by multiplying or dividing by an
appropriate power of b or B. Therefore there are at least four methods to
choose from when trying to do radix conversion.
B. Single-precision conversion. To illustrate these four methods, let us
assume that MIX is a binary computer, and suppose that we want to convert a

nonnegative binary integer u to a decimal integer. Thus b = 2 and B = 10.
Method 1a could be programmed as follows:

This requires 18M + 4 cycles to obtain M digits.
Method 1a uses division by 10; Method 2a uses multiplication by 10, so

it might be a little faster. But in order to use Method 2a, we must deal with
fractions, and this leads to an interesting situation. Let w be the word size of
the computer, and assume that u < 10n < w. With a single division we can
find q and r, where

Now if we apply Method 2a to the fraction (q + 1)/w, we will obtain the
digits of u from left to right, in n steps, since

(This idea is due to P. A. Samet, Software Practice & Experience 1 (1971),
93–96.)

Here is the corresponding MIX program:

This slightly longer routine requires 16n + 19 cycles, so it is a little faster
than program (1) if n = M ≥ 8; when leading zeros are present, (1) will be

faster.
Program (4) as it stands cannot be used to convert integers u ≥ 10m when

10m < w < 10m+1, since we would need to take n = m + 1. In this case we can
obtain the leading digit of u by computing ⌊u/10m⌋; then u mod 10m can be
converted as above with n = m.

The fact that the answer digits are obtained from left to right may be an
advantage in some applications (for example, when typing out an answer one
digit at a time). Thus we see that a fractional method can be used for
conversion of integers, although the use of inexact division makes a little bit
of numerical analysis necessary.

We can avoid the division by 10 in Method 1a if we do two
multiplications instead. This alternative can be important, because radix
conversion is often done by “satellite” computers that have no built-in
division capability. If we let x be an approximation to , so that

it is easy to prove (see exercise 7) that ⌊ux⌋ = ⌊u/10⌋ or ⌊u/10⌋ + 1, so long
as 0 ≤ u < w. Therefore, if we compute u − 10⌊ux⌋, we will be able to
determine the value of ⌊u/10⌋:

At the same time we will have determined u mod 10. A MIX program for
conversion using (5) appears in exercise 8; it requires about 33 cycles per
digit.

If the computer has neither division nor multiplication in its repertoire of
built-in instructions, we can still use Method 1a for conversion by
judiciously shifting and adding, as explained in exercise 9.

Another way to convert from binary to decimal is to use Method 1b, but
to do this we need to simulate doubling in a decimal number system. This
approach is generally most suitable for incorporation into computer
hardware; however, it is possible to program the doubling process for
decimal numbers, using binary addition, binary shifting, and binary extraction
or masking (bitwise AND) as shown in Table 1, which was suggested by
Peter L. Montgomery.

Table 1 Doubling a Binary-Coded Decimal Number

This method changes each individual digit d into 2d when 0 ≤ d ≤ 4, and
into 6 + 2d = (2d − 10) + 24 when 5 ≤ d ≤ 9; and that is just what is needed to
double decimal numbers encoded with 4 bits per digit.

Another related idea is to keep a table of the powers of two in decimal
form, and to add the appropriate powers together by simulating decimal
addition. A survey of bit-manipulation techniques appears in Section 7.1.3.

Finally, even Method 2b can be used for the conversion of binary
integers to decimal integers. We can find q as in (2), and then we can
simulate the decimal division of q + 1 by w, using a “halving” process
(exercise 10) that is similar to the doubling process just described, retaining
only the first n digits to the right of the radix point in the answer. In this
situation, Method 2b does not seem to offer advantages over the other three
methods already discussed, but we have confirmed the remark made earlier
that at least four distinct methods are available for converting integers from
one radix to another.

Now let us consider decimal-to-binary conversion (so that b = 10, B =
2). Method 1a simulates a decimal division by 2; this is feasible (see
exercise 10), but it is primarily suitable for incorporation in hardware
instead of programs.

Method 1b is the most practical method for decimal-to-binary
conversion in the great majority of cases. The following MIX code assumes

that there are at least two digits in the number (um . . . u1u0)10 being
converted, and that 10m+1 < w so that overflow is not an issue:

The multiplication by 10 could be replaced by shifting and adding.
A trickier but perhaps faster method, which uses about lg m

multiplications, extractions, and additions instead of m − 1 multiplications
and additions, is described in exercise 19.

For the conversion of decimal fractions (0.u–1u–2 . . . u–m)10 to binary
form, we can use Method 2b; or, more commonly, we can first convert the
integer (u–1u–2 . . . u–m)10 by Method 1b and then divide by 10m.

C. Hand calculation. It is occasionally necessary for computer programmers
to convert numbers by hand, and since this is a subject not yet taught in
elementary schools, it may be worthwhile to examine it briefly here. There
are simple pencil-and-paper methods for converting between decimal and
octal notations, and these methods are easily learned, so they should be more
widely known.
Converting octal integers to decimal. The simplest conversion is from
octal to decimal; this technique was apparently first published by Walter
Soden, Math. Comp. 7 (1953), 273–274. To do the conversion, write down
the given octal number; then at the kth step, double the k leading digits using
decimal arithmetic, and subtract this from the k + 1 leading digits using
decimal arithmetic. The process terminates in m steps if the given number has
m + 1 digits. It is a good idea to insert a radix point to show which digits are
being doubled, as shown in the following example, in order to prevent
embarrassing mistakes.
Example 1. Convert (5325121)8 to decimal.

A reasonably good check on the computations may be had by “casting out
nines”: The sum of the digits of the decimal number must be congruent
modulo 9 to the alternating sum and difference of the digits of the octal
number, with the rightmost digit of the latter given a plus sign. In the example
above, we have 1 + 4 + 1 + 9 + 8 + 5 + 7 = 35, and 1 – 2 + 1 – 5 + 2 – 3 + 5
= –1; the difference is 36 (a multiple of 9). If this test fails, it can be applied
to the k + 1 leading digits after the kth step, and the error can be located using
a “binary search” procedure; in other words, we can locate the error by first
checking the middle result, then using the same procedure on the first or
second half of the calculation, depending on whether the middle result is
incorrect or correct.

The “casting-out-nines” process is only about 89 percent reliable,
because there is one chance in nine that two random integers will differ by a
multiple of nine. An even better check is to convert the answer back to octal
by using an inverse method, which we shall now consider.
Converting decimal integers to octal. A similar procedure can be used for
the opposite conversion: Write down the given decimal number; then at the
kth step, double the k leading digits using octal arithmetic, and add these to
the k + 1 leading digits using octal arithmetic. The process terminates in m
steps if the given number has m + 1 digits.

Example 2. Convert (1419857)10 to octal.

(Notice that the nonoctal digits 8 and 9 enter into this octal computation.) The
answer can be checked as discussed above. This method was published by
Charles P. Rozier, IEEE Trans. EC-11 (1962), 708–709.

The two procedures just given are essentially Method 1b of the general
radix-conversion procedures. Doubling and subtracting in decimal notation is
like multiplying by 10 – 2 = 8; doubling and adding in octal notation is like
multiplying by 8 + 2 = 10. There is a similar method for
hexadecimal/decimal conversions, but it is a little more difficult since it
involves multiplication by 6 instead of by 2.

To keep these two methods straight in our minds, it is not hard to
remember that we must subtract to go from octal to decimal, since the
decimal representation of a number is smaller; similarly we must add to go
from decimal to octal. The computations are performed using the radix of the
answer, not the radix of the given number, otherwise we couldn’t get the
desired answer.
Converting fractions. No equally fast method of converting fractions
manually is known. The best way seems to be Method 2a, with doubling and
adding or subtracting to simplify the multiplications by 10 or by 8. In this
case, we reverse the addition-subtraction criterion, adding when we convert

to decimal and subtracting when we convert to octal; we also use the radix of
the given input number, not the radix of the answer, in this computation (see
Examples 3 and 4). The process is about twice as hard as the method that we
used for integers.
Example 3. Convert (.14159)10 to octal.

Example 4. Convert (.110374)8 to decimal.

D. Floating point conversion. When floating point values are to be con-
verted, it is necessary to deal with both the exponent and the fraction parts
simultaneously, since conversion of the exponent will affect the fraction part.
Given the number f · 2e to be converted to decimal, we may express 2e in the
form F · 10E (usually by means of auxiliary tables), and then convert Ff to
decimal. Alternatively, we can multiply e by log10 2 and round this to the
nearest integer E; then divide f · 2e by 10E and convert the result.
Conversely, given the number F · 10E to be converted to binary, we may
convert F and then multiply it by the floating point number 10E (again by
using auxiliary tables). Obvious techniques can be used to reduce the
maximum size of the auxiliary tables by using several multiplications and/or
divisions, although this can cause rounding errors to propagate. Exercise 17
considers the minimization of error.
E. Multiple-precision conversion. When converting extremely long numbers,
it is most convenient to start by converting blocks of digits, which can be
handled by single-precision techniques, and then to combine these blocks by
using simple multiple-precision techniques. For example, suppose that 10n is
the highest power of 10 less than the computer word size. Then:

a) To convert a multiple-precision integer from binary to decimal, divide
it repeatedly by 10n (thus converting from binary to radix 10n by

Method 1a). Single-precision operations will give the n decimal digits
for each place of the radix-10n representation.

b) To convert a multiple-precision fraction from binary to decimal,
proceed similarly, multiplying by 10n (that is, using Method 2a with B
= 10n).

c) To convert a multiple-precision integer from decimal to binary,
convert blocks of n digits first; then use Method 1b to convert from
radix 10n to binary.

d) To convert a multiple-precision fraction from decimal to binary,
convert first to radix 10n as in (c), then use Method 2b.

F. History and Bibliography. Radix-conversion techniques implicitly origi-
nated in ancient problems dealing with weights, measures, and currencies,
where mixed-radix systems were generally involved. Auxiliary tables were
usually prepared to help people make the conversions. During the
seventeenth century, when sexagesimal fractions were being supplanted by
decimal fractions, it was necessary to convert between the two systems in
order to use existing books of astronomical tables; a systematic method to
transform fractions from radix 60 to radix 10 and vice versa was given in the
1667 edition of William Oughtred’s Clavis Mathematicæ, Chapter 6, Section
18. (This material was not present in the original 1631 edition of Oughtred’s
book.) Conversion rules had already been given by al-Kāshī of Samarkand in
his Key to Arithmetic (1427), where Methods 1a, 1b, and 2a are clearly
explained [Istoriko-Mat. Issled. 7 (1954), 126-135], but his work was
unknown in Europe. The 18th century American mathematician Hugh Jones
used the words “octavation” and “decimation” to describe octal/decimal
conversions, but his methods were not as clever as his terminology. A. M.
Legendre [Théorie des Nombres (Paris: 1798), 229] noted that positive
integers may be conveniently converted to binary form if they are repeatedly
divided by 64.

In 1946, H. H. Goldstine and J. von Neumann gave prominent
consideration to radix conversion in their classic memoir, Planning and
Coding Problems for an Electronic Computing Instrument, because it was
necessary to justify the use of binary arithmetic; see John von Neumann,
Collected Works 5 (New York: Macmillan, 1963), 127–142. Another early
discussion of radix conversion on binary computers was published by F.

Koons and S. Lubkin, Math. Comp. 3 (1949), 427–431, who suggested a
rather unusual method. The first discussion of floating point conversion was
given somewhat later by F. L. Bauer and K. Samelson [Zeit. für angewandte
Math. und Physik 4 (1953), 312–316].

The following articles are, similarly, of historic interest: A note by G. T.
Lake [CACM 5 (1962), 468–469] mentioned some hardware techniques for
conversion and gave clear examples. A. H. Stroud and D. Secrest [Comp. J.
6 (1963), 62–66] discussed conversion of multiple-precision floating point
numbers. The conversion of unnormalized floating point numbers, preserving
the amount of “significance” implied by the representation, was discussed by
H. Kanner [JACM 12 (1965), 242–246] and by N. Metropolis and R. L.
Ashenhurst [Math. Comp. 19 (1965), 435–441]. See also K. Sikdar, Sankhyā
B30 (1968), 315–334, and the references cited in his paper.

Detailed subroutines for formatted input and output of integers and
floating point numbers in the C programming language have been given by P.
J. Plauger in The Standard C Library (Prentice–Hall, 1992), 301–331.

Exercises

 1. [25] Generalize Method 1b so that it works with arbitrary mixed-radix
notations, converting

where 0 ≤ aj < bj and 0 ≤ AJ < BJ for 0 ≤ j < m and 0 ≤ J < M.
Give an example of your generalization by manually converting “3 days,

9 hours, 12 minutes, and 37 seconds” into long tons, hundredweights,
stones, pounds, and ounces. (Let one second equal one ounce. The British
system of weights has 1 stone = 14 pounds, 1 hundredweight = 8 stone, 1
long ton = 20 hundredweight.) In other words, let b0 = 60, b1 = 60, b2 = 24,
m = 3, B0 = 16, B1 = 14, B2 = 8, B3 = 20, M = 4; the problem is to find A4, .
. . , A0 in the proper ranges such that 3b2b1b0 + 9b1b0 + 12b0 + 37 =
A4B3B2B1B0 + A3B2B1B0 + A2B1B0 + A1B0 + A0, using a systematic method
that generalizes Method 1b. (All arithmetic is to be done in a mixed-radix
system.)
2. [25] Generalize Method 1a so that it works with mixed-radix notations,

as in exercise 1, and give an example of your generalization by manually
solving the same conversion problem stated in exercise 1.

 3. [25] (D. Taranto.) When fractions are being converted, there is no
obvious way to decide how many digits to give in the answer. Design a
simple generalization of Method 2a that, given two positive radix-b
fractions u and ∊ between 0 and 1, converts u to a rounded radix-B
equivalent U that has just enough places M to the right of the radix point to
ensure that |U – u| < ∊. (In particular if u is a multiple of b−m and ∊ = b−m/2,
the value of U will have just enough digits so that u can be recomputed
exactly, given U and m. Note that M might be zero; for example, if ∊ ≤ and
u > 1 – ∊, the proper answer is U = 1.)

4. [M21] (a) Prove that every real number with a terminating binary
representation also has a terminating decimal representation. (b) Find a
simple condition on the positive integers b and B that is satisfied if and only
if every real number that has a terminating radix-b representation also has a
terminating radix-B representation.

5. [M20] Show that program (4) would still work if the instruction ‘LDX
= 10n=’ were replaced by ‘LDX =c=’ for certain other constants c.

6. [30] Discuss using Methods 1a, 1b, 2a, and 2b when b or B is –2.
7. [M18] Given that 0 < α ≤ x ≤ α + 1/w and 0 ≤ u ≤ w, where u is an

integer, prove that ⌊ux⌋ is equal to either ⌊αu⌋ or ⌊αu⌋ + 1. Furthermore
⌊ux⌋ = ⌊αu⌋ exactly, if u < αw and α−1 is an integer.

8. [24] Write a MIX program analogous to (1) that uses (5) and includes
no division instructions.
 9. [M29] The purpose of this exercise is to compute ⌊u/10⌋ with binary
shifting and addition operations only, when u is a nonnegative integer. Let
v0(u) = 3⌊u/2⌋ + 3 and

Given k, what is the smallest nonnegative integer u such that ⌊vk[u]/16⌋ ≠
⌊u/10⌋?
10. [22] Table 1 shows how a binary-coded decimal number can be
doubled by using various shifting, extracting, and addition operations on a
binary computer. Give an analogous method that computes half of a binary-
coded decimal number (throwing away the remainder if the number is
odd).

11. [16] Convert (57721)8 to decimal.
 12. [22] Invent a rapid pencil-and-paper method for converting integers

from ternary notation to decimal, and illustrate your method by converting
(1212011210210)3 into decimal. How would you go from decimal to
ternary?

 13. [25] Assume that locations U + 1, U + 2, . . . , U + m contain a
multiple-precision fraction (.u–1u–2 . . . u–m)b, where b is the word size of
MIX. Write a MIX routine that converts this fraction to decimal notation,
truncating it to 180 decimal digits. The answer should be printed on two
lines, with the digits grouped into 20 blocks of nine each separated by
blanks. (Use the CHAR instruction.)

 14. [M27] (A. Schönhage.) The text’s method of converting multiple-
precision integers requires an execution time of order n2 to convert an n-
place integer, when n is large. Show that it is possible to convert n-digit
decimal integers into binary notation in O(M(n) log n) steps, where M(n)
is an upper bound on the number of steps needed to multiply n-bit binary
numbers that satisfies the “smoothness condition” M(2n) ≥ 2M(n).
15. [M47] Can the upper bound on the time to convert large integers given
in the preceding exercise be substantially lowered? (See exercise 4.3.3–
12.)
16. [41] Construct a fast linear iterative array for radix conversion from
decimal to binary (see Section 4.3.3E).
17. [M40] Design “ideal” floating point conversion subroutines, taking p-
digit decimal numbers into P-digit binary numbers and vice versa, in both
cases producing a true rounded result in the sense of Section 4.2.2.
18. [HM34] (David W. Matula.) Let roundb(u, p) be the function of b, u,
and p that represents the best p-digit base b floating point approximation to
u, in the sense of Section 4.2.2. Under the assumption that logB b is
irrational and that the range of exponents is unlimited, prove that

holds for all p-digit base b floating point numbers u if and only if BP−1 ≥
bp. (In other words, an “ideal” input conversion of u into an independent
base B, followed by an “ideal” output conversion of this result, will

always yield u again if and only if the intermediate precision P is
suitably large, as specified by the formula above.)

 19. [M23] Let the decimal number u = (u7 . . . u1u0)10 be represented as
the binary-coded decimal number U = (u7 . . . u1u0)16. Find appropriate
constants ci and masks mi so that the operation U ← U – ci (U & mi),
repeated for i = 1, 2, 3, will convert U to the binary representation of u,
where “&” denotes extraction (bitwise AND).

4.5. Rational Arithmetic
It is often important to know that the answer to some numerical problem is
exactly 1/3, not a floating point number that gets printed as “0.333333574”. If
arithmetic is done on fractions instead of on approximations to fractions,
many computations can be done entirely without any accumulated rounding
errors. This results in a comfortable feeling of security that is often lacking
when floating point calculations have been made, and it means that the
accuracy of the calculation cannot be improved upon.

Irrationality is the square root of all evil.
— DOUGLAS HOFSTADTER, Metamagical Themas (1983)

4.5.1. Fractions
When fractional arithmetic is desired, the numbers can be represented as
pairs of integers, (u/u′), where u and u′ are relatively prime to each other and
u′ > 0. The number zero is represented as (0/1). In this form, (u/u′) = (v/v′) if
and only if u = v and u′ = v′.

Multiplication of fractions is, of course, easy; to form (u/u′) × (v/v′) =
(w/w′), we can simply compute uv and u′v′. The two products uv and u′v′
might not be relatively prime, but if d = gcd(uv, u′v′), the desired answer is w
= uv/d, w′ = u′v′/d. (See exercise 2.) Efficient algorithms to compute the
greatest common divisor are discussed in Section 4.5.2.

Another way to perform the multiplication is to find d1 = gcd(u, v′) and
d2 = gcd(u′, v); then the answer is w = (u/d1)(v/d2), w′ = (u′/d2)(v′/d1). (See
exercise 3.) This method requires two gcd calculations, but it is not really
slower than the former method; the gcd process involves a number of

iterations that is essentially proportional to the logarithm of its inputs, so the
total number of iterations needed to evaluate both d1 and d2 is essentially the
same as the number of iterations during the single calculation of d.
Furthermore, each iteration in the evaluation of d1 and d2 is potentially faster,
because comparatively small numbers are being examined. If u, u′, v, and v′
are single-precision quantities, this method has the advantage that no double-
precision numbers appear in the calculation unless it is impossible to
represent both of the answers w and w′ in single-precision form.

Division may be done in a similar manner; see exercise 4.
Addition and subtraction are slightly more complicated. The obvious

procedure is to set (u/u′) ± (v/v′) = ((uv′ ± u′v)/u′v′) and then to reduce this
fraction to lowest terms by calculating d = gcd(uv′ ± u′v, u′v′), as in the first
multiplication method. But again it is possible to avoid working with such
large numbers, if we start by calculating d1 = gcd(u′, v′). If d1 = 1, then the
desired numerator and denominator are w = uv′ ± u′v and w′ = u′v′.
(According to Theorem 4.5.2D, d1 will be 1 about 61 percent of the time, if
the denominators u′ and v′ are randomly distributed, so it is wise to single out
this case.) If d1 > 1, then let t = u(v′/d1) ± v(u′/d1) and calculate d2 = gcd(t,
d1); finally the answer is w = t/d2, w′ = (u′/d1)(v′/d2). (Exercise 6 proves that
these values of w and w′ are relatively prime to each other.) If single-
precision numbers are being used, this method requires only single-precision
operations, except that t may be a double-precision number or slightly larger
(see exercise 7); since gcd(t, d1) = gcd(t mod d1, d1), the calculation of d2
does not require double precision.

For example, to compute (7/66) + (17/12), we form d1 = gcd(66, 12) =
6; then t = 7 · 2 + 17 · 11 = 201, and d2 = gcd(201, 6) = 3, so the answer is

To help check out subroutines for rational arithmetic, inversion of
matrices with known inverses (like Cauchy matrices, exercise 1.2.3–41) is
suggested.

Experience with fractional calculations shows that in many cases the
numbers grow to be quite large. So if u and u′ are intended to be single-
precision numbers for each fraction (u/u′), it is important to include tests for

overflow in each of the addition, subtraction, multiplication, and division
subroutines. For numerical problems in which perfect accuracy is important,
a set of subroutines for fractional arithmetic with arbitrary precision
allowed in numerator and denominator is very useful.

The methods of this section extend also to other number fields besides
the rational numbers; for example, we could do arithmetic on quantities of the
form , where u, u′, u″ are integers, gcd(u, u′, u″) = 1, and
u″ > 0; or on quantities of the form , etc.

Instead of insisting on exact calculations with fractions, it is interesting
to consider also “fixed slash” and “floating slash” numbers, which are
analogous to floating point numbers but based on rational fractions instead of
radix-oriented fractions. In a binary fixed-slash scheme, the numerator and
denominator of a representable fraction each consist of at most p bits, for
some given p. In a floating-slash scheme, the sum of numerator bits plus
denominator bits must be a total of at most q, for some given q, and another
field of the representation is used to indicate how many of these q bits belong
to the numerator. Infinity can be represented as (1/0). To do arithmetic on
such numbers, we define x ⊕ y = round(x+y), x⊖y = round(x−y), etc., where
round(x) = x if x is representable, otherwise it is one of the two
representable numbers that surround x.

It may seem at first that the best definition of round(x) would be to
choose the representable number that is closest to x, by analogy with the way
we round in floating point arithmetic. But experience has shown that it is best
to bias our rounding towards “simple” numbers, since numbers with small
numerator and denominator occur much more often than complicated
fractions do. We want more numbers to round to than to . The rounding
rule that turns out to be most successful in practice is called “mediant
rounding”: If (u/u′) and (v/v′) are adjacent representable numbers, so that
whenever u/u′ ≤ x ≤ v/v′ we must have round(x) equal to (u/u′) or (v/v′), the
mediant rounding rule says that

If x = (u + v)/(u′ + v′) exactly, we let round(x) be the neighboring fraction
with the smallest denominator (or, if u′ = v′, with the smallest numerator).

Exercise 4.5.3–43 shows that it is not difficult to implement mediant
rounding efficiently.

For example, suppose we are doing fixed slash arithmetic with p = 8, so
that the representable numbers (u/u′) have –128 < u < 128 and 0 ≤ u′ < 256
and u ⊥ u′. This isn’t much precision, but it is enough to give us a feel for
slash arithmetic. The numbers adjacent to 0 = (0/1) are (–1/255) and (1/255);
according to the mediant rounding rule, we will therefore have round(x) = 0
if and only if |x| ≤ 1/256. Suppose we have a calculation that would take the
overall form if we were working in exact rational
arithmetic, but the intermediate quantities have had to be rounded to
representable numbers. In this case would round to (79/40) and
would round to (7/6). The rounded terms sum to , which
rounds to (22/7); so we have obtained the correct answer even though three
roundings were required. This example was not specially contrived. When
the answer to a problem is a simple fraction, slash arithmetic tends to make
the intermediate rounding errors cancel out.

Exact representation of fractions within a computer was first discussed
in the literature by P. Henrici, JACM 3 (1956), 6–9. Fixed and floating slash
arithmetic were proposed by David W. Matula, in Applications of Number
Theory to Numerical Analysis, edited by S. K. Zaremba (New York:
Academic Press, 1972), 486–489. Further developments of the idea are
discussed by Matula and Kornerup in Proc. IEEE Symp. Computer Arith. 4
(1978), 29–38, 39–47; Lecture Notes in Comp. Sci. 72 (1979), 383–397;
Computing, Suppl. 2 (1980), 85–111; IEEE Trans. C-32 (1983), 378–388;
IEEE Trans. C-34 (1985), 3–18; IEEE Trans. C-39 (1990), 1106–1115.

Exercises

1. [15] Suggest a reasonable computational method for comparing two
fractions, to test whether or not (u/u′) < (v/v′).

2. [M15] Prove that if d = gcd(u, v) then u/d and v/d are relatively prime.
3. [M20] Prove that u ⊥ u′ and v ⊥ v′ implies gcd(uv, u′v′) = gcd(u, v′)

gcd(u′, v).
4. [11] Design a division algorithm for fractions, analogous to the second

multiplication method of the text. (Note that the sign of v must be
considered.)

5. [10] Compute (17/120) + (–27/70) by the method recommended in the
text.
 6. [M23] Show that u ⊥ u′ and v ⊥ v′ implies gcd(uv′ + vu′, u′v′) = d1d2,
where d1 = gcd(u′, v′) and d2 = gcd(d1, u(v′/d1) + v(u′/d1)). (Hence if d1 = 1
we have (uv′ + vu′) ⊥ u′v′.)

7. [M22] How large can the absolute value of the quantity t become, in the
addition-subtraction method recommended in the text, if the numerators and
denominators of the inputs are less than N in absolute value?
 8. [22] Discuss using (1/0) and (–1/0) as representations for ∞ and –∞,
and/or as representations of overflow.

9. [M23] If 1 ≤ u′, v′ < 2n, show that ⌊22nu/u′⌋ = ⌊22nv/v′⌋ implies u/u′ =
v/v′.

10. [41] Extend the subroutines suggested in exercise 4.3.1–34 so that they
deal with “arbitrary” rational numbers.
11. [M23] Consider fractions of the form , where u, u′, u″
are integers, gcd(u, u′, u″) = 1, and u″ > 0. Explain how to divide two such
fractions and to obtain a quotient having the same form.
12. [M16] What is the largest finite floating slash number, given a bound q
on the numerator length plus the denominator length? Which numbers round
to (0/1)?
13. [20] (Matula and Kornerup.) Discuss the representation of floating
slash numbers in a 32-bit word.
14. [M23] Explain how to compute the exact number of pairs of integers
(u, u′) such that M1 < u ≤ M2 and N1 < u′ ≤ N2 and u ⊥ u′. (This can be used
to determine how many numbers are representable in slash arithmetic.
According to Theorem 4.5.2D, the number will be approximately (6/π2)
(M2 – M1)(N2 – N1).)
15. [42] Modify one of the compilers at your installation so that it will
replace all floating point calculations by floating slash calculations.
Experiment with the use of slash arithmetic by running existing programs
that were written by programmers who actually had floating point
arithmetic in mind. (When special subroutines like square root or logarithm
are called, your system should automatically convert slash numbers to

floating point form before the subroutine is invoked, then back to slash
form again afterwards. There should be a new option to print slash
numbers in a fractional format; however, you should also print slash
numbers in decimal notation as usual, if no changes are made to a user’s
source program.) Are the results better or worse, when floating slash
numbers are substituted?
16. [40] Experiment with interval arithmetic on slash numbers.

4.5.2. The Greatest Common Divisor
If u and v are integers, not both zero, we say that their greatest common
divisor, gcd(u, v), is the largest integer that evenly divides both u and v. This
definition makes sense, because if u ≠ 0 then no integer greater than |u| can
evenly divide u, but the integer 1 does divide both u and v; hence there must
be a largest integer that divides them both. When u and v are both zero, every
integer evenly divides zero, so the definition above does not apply; it is
convenient to set

The definitions just given obviously imply that

In the previous section, we reduced the problem of expressing a rational
number in lowest terms to the problem of finding the greatest common
divisor of its numerator and denominator. Other applications of the greatest
common divisor have been mentioned for example in Sections 3.2.1.2, 3.3.3,
4.3.2, 4.3.3. So the concept of gcd(u, v) is important and worthy of serious
study.

The least common multiple of two integers u and v, written lcm(u, v), is
a related idea that is also important. It is defined to be the smallest positive
integer that is an integer multiple of both u and v; and lcm(u, 0) = lcm(0, v) =
0. The classical method for teaching children how to add fractions u/u′ + v/v′
is to train them to find the “least common denominator,” which is lcm(u′, v′).

According to the “fundamental theorem of arithmetic” (proved in
exercise 1.2.4–21), each positive integer u can be expressed in the form

where the exponents u2, u3, . . . are uniquely determined nonnegative integers,
and where all but a finite number of the exponents are zero. From this
canonical factorization of a positive integer, we immediately obtain one way
to compute the greatest common divisor of u and v: By (2), (3), and (4), we
may assume that u and v are positive integers, and if both of them have been
canonically factored into primes we have

Thus, for example, the greatest common divisor of u = 7000 = 23 · 53 · 7 and
v = 4400 = 24 · 52 · 11 is 2min(3,4) 5min(3,2) 7min(1,0) 11min(0, 1) = 23 · 52 = 200.
The least common multiple of the same two numbers is 24 · 53 · 7 · 11 =
154000.

From formulas (6) and (7) we can easily prove a number of basic
identities concerning the gcd and the lcm:

The latter two formulas are “distributive laws” analogous to the familiar
identity uv + uw = u(v + w). Equation (10) reduces the calculation of gcd(u,
v) to the calculation of lcm(u, v), and conversely.
Euclid’s algorithm. Although Eq. (6) is useful for theoretical purposes, it is
generally no help for calculating a greatest common divisor in practice,
because it requires that we first determine the canonical factorization of u
and v. There is no known way to find the prime factors of an integer very
rapidly (see Section 4.5.4). But fortunately the greatest common divisor of
two integers can be found efficiently without factoring, and in fact such a

method was discovered more than 2250 years ago; it is Euclid’s algorithm,
which we have already examined in Sections 1.1 and 1.2.1.

Euclid’s algorithm is found in Book 7, Propositions 1 and 2 of his
Elements (c. 300 B.C.), but it probably wasn’t his own invention. Some
scholars believe that the method was known up to 200 years earlier, at least
in its subtractive form, and it was almost certainly known to Eudoxus (c. 375
B.C.); see K. von Fritz, Ann. Math. (2) 46 (1945), 242–264. Aristotle (c. 330
B.C.) hinted at it in his Topics, 158b, 29–35. However, very little hard
evidence about such early history has survived [see W. R. Knorr, The
Evolution of the Euclidean Elements (Dordrecht: 1975)].

We might call Euclid’s method the granddaddy of all algorithms, because
it is the oldest nontrivial algorithm that has survived to the present day. (The
chief rival for this honor is perhaps the ancient Egyptian method for
multiplication, which was based on doubling and adding, and which forms
the basis for efficient calculation of nth powers as explained in Section
4.6.3. But the Egyptian manuscripts merely give examples that are not
completely systematic, and the examples were certainly not stated
systematically; the Egyptian method is therefore not quite deserving of the
name “algorithm.” Several ancient Babylonian methods, for doing such things
as solving special sets of quadratic equations in two variables, are also
known. Genuine algorithms are involved in this case, not just special
solutions to the equations for certain input parameters; even though the
Babylonians invariably presented each method in conjunction with an
example worked with particular input data, they regularly explained the
general procedure in the accompanying text. [See D. E. Knuth, CACM 15
(1972), 671–677; 19 (1976), 108.] Many of these Babylonian algorithms
predate Euclid by 1500 years, and they are the earliest known instances of
written procedures for mathematics. But they do not have the stature of
Euclid’s algorithm, since they do not involve iteration and since they have
been superseded by modern algebraic methods.)

In view of the importance of Euclid’s algorithm, for historical as well as
practical reasons, let us now consider how Euclid himself treated it.
Paraphrased into modern terminology, this is essentially what he wrote:

Proposition. Given two positive integers, find their greatest common
divisor.

Let A and C be the two given positive integers; it is required to find their
greatest common divisor. If C divides A, then C is a common divisor of
C and A, since it also divides itself. And it clearly is in fact the greatest,
since no greater number than C will divide C.
But if C does not divide A, then continually subtract the lesser of the
numbers A, C from the greater, until some number is left that divides the
previous one. This will eventually happen, for if unity is left, it will
divide the previous number.
Now let E be the positive remainder of A divided by C; let F be the
positive remainder of C divided by E; and suppose that F is a divisor of
E. Since F divides E and E divides C – F,F also divides C – F ; but it
also divides itself, so it divides C. And C divides A – E; therefore F also
divides A – E. But it also divides E; therefore it divides A. Hence it is a
common divisor of A and C.
I now claim that it is also the greatest. For if F is not the greatest
common divisor of A and C, some larger number will divide them both.
Let such a number be G.
Now since G divides C while C divides A – E, G divides A – E. G also
divides the whole of A, so it divides the remainder E. But E divides C –
F ; therefore G also divides C – F . And G also divides the whole of C,
so it divides the remainder F ; that is, a greater number divides a smaller
one. This is impossible.
Therefore no number greater than F will divide A and C, so F is their
greatest common divisor.
Corollary. This argument makes it evident that any number dividing two
numbers divides their greatest common divisor. Q.E.D.

Euclid’s statements have been simplified here in one nontrivial respect:
Greek mathematicians did not regard unity as a “divisor” of another positive
integer. Two positive integers were either both equal to unity, or they were
relatively prime, or they had a greatest common divisor. In fact, unity was not
even considered to be a “number,” and zero was of course nonexistent. These
rather awkward conventions made it necessary for Euclid to duplicate much
of his discussion, and he gave two separate propositions that are each
essentially like the one appearing here.

In his discussion, Euclid first suggests subtracting the smaller of the two
current numbers from the larger, repeatedly, until we get two numbers where
one is a multiple of the other. But in the proof he really relies on taking the
remainder of one number divided by another; and since he has no simple
concept of zero, he cannot speak of the remainder when one number divides
the other. It is reasonable to say that he imagines each division (not the
individual subtractions) as a single step of the algorithm, and hence an
“authentic” rendition of his algorithm can be phrased as follows:
Algorithm E (Original Euclidean algorithm). Given two integers A and C
greater than unity, this algorithm finds their greatest common divisor.

E1. [Is A divisible by C?] If C divides A, the algorithm terminates with C
as the answer.

E2. [Replace A by remainder.] If A mod C is equal to unity, the given
numbers were relatively prime, so the algorithm terminates. Otherwise
replace the pair of values (A, C) by (C, A mod C) and return to step
E1.

Euclid’s “proof” quoted above is especially interesting because it is not
really a proof at all! He verifies the result of the algorithm only if step E1 is
performed once or thrice. Surely he must have realized that step E1 could
take place more than three times, although he made no mention of such a
possibility. Not having the notion of a proof by mathematical induction, he
could only give a proof for a finite number of cases. (In fact, he often proved
only the case n = 3 of a theorem that he wanted to establish for general n.)
Although Euclid is justly famous for the great advances he made in the art of
logical deduction, techniques for giving valid proofs by induction were not
discovered until many centuries later, and the crucial ideas for proving the
validity of algorithms are only now becoming really clear. (See Section
1.2.1 for a complete proof of Euclid’s algorithm, together with a short
discussion of general proof procedures for algorithms.)

It is worth noting that this algorithm for finding the greatest common
divisor was chosen by Euclid to be the very first step in his development of
the theory of numbers. The same order of presentation is still in use today in
modern textbooks. Euclid also gave a method (Proposition 34) to find the
least common multiple of two integers u and v, namely to divide u by gcd(u,
v) and to multiply the result by v; this is equivalent to Eq. (10).

If we avoid Euclid’s bias against the numbers 0 and 1, we can
reformulate Algorithm E in the following way.
Algorithm A (Modern Euclidean algorithm). Given nonnegative integers u
and v, this algorithm finds their greatest common divisor. (Note: The greatest
common divisor of arbitrary integers u and v may be obtained by applying
this algorithm to |u| and |v|, because of Eqs. (2) and (3).)

A1. [v = 0?] If v = 0, the algorithm terminates with u as the answer.
A2. [Take u mod v.] Set r ← u mod v, u ← v, v ← r, and return to A1. (The

operations of this step decrease the value of v, but they leave gcd(u, v)
unchanged.)

For example, we may calculate gcd(40902, 24140) as follows:

The validity of Algorithm A follows readily from Eq. (4) and the fact
that

if q is any integer. Equation (13) holds because any common divisor of u and
v is a divisor of both v and u – qv, and, conversely, any common divisor of v
and u – qv must divide both u and v.

The following MIX program illustrates the fact that Algorithm A can
easily be implemented on a computer:
Program A (Euclid’s algorithm). Assume that u and v are single-precision,
nonnegative integers, stored respectively in locations U and V; this program
puts gcd(u, v) into rA.

The running time for this program is 19T + 6 cycles, where T is the number
of divisions performed. The discussion in Section 4.5.3 shows that we may

take T = 0.842766 ln N + 0.06 as an approximate average value, when u and
v are independently and uniformly distributed in the range 1 ≤ u, v ≤ N.
A binary method. Since Euclid’s patriarchal algorithm has been used for so
many centuries, it is rather surprising that it might not be the best way to find
the greatest common divisor after all. A quite different gcd algorithm,
primarily suited to binary arithmetic, was devised by Josef Stein in 1961
[see J. Comp. Phys. 1 (1967), 397–405]. This new algorithm requires no
division instruction; it relies solely on the operations of subtraction, parity
testing, and halving of even numbers (which corresponds to a right shift in
binary notation).

The binary gcd algorithm is based on four simple facts about positive
integers u and v:

a) If u and v are both even, then gcd(u, v) = 2 gcd(u/2, v/2). [See Eq.
(8).]

b) If u is even and v is odd, then gcd(u, v) = gcd(u/2, v). [See Eq. (6).]
c) As in Euclid’s algorithm, gcd(u, v) = gcd(u – v, v). [See Eqs. (13),

(2).]
d) If u and v are both odd, then u – v is even, and |u – v| < max(u, v).

Algorithm B (Binary gcd algorithm). Given positive integers u and v, this
algorithm finds their greatest common divisor.

B1. [Find power of 2.] Set k ← 0, and then repeatedly set k ← k + 1, u ←
u/2, v ← v/2, zero or more times until u and v are not both even.

B2. [Initialize.] (Now the original values of u and v have been divided by
2k, and at least one of their present values is odd.) If u is odd, set t ← –
v and go to B4. Otherwise set t ← u.

B3. [Halve t.] (At this point, t is even, and nonzero.) Set t ← t/2.
B4. [Is t even?] If t is even, go back to B3.
B5. [Reset max(u, v).] If t > 0, set u ← t; otherwise set v ← –t. (The larger

of u and v has been replaced by |t|, except perhaps during the first time
this step is performed.)

B6. [Subtract.] Set t ← u – v. If t ≠ 0, go back to B3. Otherwise the
algorithm terminates with u · 2k as the output.

As an example of Algorithm B, let us consider u = 40902, v = 24140, the
same numbers we used when trying out Euclid’s algorithm. Step B1 sets k ←
1, u ← 20451, v ← 12070. Then t is set to –12070, and replaced by –6035;
then v is replaced by 6035, and the computation proceeds as follows:

The answer is 17 · 21 = 34. A few more iterations were necessary here than
we needed with Algorithm A, but each iteration was somewhat simpler since
no division steps were used.

Fig. 9. Binary algorithm for the greatest common divisor.

A MIX program for Algorithm B requires a bit more code than for
Algorithm A, but the steps are elementary. In order to make such a program
fairly typical of a binary computer’s representation of Algorithm B, let us
assume that MIX is extended to include the following operators:
• SLB (shift left AX binary). C = 6; F = 6.
The contents of registers A and X are “shifted left” M binary places; that is,
|rAX| ← |2M rAX| mod B10, where B is the byte size. (As with all MIX shift
commands, the signs of rA and rX are not affected.)

• SRB (shift right AX binary). C = 6; F = 7.
The contents of registers A and X are “shifted right” M binary places; that is,
|rAX| ← ⌊|rAX|/2M⌋.
• JAE, JAO (jump A even, jump A odd). C = 40; F = 6, 7, respectively.
A JMP occurs if rA is even or odd, respectively.
• JXE, JXO (jump X even, jump X odd). C = 47; F = 6, 7, respectively.
Analogous to JAE, JAO.
Program B (Binary gcd algorithm). Assume that u and v are single-
precision positive integers, stored respectively in locations U and V; this
program uses Algorithm B to put gcd(u, v) into rA. Register assignments: rA
≡ t, rI1 ≡ k.

The running time of this program is

units, where A = k, B = 1 if t ← u in step B2 (otherwise B = 0), C is the
number of subtraction steps, D is the number of halvings in step B3, and E is
the number of times t > 0 in step B5. Calculations discussed later in this
section imply that we may take , , C = 0.71N – 0.5, D = 1.41N
– 2.7, and E = 0.35N – 0.4 as average values for these quantities, assuming
random inputs u and v in the range 1 ≤ u, v < 2N . The total running time is
therefore about 8.8N + 5.2 cycles, compared to about 11.1N + 7.1 for
Program A under the same assumptions. The worst possible running time for
u and v in this range occurs when A = 0, B = 1, C = N, D = 2N – 2, E = N − 1;
this amounts to 13N + 8 cycles. (The corresponding value for Program A is
26.8N + 19.)

Thus the greater speed of the iterations in Program B, due to the
simplicity of the operations, compensates for the greater number of iterations
required. We have found that the binary algorithm is about 20 percent faster
than Euclid’s algorithm on the MIX computer. Of course, the situation may be
different on other computers, and in any event both programs are quite
efficient; but it appears that not even a procedure as venerable as Euclid’s
algorithm can withstand progress.

The binary gcd algorithm itself might have a distinguished pedigree,
since it may well have been known in ancient China. Chapter 1, Section 6 of
a classic text called Chiu Chang Suan Shu, the “Nine Chapters on
Arithmetic” (c. 1st century A.D.), gives the following method for reducing a
fraction to lowest terms:

If halving is possible, take half.
Otherwise write down the denominator and the numerator, and subtract
the smaller from the greater.
Repeat until both numbers are equal.
Simplify with this common value.

If the repeat instruction means to go back to the halving step instead of to
repeat the subtraction step—this point isn’t clear—the method is essentially
Algorithm B. [See Y. Mikami, The Development of Mathematics in China
and Japan (Leipzig: 1913), 11; K. Vogel, Neun Bücher arithmetischer
Technik (Braunschweig: Vieweg, 1968), 8.]

V. C. Harris [Fibonacci Quarterly 8 (1970), 102–103; see also V. A.
Lebesgue, J. Math. Pures Appl. 12 (1847), 497–520] has suggested an
interesting cross between Euclid’s algorithm and the binary algorithm. If u
and v are odd, with u ≥ v > 0, we can always write

where 0 ≤ r < v and r is even; if r ≠ 0 we set r ← r/2 until r is odd, then set u
← v, v ← r and repeat the process. In subsequent iterations, q ≥ 3.
Extensions. We can extend the methods used to calculate gcd(u, v) in order
to solve some slightly more difficult problems. For example, assume that we
want to compute the greatest common divisor of n integers u1, u2, . . . , un.

One way to calculate gcd(u1, u2, . . . , un), assuming that the u’s are all
nonnegative, is to extend Euclid’s algorithm in the following way: If all uj
are zero, the greatest common divisor is taken to be zero; otherwise if only
one uj is nonzero, it is the greatest common divisor; otherwise replace uk by
uk mod uj for all k ≠ j, where uj is the minimum of the nonzero u’s, and
repeat the process.

The algorithm sketched in the preceding paragraph is a natural
generalization of Euclid’s method, and it can be justified in a similar manner.
But there is a simpler method available, based on the easily verified identity

To calculate gcd(u1, u2, . . . , un), we may therefore proceed as follows:
Algorithm C (Greatest common divisor of n integers). Given integers u1,
u2, . . . , un, where n ≥ 1, this algorithm computes their greatest common
divisor, using an algorithm for the case n = 2 as a subroutine.

C1. Set d ← un, k ← n − 1.

C2. If d ≠ 1 and k > 0, set d ← gcd(uk, d) and k ← k − 1 and repeat this
step. Otherwise d = gcd(u1, . . . , un).

This method reduces the calculation of gcd(u1, . . . , un) to repeated
calculations of the greatest common divisor of two numbers at a time. It
makes use of the fact that gcd(u1, . . . , uk, 1) = 1; and this will be helpful,
since we will already have gcd(un − 1, un) = 1 more than 60 percent of the
time, if un − 1 and un are chosen at random. In most cases the value of d will

decrease rapidly during the first few stages of the calculation, and this will
make the remainder of the computation quite fast. Here Euclid’s algorithm
has an advantage over Algorithm B, because its running time is primarily
governed by the value of min(u, v), while the running time for Algorithm B is
primarily governed by max(u, v); it would be reasonable to perform one
iteration of Euclid’s algorithm, replacing u by u mod v if u is much larger
than v, and then to continue with Algorithm B.

The assertion that gcd(un − 1, un) will be equal to unity more than 60
percent of the time for random inputs is a consequence of the following well-
known result of number theory:
Theorem D. [G. Lejeune Dirichlet, Abhandlungen Königlich Preuß. Akad.
Wiss. (1849), 69–83.] If u and v are integers chosen at random, the
probability that gcd(u, v) = 1 is 6/π2 ≈ .60793.

A precise formulation of this theorem, which defines carefully what is
meant by being “chosen at random,” appears in exercise 10 with a rigorous
proof. Let us content ourselves here with a heuristic argument that shows why
the theorem is plausible.

If we assume, without proof, the existence of a well-defined probability
p that u ⊥ v, then we can determine the probability that gcd(u, v) = d for any
positive integer d, because gcd(u, v) = d if and only if u is a multiple of d
and v is a multiple of d and u/d ⊥ v/d. Thus the probability that gcd(u, v) = d
is equal to 1/d times 1/d times p, namely p/d2. Now let us sum these
probabilities over all possible values of d; we should get

Since the sum is equal to π2/6 by Eq. 1.2.7–(7),
we need p = 6/π2 in order to make this equation come out right.

Euclid’s algorithm can be extended in another important way: We can
calculate integers u′ and v′ such that

at the same time gcd(u, v) is being calculated. This extension of Euclid’s
algorithm can be described conveniently in vector notation:

Algorithm X (Extended Euclid’s algorithm). Given nonnegative integers u
and v, this algorithm determines a vector (u1, u2, u3) such that uu1 + vu2 = u3
= gcd(u, v). The computation makes use of auxiliary vectors (v1, v2, v3), (t1,
t2, t3); all vectors are manipulated in such a way that the relations

hold throughout the calculation.
X1. [Initialize.] Set (u1, u2, u3) ← (1, 0, u), (v1, v2, v3) ← (0, 1, v).

X2. [Is v3 = 0?] If v3 = 0, the algorithm terminates.

X3. [Divide, subtract.] Set q ← ⌊u3/v3⌋, and then set

Return to step X2.
For example, let u = 40902, v = 24140. At step X2 we have

The solution is therefore 337 · 40902 – 571 · 24140 = 34 = gcd(40902,
24140).

Algorithm X can be traced to the (A.D. 499) by
 of northern India. His description was rather cryptic, but later

commentators such as Bhāskara I in the seventh century clarified the rule,
which was called (“the pulverizer”). [See B. Datta and A. N. Singh,
History of Hindu Mathematics 2 (Lahore: Motilal Banarsi Das, 1938), 89–
116.] Its validity follows from (16) and the fact that the algorithm is identical

to Algorithm A with respect to its manipulation of u3 and v3; a detailed proof
of Algorithm X is discussed in Section 1.2.1. Gordon H. Bradley has
observed that we can avoid a good deal of the calculation in Algorithm X by
suppressing u2, v2, and t2; then u2 can be determined afterwards using the
relation uu1 + vu2 = u3.

Exercise 15 shows that the values of |u1|, |u2|, |v1|, and |v2| remain bounded
by the size of the inputs u and v. Algorithm B, which computes the greatest
common divisor using properties of binary notation, can be extended in a
similar way; see exercise 39. For some instructive extensions to Algorithm
X, see exercises 18 and 19 in Section 4.6.1.

The ideas underlying Euclid’s algorithm can also be applied to find a
general solution in integers of any set of linear equations with integer
coefficients. For example, suppose that we want to find all integers w, x, y, z
that satisfy the two equations

We can introduce a new variable

and use it to eliminate y; Eq. (17) becomes

and Eq. (18) remains unchanged. The new equation (19) may be used to
eliminate w, and (18) becomes

that is,

Now as before we introduce a new variable

and eliminate x from (20):

Another new variable can be introduced in the same fashion, in order to
eliminate the variable z, which has the smallest coefficient:

Eliminating z from (21) yields

and this equation, finally, can be used to eliminate t2. We are left with two
independent variables, t1 and t3; substituting back for the original variables,
we obtain the general solution

In other words, all integer solutions (w, x, y, z) to the original equations (17)
and (18) are obtained from (23) by letting t1 and t3 independently run through
all integers.

The general method that has just been illustrated is based on the
following procedure: Find a nonzero coefficient c of smallest absolute value
in the system of equations. Suppose that this coefficient appears in an
equation having the form

and assume for simplicity that c > 0. If c = 1, use this equation to eliminate
the variable x0 from the other equations remaining in the system; then repeat
the procedure on the remaining equations. (If no more equations remain, the
computation stops, and a general solution in terms of the variables not yet
eliminated has essentially been obtained.) If c > 1, then if c1 mod c = ... = ck
mod c = 0 check that d mod c = 0, otherwise there is no integer solution; then
divide both sides of (24) by c and eliminate x0 as in the case c = 1. Finally, if
c > 1 and not all of c1 mod c, . . . , ck mod c are zero, then introduce a new
variable

eliminate the variable x0 from the other equations, in favor of t, and replace
the original equation (24) by

(See (19) and (21) in the example above.)

This process must terminate, since each step reduces either the number of
equations or the size of the smallest nonzero coefficient in the system. When
this procedure is applied to the equation ux + vy = 1, for specific integers u
and v, it runs through essentially the steps of Algorithm X.

The transformation-of-variables procedure just explained is a simple and
straightforward way to solve linear equations when the variables are
allowed to take on integer values only, but it isn’t the best method available
for this problem. Substantial refinements are possible, but beyond the scope
of this book. [See Henri Cohen, A Course in Computational Algebraic
Number Theory (New York: Springer, 1993), Chapter 2.]

Variants of Euclid’s algorithm can be used also with Gaussian integers
u+iu′ and in certain other quadratic number fields. See, for example, A.
Hurwitz, Acta Math. 11 (1887), 187–200; E. Kaltofen and H. Rolletschek,
Math. Comp. 53 (1989), 697–720; A. Knopfmacher and J. Knopfmacher, BIT
31 (1991), 286–292.
High-precision calculation. If u and v are very large integers, requiring a
multiple-precision representation, the binary method (Algorithm B) is a
simple and fairly efficient means of calculating their greatest common
divisor, since it involves only subtractions and shifting.

By contrast, Euclid’s algorithm seems much less attractive, since step A2
requires a multiple-precision division of u by v. But this difficulty is not
really as bad as it seems, since we will prove in Section 4.5.3 that the
quotient ⌊u/v⌋ is almost always very small. For example, assuming random
inputs, the quotient ⌊u/v⌋ will be less than 1000 approximately 99.856
percent of the time. Therefore it is almost always possible to find ⌊u/v⌋ and
(u mod v) using single-precision calculations, together with the
comparatively simple operation of calculating u – qv where q is a single-
precision number. Furthermore, if it does turn out that u is much larger than v
(for instance, the initial input data might have this form), we don’t really
mind having a large quotient q, since Euclid’s algorithm makes a great deal
of progress when it replaces u by u mod v in such a case.

A significant improvement in the speed of Euclid’s algorithm when high-
precision numbers are involved can be achieved by using a method due to D.
H. Lehmer [AMM 45 (1938), 227–233]. Working only with the leading digits
of large numbers, it is possible to do most of the calculations with single-

precision arithmetic, and to make a substantial reduction in the number of
multiple-precision operations involved. The idea is to save time by doing a
“virtual” calculation instead of the actual one.

For example, let us consider the pair of eight-digit numbers u =
27182818, v = 10000000, assuming that we are using a machine with only
four-digit words.
Let u′ = 2718, v′ = 1001, u″ = 2719, v″ = 1000; then u′/v′ and u″/v″ are
approximations to u/v, with

The ratio u/v determines the sequence of quotients obtained in Euclid’s
algorithm. If we perform Euclid’s algorithm simultaneously on the single-
precision values (u′, v′) and (u″, v″) until we get a different quotient, it is not
difficult to see that the same sequence of quotients would have appeared to
this point if we had worked with the multiple-precision numbers (u, v). Thus,
consider what happens when Euclid’s algorithm is applied to (u′, v′) and to
(u″, v″):

The first five quotients are the same in both cases, so they must be the true
ones. But on the sixth step we find that q′ ≠ q″, so the single-precision
calculations are suspended. We have gained the knowledge that the
calculation would have proceeded as follows if we had been working with
the original multiple-precision numbers:

(The next quotient lies somewhere between 3 and 19.) No matter how many
digits are in u and v, the first five steps of Euclid’s algorithm would be the
same as (28), so long as (27) holds. We can therefore avoid the multiple-
precision operations of the first five steps, and replace them all by a
multiple-precision calculation of −4u0 + 11v0 and 7u0 − 19v0. In this case we
obtain u = 1268728, v = 279726; the calculation can now continue in a
similar manner with u′ = 1268, v′ = 280, u″ = 1269, v″ = 279, etc. If we had
a larger accumulator, more steps could be done by single-precision
calculations. Our example showed that only five cycles of Euclid’s algorithm
were combined into one multiple step, but with (say) a word size of 10 digits
we could do about twelve cycles at a time. Results proved in Section 4.5.3
imply that the number of multiple-precision cycles that can be replaced at
each iteration is essentially proportional to the number of digits used in the
single-precision calculations.

Lehmer’s method can be formulated as follows:
Algorithm L (Euclid’s algorithm for large numbers). Let u and v be
nonnegative integers, with u ≥ v, represented in multiple precision. This
algorithm computes the greatest common divisor of u and v, making use of
auxiliary single-precision p-digit variables û, , A, B, C, D, T, q, and
auxiliary multiple-precision variables t and w.

L1. [Initialize.] If v is small enough to be represented as a single-precision
value, calculate gcd(u, v) by Algorithm A and terminate the
computation. Otherwise, let û be the p leading digits of u, and let be
the corresponding digits of v; in other words, if radix-b notation is
being used, û ← ⌊u/bk ⌋ and , where k is as small as
possible consistent with the condition û < bp.

Set A ← 1, B ← 0, C ← 0, D ← 1. (These variables represent the
coefficients in (28), where

in the equivalent actions of Algorithm A on multiple-precision numbers.
We also have

in terms of the notation in the example worked above.)
L2. [Test quotient.] Set . If

, go to step L4. (This step tests if q′ ≠ q″,
in the notation of the example above. Single-precision overflow can
occur in special circumstances during the computation in this step, but
only when û = bp − 1 and A = 1 or when and D = 1; the
conditions

will always hold, because of (30). It is possible to have or
, but not both simultaneously; therefore division by zero in

this step is taken to mean “Go directly to L4.”)
L3. [Emulate Euclid.] Set T ← A − qC, A ← C, C ← T, T ← B − qD, B ←

D, D ← T, and go back to step L2.
(These single-precision calculations are the equivalent of multiple-
precision operations, as in (28), under the conventions of (29).

L4. [Multiprecision step.] If B = 0, set t ← u mod v, u ← v, v ← t, using
multiple-precision division. (This happens only if the single-precision
operations cannot simulate any of the multiple-precision ones. It implies
that Euclid’s algorithm requires a very large quotient, and this is an
extremely rare occurrence.) Otherwise, set t ← Au, t ← t + Bv, w ←
Cu, w ← w + Dv, u ← t, v ← w (using straightforward multiple-
precision operations). Go back to step L1.

The values of A, B, C, D remain as single-precision numbers throughout
this calculation, because of (31).

Algorithm L requires a somewhat more complicated program than
Algorithm B, but with large numbers it will be faster on many computers.
The binary technique of Algorithm B can, however, be speeded up in a

similar way (see exercise 38), to the point where it continues to win.
Algorithm L has the advantage that it determines the sequence of quotients
obtained in Euclid’s algorithm, and this sequence has numerous applications
(see, for example, exercises 43, 47, 49, and 51 in Section 4.5.3). See also
exercise 4.5.3–46.
*Analysis of the binary algorithm. Let us conclude this section by studying
the running time of Algorithm B, in order to justify the formulas stated
earlier.

An exact determination of Algorithm B’s behavior appears to be
exceedingly difficult to derive, but we can begin to study it by means of an
approximate model. Suppose that u and v are odd numbers, with u > v and

(Thus, u is an (m + 1)-bit number, and v is an (n + 1)-bit number.) Consider a
subtract-and-shift cycle of Algorithm B, namely an operation that starts at
step B6 and then stops after step B5 is finished. Every subtract-and-shift
cycle with u > v forms u – v and shifts this quantity right until obtaining an
odd number u′ that replaces u. Under random conditions, we would expect to
have u′ = (u – v)/2 about one-half of the time, u′ = (u – v)/4 about one-fourth
of the time, u′ = (u – v)/8 about one-eighth of the time, and so on. We have

where k is the number of places that u – v is shifted right, and where r is ⌊lg
u⌋ – ⌊lg(u – v)⌋, the number of bits lost at the left during the subtraction of v
from u. Notice that r ≤ 1 when m ≥ n + 2, and r ≥ 1 when m = n.

The interaction between k and r is quite messy (see exercise 20), but
Richard Brent discovered a nice way to analyze the approximate behavior by
assuming that u and v are large enough that a continuous distribution
describes the ratio v/u, while k varies discretely. [See Algorithms and
Complexity, edited by J. F. Traub (New York: Academic Press, 1976), 321–
355.] Let us assume that u and v are large integers that are essentially
random, except that they are odd and their ratio has a certain probability
distribution. Then the least significant bits of the quantity t = u – v in step B6
will be essentially random, except that t will be even. Hence t will be an odd
multiple of 2k with probability 2−k; this is the approximate probability that k
right shifts will be needed in the subtract-and-shift cycle. In other words, we

obtain a reasonable approximation to the behavior of Algorithm B if we
assume that step B4 always branches to B3 with probability 1/2.

Let Gn(x) be the probability that min(u,v)/max(u,v) is ≥x after n subtract-
and-shift cycles have been performed under this assumption. If u ≥ v and if
exactly k right shifts are performed, the ratio X = v/u is changed to X′ =
min(2kv/(u – v), (u – v)/2kv) = min(2kX/(1 – X), (1 – X)/2kX). Thus we will
have X′ ≥ x if and only if 2kX/(1 – X) ≥ x and (1 – X)/2kX ≥ x; and this is the
same as

Therefore Gn(x) satisfies the interesting recurrence

where G0(x) = 1 – x for 0 ≤ x ≤ 1. Computational experiments indicate that
Gn(x) converges rapidly to a limiting distribution G∞(x) = G(x), although a
formal proof of convergence seems to be difficult. We shall assume that G(x)
exists; hence it satisfies

Let

then we have

It is convenient to define

so that (39) holds for all x > 0. As x runs from 0 to ∞, S(x) increases from 0
to 1, hence G(x) decreases from +1 to −1. Of course G(x) is no longer a

probability when x > 1; but it is meaningful nevertheless (see exercise 23).
We will assume that there are power series α(x), β(x), γm(x), δm(x), λ(x),

μ(x), σm(x), τm(x), and ρ(x) such that

because it can be shown that the solutions Gn(x) to (35) have this property
for n ≥ 1. (See, for example, exercise 30.) The power series converge for |x|
< 1.

Fig. 10. The limiting distribution of ratios in the binary gcd algorithm.

What can we deduce about α(x), . . . , ρ(x) from equations (36)–(43)? In
the first place we have

from (38), (40), and (43). Consequently Eq. (42) holds if and only if

Relation (45) tells us that λ(x) is simply a constant multiple of x; we will
write

because the constant is negative. (The relevant coefficient turns out to be

but no easy way to compute it is known.) Relation (46) tells us that ρ1 = –λ,
and that 2μk = 2kμk – 2kρk when k > 1; in other words,

We also know from (47) that the two families of power series

are simply linear functions. (This is not true for γm(x) and δm(x).)
Replacing x by 1/2x in (44) yields

and (39) converts this equation to a relation between G and S when x is near
0:

The coefficients of lg x must agree when both sides of this equation are
expanded in power series, hence

Equation (54) is a recurrence that defines α(x). In fact, let us consider the
function ψ(z) that satisfies

Then (54) says that

Moreover, iteration of (55) yields

It follows that the power series expansion of ψ(z) is

see exercise 27. This formula for ψn is surprisingly similar to an expression
that arises in connection with digital search tree algorithms, Eq. 6.3–(18).
Exercise 28 proves that ψn = Θ(n−2).

We now know α(x), except for the constant λ = –ρ1, and (50) relates μ(x)
to ρ(x) except for the coefficient μ1. The answer to exercise 25 shows that the
coefficients of ρ(x) can all be expressed in terms of ρ1, ρ3, ρ5, . . . ;
moreover, the constants σm and τm can be computed by the method used to
solve exercise 29, and complicated relations also hold between the
coefficients of the functions γm(x) and δm(x). However, there seems to be no
way to compute all the coefficients of the various functions that enter into
G(x) except to iterate the recurrence (36) by elaborate numerical methods.

Once we have computed a good approximation to G(x), we can estimate
the asymptotic average running time of Algorithm B as follows: If u ≥ v and
if k right shifts are performed, the quantity Y = uv is changed to Y′ = (u –
v)v/2k; hence the ratio Y/Y′ is 2k/(1–X), where X = v/u is ≥ x with probability
G(x). Therefore the number of bits in uv decreases on the average by the
constant

where fk(x) = lg(2k/(1 – x)); we have

When eventually u = v, the expected value of lg uv will be approximately
0.9779 (see exercise 14); therefore the total number of subtract-and-shift
cycles of Algorithm B will be approximately 1/b times the initial value of lg
uv. By symmetry, this is about 2/b times the initial value of lg u. Numerical
computations carried out by Richard Brent in 1997 give the value

for this fundamental constant.

A deeper study of these functions by Brigitte Vallée led her to suspect
that the constants λ and b might be related by the remarkable formula

Sure enough, the values computed by Brent agree perfectly with this
tantalizing conjecture. Vallée has successfully analyzed Algorithm B using
rigorous “dynamical” methods of great interest [see Algorithmica 22 (1998),
660–685].

Let us return to our assumption in (32) that u and v are odd and in the
ranges 2m ≤ u < 2m+ 1 and 2n ≤ v < 2n+ 1. Empirical tests of Algorithm B with
several million random inputs and with various values of m and n in the
range 29 ≤ m, n ≤ 37 indicate that the actual average behavior of the
algorithm is given by

with a rather small standard deviation from these observed average values.
The coefficients and 1 of m in (62) can be verified rigorously (see exercise
21).

If we assume instead that u and v are to be any integers, independently
and uniformly distributed over the ranges

then we can calculate the average values of C and D from the data already
given:

(See exercise 22.) This agrees perfectly with the results of further empirical
tests, made on several million random inputs for N ≤ 30; the latter tests show
that we may take

as decent estimates of the values, given this distribution of the inputs u and v.
The theoretical analysis in Brent’s continuous model of Algorithm B

predicts that C and D will be asymptotically equal to 2N/b and 4N/b under
assumption (63), where 2/b ≈ 0.70597 is the constant in (60). The agreement

with experiment is so good that Brent’s constant 2/b must be the true value of
the number “0.70” in (65), and we should replace 0.203 by 0.206 in (62).

This completes our study of the average values of C and D. The other
three quantities that appear in the running time of Algorithm B are quite easy
to analyze; see exercises 6, 7, and 8.

Now that we know approximately how Algorithm B behaves on the
average, let’s consider a “worst case” scenario: What values of u and v are
in some sense the hardest to handle? If we assume as before that

we want to find u and v that make the algorithm run most slowly. The
subtractions take somewhat longer than the shifts, when the auxiliary
bookkeeping is considered, so this question may be rephrased by asking for
the inputs u and v that require the most subtractions. The answer is somewhat
surprising; the maximum value of C is exactly

although a naïve analysis would predict that substantially higher values of C
are possible (see exercise 35). The derivation of the worst case (66) is quite
interesting, so it has been left as an amusing problem for readers to work out
for themselves (see exercises 36 and 37).

Exercises

1. [M21] How can (8), (9), (10), (11), and (12) be derived easily from (6)
and (7)?

2. [M22] Given that u divides v1v2 . . . vn, prove that u divides

3. [M23] Show that the number of ordered pairs of positive integers (u, v)
such that lcm(u, v) = n is the number of divisors of n2.

4. [M21] Given positive integers u and v, show that there are divisors u′
of u and v′ of v such that u′ ⊥ v′ and u′v′ = lcm(u, v).
 5. [M26] Invent an algorithm (analogous to Algorithm B) for calculating
the greatest common divisor of two integers based on their balanced
ternary representation. Demonstrate your algorithm by applying it to the
calculation of gcd(40902, 24140).

6. [M22] Given that u and v are random positive integers, find the mean
and the standard deviation of the quantity A that enters into the timing of
Program B. (This is the number of right shifts applied to both u and v during
the preparatory phase.)

7. [M20] Analyze the quantity B that enters into the timing of Program B.
 8. [M25] Show that in Program B, the average value of E is
approximately equal to Cave, where Cave is the average value of C.

9. [18] Using Algorithm B and hand calculation, find gcd(31408, 2718).
Also find integers m and n such that 31408m + 2718n = gcd(31408, 2718),
using Algorithm X.
 10. [HM24] Let qn be the number of ordered pairs of integers (u, v) lying

in the range 1 ≤ u, v ≤ n such that u ⊥ v. The object of this exercise is to
prove that we have limn→∞ qn/n2 = 6/π2, thereby establishing Theorem D.

a) Use the principle of inclusion and exclusion (Section 1.3.3) to show
that

where the sums are taken over all prime numbers pi.
b) The Möbius function μ(n) is defined by the rules μ(1) = 1, μ(p1p2 . . .

pr) = (–1)r if p1, p2, . . . , pr are distinct primes, and μ(n) = 0 if n is
divisible by the square of a prime. Show that qn = ∑k≥1 μ(k)⌊n/k⌋2.

c) As a consequence of (b), prove that limn→∞ qn/n2 = ∑k≥1 μ(k)/k2.

d) Prove that (∑k≥1 μ(k)/k2)(∑m≥1 1/m2) = 1. Hint: When the series are
absolutely convergent we have

11. [M22] What is the probability that gcd(u, v) ≤ 3? (See Theorem D.)
What is the average value of gcd(u, v)?
12. [M24] (E. Cesàro.) If u and v are random positive integers, what is the
average number of (positive) divisors they have in common? [Hint: See

the identity in exercise 10(d), with ak = bm = 1.]
13. [HM23] Given that u and v are random odd positive integers, show that
they are relatively prime with probability 8/π2.

 14. [HM25] What is the expected value of ln gcd(u, v) when u and v are
(a) random positive integers? (b) random positive odd integers?
15. [M21] What are the values of v1 and v2 when Algorithm X terminates?

 16. [M22] Design an algorithm to divide u by v modulo m, given positive
integers u, v, and m, with v relatively prime to m. In other words, your
algorithm should find w, in the range 0 ≤ w < m, such that u ≡ vw (modulo
m).

 17. [M20] Given two integers u and v such that uv ≡ 1 (modulo 2e),
explain how to compute an integer u′ such that u′v ≡ 1 (modulo 22e). [This
leads to a fast algorithm for computing the reciprocal of an odd number
modulo a power of 2, since we can start with a table of all such
reciprocals for e = 8 or e = 16.]

 18. [M24] Show how Algorithm L can be extended (as Algorithm A was
extended to Algorithm X) to obtain solutions of (15) when u and v are
large.
19. [21] Use the text’s method to find a general solution in integers to the
following sets of equations:

20. [M37] Let u and v be odd integers, independently and uniformly
distributed in the ranges 2m ≤ u < 2m+1, 2n ≤ v < 2n+ 1. What is the exact
probability that a single subtract-and-shift cycle in Algorithm B reduces u
and v to the ranges 2m′ ≤ u < 2m′+1, 2n′ ≤ v < 2n′+1, as a function of m, n, m′,
and n′?
21. [HM26] Let Cmn and Dmn be the average number of subtraction steps
and shift steps, respectively, in Algorithm B, when u and v are odd, ⌊lg u⌋
= m, ⌊lg v⌋ = n. Show that for fixed n, and Dmn = m +
O(1) as m → ∞.

22. [M28] Continuing the previous exercise, show that if Cmn = αm + βn +
γ for some constants α, β, and γ, then

 23. [M20] What is the probability that v/u ≤ x after n subtract-and-shift
cycles of Algorithm B, when the algorithm begins with large random
integers? (Here x is any real number ≥ 0; we do not assume that u ≥ v.)
24. [M20] Suppose u > v in step B6, and assume that the ratio v/u has
Brent’s limiting distribution G. What is the probability that u < v the next
time step B6 is encountered?
25. [M21] Equation (46) implies that ρ1 = –λ; prove that ρ2 = λ/2.
26. [M22] Prove that when G(x) satisfies (36)–(40) we have

27. [M22] Prove (58), which expresses ψn in terms of Bernoulli numbers.

28. [HM36] Study the asymptotic behavior of ψn. Hint: See exercise 6.3–
34.

 29. [HM26] (R. P. Brent.) Find G1(x), the distribution of min(u, v)/max(u,
v) after the first subtract-and-shift cycle of Algorithm B as defined in (35).
Hint: , and use the method of
Mellin transforms for harmonic sums [see P. Flajolet, X. Gourdon, and P.
Dumas, Theor. Comp. Sci. 144 (1995), 3–58].
30. [HM39] Continuing the previous exercise, determine G2(x).
31. [HM46] Prove or disprove Vallée’s conjecture (61).
32. [HM42] Is there a unique continuous function G(x) that satisfies (36)
and (37)?
33. [M46] Analyze Harris’s “binary Euclidean algorithm,” stated after
Program B.
34. [HM49] Find a rigorous proof that Brent’s model describes the
asymptotic behavior of Algorithm B.

35. [M23] Consider a directed graph with vertices (m, n) for all
nonnegative integers m, n ≥ 0, having arcs from (m, n) to (m′, n′) whenever
it is possible for a subtract-and-shift cycle of Algorithm B to transform
integers u and v with ⌊lg u⌋ = m and ⌊lg v⌋ = n into integers u′ and v′ with
⌊lg u′⌋ = m′ and ⌊lg v′⌋ = n′; there also is a special “Stop” vertex, with arcs
from (n, n) to Stop for all n ≥ 0. What is the length of the longest path from
(m, n) to Stop? (This gives an upper bound on the maximum running time of
Algorithm B.)

 36. [M28] Given m ≥ n ≥ 1, find values of u and v with ⌊lg u⌋ = m and ⌊lg
v⌋ = n such that Algorithm B requires m + 1 subtraction steps.
37. [M32] Prove that the subtraction step B6 of Algorithm B is never
executed more than 1 + ⌊lg max(u, v)⌋ times.

 38. [M32] (R. W. Gosper.) Demonstrate how to modify Algorithm B for
large numbers, using ideas analogous to those in Algorithm L.

 39. [M28] (V. R. Pratt.) Extend Algorithm B to an Algorithm Y that is
analogous to Algorithm X.

 40. [M25] (R. P. Brent and H. T. Kung.) The following variant of the
binary gcd algorithm is better than Algorithm B from the standpoint of
hardware implementation, because it does not require testing the sign of u
– v. Assume that u is odd; u and v can be either positive or negative.

K1. [Initialize.] Set c ← 0. (This counter estimates the difference
between lg |u| and lg |v|.)

K2. [Done?] If v = 0, terminate with |u| as the answer.
K3. [Make v odd.] Set v ← v/2 and c ← c + 1 zero or more times, until

v is odd.
K4. [Make c ≤ 0.] If c > 0, interchange u ↔ v and set c ← –c.
K5. [Reduce.] Set w ← (u+v)/2. If w is even, set v ← w; otherwise set v

← w−v. Return to step K2.
Prove that step K2 is performed at most 2 + 2 lg max(|u|, |v|) times.
41. [M22] Use Euclid’s algorithm to find a simple formula for gcd(10m −
1, 10n − 1) when m and n are nonnegative integers.
42. [M30] Evaluate the determinant

*4.5.3. Analysis of Euclid’s Algorithm
The execution time of Euclid’s algorithm depends on T, the number of times
the division step A2 is performed. (See Algorithm 4.5.2A and Program
4.5.2A.) The quantity T is also an important factor in the running time of
other algorithms, such as the evaluation of functions satisfying a reciprocity
formula (see Section 3.3.3). We shall see in this section that the mathematical
analysis of this quantity T is interesting and instructive.
Relation to continued fractions. Euclid’s algorithm is intimately connected
with continued fractions, which are expressions of the form

Continued fractions have a beautiful theory that is the subject of several
classic books, such as O. Perron, Die Lehre von den Kettenbrüchen, 3rd
edition (Stuttgart: Teubner, 1954), 2 volumes; A. Khinchin, Continued
Fractions, translated by Peter Wynn (Groningen: P. Noordhoff, 1963); and H.
S. Wall, Analytic Theory of Continued Fractions (New York: Van Nostrand,
1948). See also Claude Brezinski, History of Continued Fractions and
Padé Approximants (Springer, 1991), for the early history of the subject. It is
necessary to limit ourselves to a comparatively brief treatment of the theory
here, studying only those aspects that give us more insight into the behavior
of Euclid’s algorithm.

The continued fractions of primary interest to us are those in which all of
the b’s in (1) are equal to unity. For convenience in notation, let us define

Thus, for example,

If n = 0, the symbol //x1, . . . , xn// is taken to mean 0. Let us also define the
so-called continuant polynomials Kn(x1, x2, . . . , xn) of n variables, for n ≥
0, by the rule

Thus K2(x1, x2) = x1x2 + 1, K3(x1, x2, x3) = x1x2x3 + x1 + x3, etc. In general, as
noted by L. Euler in the eighteenth century, Kn(x1, x2, . . . , xn) is the sum of
all terms obtainable by starting with x1x2 . . . xn and deleting zero or more
nonoverlapping pairs of consecutive variables xjxj+1; there are Fn + 1 such
terms.

The basic property of continuants is the explicit formula

This can be proved by induction, since it implies that

hence //x0, x1, . . . , xn// is the reciprocal of the latter quantity.
The K-polynomials are symmetrical in the sense that

This follows from Euler’s observation above, and as a consequence we have

for n > 1. The K-polynomials also satisfy the important identity

(See exercise 4.) The latter equation in connection with (5) implies that

Thus the K-polynomials are intimately related to continued fractions.
Every real number X in the range 0 ≤ X < 1 has a regular continued

fraction defined as follows: Let X0 = X, and for all n ≥ 0 such that Xn ≠ 0 let

If Xn = 0, the quantities An + 1 and Xn + 1 are not defined, and the regular
continued fraction for X is //A1, . . . , An//. If Xn ≠ 0, this definition guarantees
that 0 ≤ Xn + 1 < 1, so each of the A’s is a positive integer. Definition (10)
also implies that

heance

for all n ≥ 1, whenever Xn is defined. In particular, we have X = //A1, . . . ,
An// when Xn = 0. If Xn ≠ 0, the number X always lies between //A1, . . . , An//
and //A1, . . . , An + 1//, since by (7) the quantity qn = Kn(A1, . . . , An + Xn)
increases monotonically from Kn(A1, . . . , An) up to Kn(A1, . . . , An + 1) as Xn
increases from 0 to 1, and by (9) the continued fraction increases or
decreases when qn increases, according as n is even or odd. In fact,

by (5), (7), (8), and (10). Therefore //A1, . . . , An// is an extremely close
approximation to X, unless n is small. If Xn is nonzero for all n, we obtain an
infinite continued fraction //A1, A2, A3, . . . //, whose value is defined to be

from inequality (12) it is clear that this limit equals X.
The regular continued fraction expansion of real numbers has several

properties analogous to the representation of numbers in the decimal system.
If we use the formulas above to compute the regular continued fraction
expansions of some familiar real numbers, we find, for example, that

The numbers A1, A2, . . . are called the partial quotients of X. Notice the
regular pattern that appears in the partial quotients for , φ, and e; the
reasons for this behavior are discussed in exercises 12 and 16. There is no
apparent pattern in the partial quotients for , π, or γ.

It is interesting to note that the ancient Greeks’ first definition of real
numbers, once they had discovered the existence of irrationals, was
essentially stated in terms of infinite continued fractions. (Later they adopted
the suggestion of Eudoxus that x = y should be defined instead as “x < r if and
only if y < r, for all rational r.”) See O. Becker, Quellen und Studien zur
Geschichte Math., Astron., Physik B2 (1933), 311–333.

When X is a rational number, the regular continued fraction corresponds
in a natural way to Euclid’s algorithm. Let us assume that X = v/u, where u >
v ≥ 0. The regular continued fraction process starts with X0 = X; let us define
U0 = u, V0 = v. Assuming that Xn = Vn/Un ≠ 0, (10) becomes

Therefore, if we define

the condition Xn = Vn/Un holds throughout the process. Furthermore, (15) is
precisely the transformation made on the variables u and v in Euclid’s
algorithm (see Algorithm 4.5.2A, step A2). For example, since = //3, 1, 1,
1, 2//, we know that Euclid’s algorithm applied to u = 29 and v = 8 will
require exactly five division steps, and the quotients ⌊u/v⌋ in step A2 will be
successively 3, 1, 1, 1, and 2. The last partial quotient An must always be 2
or more when Xn = 0 and n ≥ 1, since Xn − 1 is less than unity.

From this correspondence with Euclid’s algorithm we can see that the
regular continued fraction for X terminates at some step with Xn = 0 if and

only if X is rational; for it is obvious that Xn cannot be zero if X is irrational,
and, conversely, we know that Euclid’s algorithm always terminates. If the
partial quotients obtained during Euclid’s algorithm are A1, A2, . . . , An, then
we have, by (5),

This formula holds also if Euclid’s algorithm is applied for u < v, when A1 =
0. Furthermore, because of relation (8), the continuants Kn − 1(A2, . . . , An)
and Kn(A1, A2, . . . , An) are relatively prime, and the fraction on the right-
hand side of (16) is in lowest terms; therefore

where d = gcd(u, v).
The worst case. We can now apply these observations to determine the
behavior of Euclid’s algorithm in the worst case, or in other words to give an
upper bound on the number of division steps. The worst case occurs when
the inputs are consecutive Fibonacci numbers:
Theorem F. For n ≥ 1, let u and v be integers with u > v > 0 such that
Euclid’s algorithm applied to u and v requires exactly n division steps, and
such that u is as small as possible satisfying these conditions. Then u =
Fn+2 and v = Fn + 1.
Proof. By (17), we must have u = Kn(A1, A2, . . . , An)d, where A1, A2, . . . ,
An, and d are positive integers and An ≥ 2. Since Kn is a polynomial with
nonnegative coefficients, involving all of the variables, the minimum value is
achieved only when A1 = 1, . . . , An − 1 = 1, An = 2, d = 1. Putting these values
in (17) yields the desired result.

This theorem has the historical claim of being the first practical
application of the Fibonacci sequence; since then many other applications of
Fibonacci numbers to algorithms and to the study of algorithms have been
discovered. The result is essentially due to T. F. de Lagny [Mém. Acad. Sci.
11 (Paris, 1733), 363–364], who tabulated the first several continuants and
observed that Fibonacci numbers give the smallest numerator and
denominator for continued fractions of a given length. He did not explicitly
mention gcd calculation, however; the connection between Fibonacci

numbers and Euclid’s algorithm was first pointed out by É. Léger
[Correspondance Math. et Physique 9 (1837), 483–485.]

Shortly afterwards, P. J. É. Finck [Traité Élémentaire d’Arithmétique
(Strasbourg: 1841), 44] proved by another method that gcd(u, v) takes at
most 2 lg v+1 steps, when u > v > 0; and G. Lamé [Comptes Rendus Acad.
Sci. 19 (Paris, 1844), 867–870] improved this to 5⌈log10(v + 1)⌉. Full details
about these pioneering studies in the analysis of algorithms appear in an
interesting review by J. O. Shallit, Historia Mathematica 21 (1994), 401–
419. A more precise estimate of the worst case is, however, a direct
consequence of Theorem F:
Corollary L. If 0 ≤ v < N, the number of division steps required when
Algorithm 4.5.2A is applied to u and v is at most ⌊logφ (3 – φ)N⌋.
Proof. After step A1 we have v > u mod v. Therefore by Theorem F, the
maximum number of steps, n, occurs when v = Fn + 1 and u mod v = Fn. Since
Fn + 1 < N, we have (see Eq. 1.2.8–(15)); thus

.
The quantity logφ (3 – φ)N is approximately equal to 2.078 ln N + .6723 ≈
4.785 log10 N + .6723. See exercises 31, 36, and 38 for extensions of
Theorem F.
An approximate model. Now that we know the maximum number of division
steps that can occur, let us attempt to find the average number. Let T(m, n) be
the number of division steps that occur when u = m and v = n are input to
Euclid’s algorithm. Thus

Let Tn be the average number of division steps when v = n and when u is
chosen at random; since only the value of u mod v affects the algorithm after
the first division step, we have

For example, T(0, 5) = 1, T(1, 5) = 2, T(2, 5) = 3, T(3, 5) = 4, T(4, 5) = 3, so

Our goal is to estimate Tn for large n. One idea is to try an
approximation suggested by R. W. Floyd: We might assume that, for 0 ≤ k <
n, the value of n is essentially “random” modulo k, so that we can set

Then Tn ≈ Sn, where the sequence 〈Sn〉 is the solution to the recurrence
relation

This recurrence is easy to solve by noting that

hence Sn is , a harmonic number. The
approximation Tn ≈ Sn now suggests that we might have Tn ≈ ln n + O(1).

Comparison of this approximation with tables of the true value of Tn
show, however, that ln n is too large; Tn does not grow this fast. Our tentative
assumption that n is random modulo k must therefore be too pessimistic. And
indeed, a closer look shows that the average value of n mod k is less than the
average value of k, in the range 1 ≤ k ≤ n:

(see exercise 4.5.2–10(c)). This is only about .1775n, not .25n; so the value
of n mod k tends to be smaller than Floyd’s model predicts, and Euclid’s
algorithm works faster than we might expect.
A continuous model. The behavior of Euclid’s algorithm with v = N is
essentially determined by the behavior of the regular continued fraction
process when X = 0/N, 1/N, . . . , (N − 1)/N. When N is very large, we
therefore want to study the behavior of regular continued fractions when X is
essentially a random real number, uniformly distributed in [0 . . 1). Consider
the distribution function

given a uniform distribution of X = X0. By the definition of regular continued
fractions, we have F0(x) = x, and

If the distributions F0(x), F1(x), . . . defined by these formulas approach a
limiting distribution F∞(x) = F(x), we will have

(An analogous relation, 4.5.2–(36), arose in our study of the binary gcd
algorithm.) One function that satisfies (24) is F(x) = logb(1+x), for any base
b > 1; see exercise 19. The further condition F(1) = 1 implies that we should
take b = 2. Thus it is reasonable to make a guess that F(x) = lg(1 + x), and
that Fn(x) approaches this behavior.

We might conjecture, for example, that ; let
us see how close comes to this value for small n. We have

, and

(See Table 3 of Appendix A.) The power series expansion

makes it feasible to compute the numerical value

We’re getting closer to 0.58496; but it is not immediately clear how to get a
good estimate of for n = 3, much less for really large values of n.

The distributions Fn(x) were first studied by C. F. Gauss, who first
thought of the problem on the 5th day of February in 1799. His notebook for
1800 lists various recurrence relations and gives a brief table of values,
including the (inaccurate) approximation . After
performing these calculations, Gauss wrote, “Tam complicatæ evadunt, ut
nulla spes superesse videatur”; i.e., “They come out so complicated that no
hope appears to be left.” Twelve years later, he wrote a letter to Laplace in
which he posed the problem as one he could not resolve to his satisfaction.
He said, “I found by very simple reasoning that, for n infinite, Fn(x) = log(1
+ x)/ log 2. But the efforts that I made since then in my inquiries to assign
Fn(x) – log(1 + x)/ log 2 for very large but not infinite values of n were
fruitless.” He never published his “very simple reasoning,” and it is not
completely clear that he had found a rigorous proof. [See Gauss’s Werke,
vol. 101, 552–556.] More than 100 years went by before a proof was finally
published, by R. O. Kuz’min [Atti del Congresso Internazionale dei
Matematici 6 (Bologna, 1928), 83–89], who showed that

for some positive constant A. The error term was improved to O(e−An) by
Paul Lévy shortly afterwards [Bull. Soc. Math. de France 57 (1929), 178–
194]*; but Gauss’s problem, namely to find the asymptotic behavior of Fn(x)
– lg(1 + x), was not really resolved until 1974, when Eduard Wirsing

published a beautiful analysis of the situation [Acta Arithmetica 24 (1974),
507–528]. We shall study the simplest aspects of Wirsing’s approach here,
since his method is an instructive use of linear operators.

* An exposition of Lévy’s interesting proof appeared in the first edition of this book.

If G is any function of x defined for 0 ≤ x ≤ 1, let SG be the function
defined by

Thus, S is an operator that changes one function into another. In particular, by
(23) we have Fn + 1(x) = SFn(x), hence

(In this discussion Fn stands for a distribution function, not for a Fibonacci
number.) Notice that S is a “linear operator”; that is, S(cG) = c(SG) for all
constants c, and S(G1 + G2) = SG1 + SG2.

Now if G has a bounded first derivative, we can differentiate (27) term
by term to show that

hence SG also has a bounded first derivative. (Term-by-term differentiation
of a convergent series is justified when the series of derivatives is uniformly
convergent; see, for example, K. Knopp, Theory and Application of Infinite
Series (Glasgow: Blackie, 1951), §47.)

Let H = SG, and let g(x) = (1 + x)G′(x), h(x) = (1 + x)H′(x). It follows
that

In other words, h = T g, where T is the linear operator defined by

Continuing, we see that if g has a bounded first derivative, we can
differentiate term by term to show that T g does also:

There is consequently a third linear operator, U, such that (T g)′ = –U(g′),
namely

What is the relevance of all this to our problem? Well, if we set

we have

the effect of the lg(1 + x) term disappears, after these transformations.
Furthermore, since Fn = SnF0, we have fn = T nf0 and .
Both Fn and fn have bounded derivatives, by induction on n. Thus (34)
becomes

Now F0(x) = x, f0(x) = 1 + x, and is the constant function 1. We are
going to show that the operator Un takes the constant function into a function
with very small values, hence must be very small for 0 ≤ x ≤ 1.
Finally we can clinch the argument by showing that Rn(x) itself is small:
Since we have Rn(0) = Rn(1) = 0, it follows from a well-known interpolation
formula (see exercise 4.6.4–15 with x0 = 0, x1 = x, x2 = 1) that

for some function ξn(x), where 0 ≤ ξn(x) ≤ 1 when 0 ≤ x ≤ 1.

Thus everything hinges on our being able to prove that Un produces
small function values, where U is the linear operator defined in (31). Notice
that U is a positive operator, in the sense that Uϕ(x) ≥ 0 for all x if ϕ(x) ≥ 0
for all x. It follows that U is order-preserving: If ϕ1(x) ≤ ϕ2(x) for all x then
we have Uϕ1(x) ≤ Uϕ2(x) for all x.

One way to exploit this property is to find a function ϕ for which we can
calculate Uϕ exactly, and to use constant multiples of this function to bound
the ones that we are really interested in. First let us look for a function g such
that T g is easy to compute. If we consider functions defined for all x ≥ 0,
instead of only on [0 . . 1], it is easy to remove the summation from (27) by
observing that

when G is continuous. Since T((1 + x)G′) = (1 = x)(SG)′, it follows (see
exercise 20) that

If we set T g(x) = 1/(1 + x), we find that the corresponding value of g(x) is 1
+ x−1/(1+x). Let ϕ(x) = g′(x) = 1+1/(1+x)2, so that Uϕ(x) = –(T g)′(x) = 1/(1
+ x)2; this is the function ϕ we have been looking for.

For this choice of ϕ we have 2 ≤ ϕ(x)/Uϕ(x) = (1+x)2+1 ≤ 5 for 0 ≤ x ≤
1, hence

By the positivity of U and ϕ we can apply U to this inequality again,
obtaining ; and after n − 1
applications we have

for this particular ϕ. Let be the constant function; then
for 0 ≤ x ≤ 1 we have χ ≤ ϕ ≤ 2χ, hence

It follows by (35) that

hence by (32) and (36) we have proved the following result:
Theorem W. The distribution Fn(x) equals lg(1 + x) + O(2−n) as n → ∞. In
fact, Fn(x) – lg(1 + x) lies between

 and
, for 0 ≤ x ≤ 1.

With a slightly different choice of ϕ, we can obtain tighter bounds (see
exercise 21). In fact, Wirsing went much further in his paper, proving that

where

is a fundamental constant (apparently unrelated to more familiar constants),
and where ψ is an interesting function that is analytic in the entire complex
plane except for the negative real axis from –1 to –∞. Wirsing’s function
satisfies ψ(0) = ψ(1) = 0, ψ′(0) < 0, and Sψ = –λψ; thus by (37) it satisfies
the identity

Furthermore, Wirsing demonstrated that

where c is a constant and n = T(u, v) is the number of iterations when
Euclid’s algorithm is applied to the integers u > v > 0.

A complete solution to Gauss’s problem was found a few years later by
K. I. Babenko [Doklady Akad. Nauk SSSR 238 (1978), 1021–1024], who
used powerful techniques of functional analysis to prove that

for all 0 ≤ x ≤ 1, n ≥ 1. Here |λ2| > |λ3| ≥ |λ4| ≥ ... , and each ψj(z) is an
analytic function in the complex plane except for a cut at [–∞ . . – 1]. The
function ψ2 is Wirsing’s ψ, and λ2 = –λ, while λ3 ≈ 0.10088, λ4 ≈ –0.03550,
λ5 ≈ 0.01284, λ6 ≈ –0.00472, λ7 ≈ 0.00175. Babenko also established further
properties of the eigenvalues λj, proving in particular that they are
exponentially small as j → ∞, and that the sum for j ≥ k in (44) is bounded by
(π2/6)|λk |n−1 min(x, 1 – x). [Further information appears in papers by
Babenko and Yuriev, Doklady Akad. Nauk SSSR 240 (1978), 1273–1276;
Mayer and Roepstorff, J. Statistical Physics 47 (1987), 149–171; 50 (1988),
331–344; D. Hensley, J. Number Theory 49 (1994), 142–182; Daudé,
Flajolet, and Vallée, Combinatorics, Probability and Computing 6 (1997),
397–433; Flajolet and Vallée, Theoretical Comp. Sci. 194 (1998), 1–34.]
The 40-place value of λ in (41) was computed by John Hershberger.
From continuous to discrete. We have now derived results about the
probability distributions for continued fractions when X is a real number
uniformly distributed in the interval [0 . . 1). But a real number is rational
with probability zero—almost all numbers are irrational—so these results do
not apply directly to Euclid’s algorithm. Before we can apply Theorem W to
our problem, some technicalities must be overcome. Consider the following
observation based on elementary measure theory:
Lemma M. Let I1, I2, . . . , J1, J2, . . . be pairwise disjoint intervals
contained in the interval [0 . . 1), and let

Assume that K has measure zero. Let Pn be the set {0/n, 1/n, . . . , (n −
1)/n}. Then

Here μ(I) is the Lebesgue measure of I, namely, ∑k≥1 length(Ik); and |I ∩ Pn|
denotes the number of elements in the set I ∩ Pn.

Proof. Let IN = ∪1≤k≤N Ik and JN = ∪1≤k≤N Jk. Given ε > 0, find N large
enough so that μ(IN) + μ(JN) ≥ 1 – ε, and let

If I is an interval, having any of the forms (a . . b) or [a . . b) or (a . . b] or [a
. . b], it is clear that μ(I) = b – a and

Now let rn = |IN ∩ Pn|, sn = |JN ∩ Pn|, tn = |KN ∩ Pn|; we have

Furthermore rn ≤ |I ∩ Pn| ≤ rn + tn, because IN ⊆ I ⊆ IN ∪ K. Consequently

Given ε, this holds for all n; so limn→∞ rn/n = limn→∞(rn + tn)/n = μ(I).
Exercise 25 shows that Lemma M is not trivial, in the sense that some

rather restrictive hypotheses are needed to prove (45).
Distribution of partial quotients. Now we put Theorem W and Lemma M
together to derive some solid facts about Euclid’s algorithm.
Theorem E. Let pk(a, n) be the probability that the (k + 1)st quotient Ak+1
in Euclid’s algorithm is equal to a, when u = n and when v is equally likely
to be any of the numbers {0, 1, . . . , n − 1}. Then

where Fk(x) is the distribution function (22).

Proof. The set I of all X in [0 . . 1) for which Ak+1 = a is a union of disjoint
intervals, and so is the set J of all X for which Ak+1 ≠ a. Lemma M therefore
applies, with K the set of all X for which Ak+1 is undefined. Furthermore,
Fk(1/a) – Fk(1/(a + 1)) is the probability that 1/(a + 1) < Xk ≤ 1/a, which is
μ(I), the probability that Ak + 1 = a.

As a consequence of Theorems E and W, we can say that a quotient
equal to a occurs with the approximate probability

Thus

Actually, if Euclid’s algorithm produces the quotients A1, A2, . . . , At, the
nature of the proofs above will guarantee this behavior only for Ak when k is
comparatively small with respect to t; the values At−1, At−2, . . . are not
covered by this proof. But we can in fact show that the distribution of the last
quotients At−1, At−2, . . . is essentially the same as the first.

For example, consider the regular continued fraction expansions for the
set of all proper fractions whose denominator is 29:

Several things can be observed in this table.

a) As mentioned earlier, the last quotient is always 2 or more.
Furthermore, we have the obvious identity

which shows how continued fractions whose last quotient is unity are
related to regular continued fractions.

b) The values in the right-hand columns have a simple relationship to the
values in the left-hand columns; can the reader see the correspondence
before reading any further? The relevant identity is

see exercise 9.
c) There is symmetry between left and right in the first two columns: If

//A1, A2, . . . , At// occurs, so does //At, . . . , A2, A1//. This will always
be the case (see exercise 26).

d) If we examine all of the quotients in the table, we find that there are 96
in all, of which percent are equal to 1, percent
are equal to 2, percent are equal to 3; this agrees reasonably
well with the probabilities listed above.

The number of division steps. Let us now return to our original problem and
investigate Tn, the average number of division steps when v = n. (See Eq.
(19).)Here are some sample values of Tn:

Notice the somewhat erratic behavior; Tn tends to be larger than its
neighbors when n is prime, and it is correspondingly lower when n has many
divisors. (In this list, 97, 101, 103, 997, and 49999 are primes; 10001 = 73 ·
137; 49998 = 2 · 3 · 13 · 641; 50001 = 3 · 7 · 2381; 99999 = 3 · 3 · 41 ·
271; and 100001 = 11 · 9091.) It is not difficult to understand why this
happens: If gcd(u, v) = d, Euclid’s algorithm applied to u and v behaves
essentially the same as if it were applied to u/d and v/d. Therefore, when v =

n has several divisors, there are many choices of u for which n behaves as if
it were smaller.

Accordingly let us consider another quantity, τn, which is the average
number of division steps when v = n and when u is relatively prime to n.
Thus

It follows that

Here is a table of τn for the same values of n considered above:

Clearly τn is much more well-behaved than Tn, and it should be more
susceptible to analysis. Inspection of a table of τn for small n reveals some
curious anomalies; for example, τ50 = τ100 and τ60 = τ120. But as n grows, the
values of τn behave quite regularly indeed, as the table indicates, and they
show no significant relation to the factorization properties of n. If these
values τn are plotted as functions of ln n on graph paper, for the values of τn
given above, they lie very nearly on the straight line

We can account for this behavior if we study the regular continued
fraction process a little further. In Euclid’s algorithm as expressed in (15) we
have

since Uk+1 = Vk; therefore if U = U0 and V = V0 are relatively prime, and if
there are t division steps, we have

Setting U = N and V = m < N, we find that

We know the approximate distribution of X0, X1, X2, . . . , so we can use this
equation to estimate

Returning to the formulas preceding Theorem W, we find that the average
value of ln Xn, when X0 is a real number uniformly distributed in [0 . . 1), is

where fn(x) is defined in (33). Now

using the facts we have derived earlier (see exercise 23); hence the average
value of ln Xn is very well approximated by

By (51) we therefore expect to have the approximate formula

that is, t should be approximately equal to ((12 ln 2)/π2) ln N. This constant
(12 ln 2)/π2 = 0.842765913 . . . agrees perfectly with the empirical formula
(50) obtained earlier, so we have good reason to believe that the formula

indicates the true asymptotic behavior of τn as n → ∞.
If we assume that (54) is valid, we obtain the formula

where Λ(d) is von Mangoldt’s function defined by the rules

(See exercise 27.) For example,

the exact value of T100 is 4.56.
We can also estimate the average number of division steps when u and v

are both uniformly distributed between 1 and N, by calculating

Assuming formula (55), exercise 29 shows that this sum has the form

and empirical calculations with the same numbers used to derive Eq. 4.5.2–
(65) show good agreement with the formula

Of course we have not yet proved anything about Tn and τn in general; so far
we have only been considering plausible reasons why certain formulas ought
to hold. Fortunately it is now possible to supply rigorous proofs, based on a
careful analysis by several mathematicians.

The leading coefficient 12π−2 ln 2 in the formulas above was established
first, in independent studies by Gustav Lochs, John D. Dixon, and Hans A.
Heilbronn. Lochs [Monatshefte für Math. 65 (1961), 27–52] derived a
formula equivalent to the fact that (57) equals (12π−2 ln 2) ln N + a +
O(N−1/2), where a ≈ 0.065. Unfortunately his paper remained essentially
unknown for many years, perhaps because it computed only an average value
from which we cannot derive definite information about Tn for any particular
n. Dixon [J. Number Theory 2 (1970), 414–422] developed the theory of the
Fn(x) distributions to show that individual partial quotients are essentially
independent of each other in an appropriate sense, and proved that for all
positive ∊ we have |T (m, n) – (12π− 2 ln 2) ln n| < (ln n)(1/2)+∊ except for exp
(–c(∊)(log N)∊/2)N2 values of m and n in the range 1 ≤ m < n ≤ N, where
c(∊) > 0. Heilbronn’s approach was completely different, working entirely
with integers instead of continuous variables. His idea, which is presented in
slightly modified form in exercises 33 and 34, is based on the fact that τn can
be related to the number of ways to represent n in a certain manner.
Furthermore, his paper [Number Theory and Analysis, edited by Paul Turán
(New York: Plenum, 1969), 87–96] shows that the distribution of individual
partial quotients 1, 2, . . . that we have discussed above actually applies to
the entire collection of partial quotients belonging to the fractions having a
given denominator; this is a sharper form of Theorem E. A still sharper result
was obtained several years later by J. W. Porter [Mathematika 22 (1975),
20–28], who established that

where C ≈ 1.46707 80794 is the constant

see D. E. Knuth, Computers and Math. with Applic. 2 (1976), 137–139.
Thus the conjecture (50) is fully proved. Using (60), Graham H. Norton [J.
Symbolic Computation 10 (1990), 53–58] extended the calculations of
exercise 29 to confirm Lochs’s work, proving that the empirical constant
0.06 in (59) is actually

D. Hensley proved in J. Number Theory 49 (1994), 142–182, that the
variance of τn is proportional to log n.

The average running time for Euclid’s algorithm on multiple-precision
integers, using classical algorithms for arithmetic, was shown to be of order

by G. E. Collins, in SICOMP 3 (1974), 1–10.
Summary. We have found that the worst case of Euclid’s algorithm occurs
when its inputs u and v are consecutive Fibonacci numbers (Theorem F); the
number of division steps when 0 ≤ v < N will never exceed ⌈4.8 log10 N –
0.32⌉. We have determined the frequency of the values of various partial
quotients, showing, for example, that the division step finds ⌊u/v⌋ = 1 about
41 percent of the time (Theorem E). And, finally, the theorems of Heilbronn
and Porter prove that the average number Tn of division steps when v = n is
approximately

minus a correction term based on the divisors of n as shown in Eq. (55).

Exercises

 1. [20] Since the quotient ⌊u/v⌋ is equal to unity more than 40 percent of
the time in Algorithm 4.5.2A, it may be advantageous on some computers to
make a test for this case and to avoid the division when the quotient is unity.
Is the following MIX program for Euclid’s algorithm more efficient than
Program 4.5.2A?

2. [M21] Evaluate the matrix product

.

3. [M21] What is the value of det ?

4. [M20] Prove Eq. (8).
5. [HM25] Let x1, x2, . . . be a sequence of real numbers that are each

greater than some positive real number ∊. Prove that the infinite continued
fraction //x1, x2, . . . // = limn→∞ //x1, . . . , xn// exists. Show also that //x1, x2,
. . . // need not exist if we assume only that xj > 0 for all j.

6. [M23] Prove that the regular continued fraction expansion of a number
is unique in the following sense: If B1, B2, . . . are positive integers, then the
infinite continued fraction //B1, B2, . . . // is an irrational number X between 0
and 1 whose regular continued fraction has An = Bn for all n ≥ 1; and if B1, . .
. , Bm are positive integers with Bm > 1, then the regular continued fraction
for X = //B1, . . . , Bm// has An = Bn for 1 ≤ n ≤ m.

7. [M26] Find all permutations p(1)p(2) . . . p(n) of the integers {1, 2, . . .
, n} such that Kn(x1, x2, . . . , xn) = Kn(xp(1), xp(2), . . . , xp(n)) is an identity for
all x1, x2, . . . , xn.

8. [M20] Show that –1/Xn = //An, . . . , A1, –X//, whenever Xn is defined,
in the regular continued fraction process.

9. [M21] Show that continued fractions satisfy the following identities:
a) //x1, . . . , xn// = //x1, . . . , xk + //xk+1, . . . , xn// //, 1 ≤ k ≤ n;

b) //0, x1, x2, . . . , xn// = x1 + //x2, . . . , xn//, n ≥ 1;
c) //x1, . . . , xk−1, xk, 0, xk+1, xk+2, . . . , xn// = //x1, . . . , xk−1, xk + xk+1,

xk+2, . . . , xn//, 1 ≤ k < n;
d) 1 – //x1, x2, . . . , xn// = //1, x1 – 1, x2, . . . , xn//, n ≥ 1.

10. [M28] By the result of exercise 6, every irrational real number X has a
unique regular continued fraction representation of the form

where A0 is an integer and A1, A2, A3, . . . are positive integers. Show that if
X has this representation then the regular continued fraction for 1/X is

for suitable integers B0, B1, . . . , Bm. (The case A0 < 0 is, of course, the
most interesting.) Explain how to determine the B’s in terms of A0, A1, A2,
A3, and A4.
11. [M30] (J.-A. Serret, 1850.) Let X = A0 + //A1, A2, A3, A4, . . . // and Y =
B0 + //B1, B2, B3, B4, . . . // be the regular continued fraction
representations of two real numbers X and Y,in the sense of exercise 10.
Show that these representations “eventually agree,” in the sense that Am+k =
Bn+k for some m and n and for all k ≥ 0, if and only if we have X = (qY +
r)/(sY + t) for some integers q, r, s, t with |qt – rs| = 1. (This theorem is the
analog, for continued fraction representations, of the simple result that the
representations of X and Y in the decimal system eventually agree if and
only if X = (10qY + r)/10s for some integers q, r, and s.)

 12. [M30] A quadratic irrationality is a number of the form
, where D, U, and V are integers, D > 0, V ≠ 0, and D is not

a perfect square. We may assume without loss of generality that V is a
divisor of D – U2, for otherwise the number may be rewritten as (

).
a) Prove that the regular continued fraction expansion (in the sense of

exercise 10) of a quadratic irrationality is
obtained by the following formulas:

b) Prove that , , for all n > N, where
N is some integer depending on X; hence the regular continued fraction
representation of every quadratic irrationality is eventually periodic.
[Hint: Show that

and use Eq. (5) to prove that is positive when n is
large.]

c) Letting pn = Kn+1(A0, A1, . . . , An) and qn = Kn(A1, . . . , An), prove the
identity

d) Prove that the regular continued fraction representation of an irrational
number X is eventually periodic if and only if X is a quadratic
irrationality. (This is the continued fraction analog of the fact that the
decimal expansion of a real number X is eventually periodic if and only
if X is rational.)

13. [M40] (J. Lagrange, 1767.) Let f(x) = anxn + ... + a0, an > 0, be a
polynomial having exactly one real root ξ > 1, where ξ is irrational and f′
(ξ) ≠ 0. Experiment with a computer program to find the first thousand or
so partial quotients of ξ, using the following algorithm (which essentially
involves only addition):

L1. Set A ← 1.
L2. For k = 0, 1, . . . , n − 1 (in this order) and for j = n − 1, . . . , k (in

this order), set aj ← aj+1 + aj. (This step replaces f(x) by g(x) = f(x
+ 1), a polynomial whose roots are one less than those of f.)

L3. If an + an−1 + ... + a0 < 0, set A ← A + 1 and return to L2.
L4. Output A (which is the value of the next partial quotient). Replace

the coefficients (an, an–1, . . . , a0) by (–a0, –a1, . . . , –an) and return
to L1. (This step replaces f(x) by a polynomial whose roots are
reciprocals of those of f.)

For example, starting with f(x) = x3 – 2, the algorithm will output “1”
(changing f(x) to x3 – 3x2 – 3x − 1); then “3” (changing f(x) to 10x3 – 6x2 –
6x − 1); etc.
14. [M22] (A. Hurwitz, 1891.) Show that the following rules make it
possible to find the regular continued fraction expansion of 2X, given the

partial quotients of X:

Use this idea to find the regular continued fraction expansion of e, given
the expansion of e in (13).

 15. [M31] (R. W. Gosper.) Generalizing exercise 14, design an algorithm
that computes the continued fraction X0 + //X1, X2, . . . // for (ax + b)/(cx +
d), given the continued fraction x0 + //x1, x2, . . . // for x, and given integers
a, b, c, d with ad ≠ bc. Make your algorithm an “online coroutine” that
outputs as many Xk as possible before inputting each xj. Demonstrate how
your algorithm computes (97x + 39)/(–62x – 25) when x = –1 + //5, 1, 1, 1,
2, 1, 2//.
16. [HM30] (L. Euler, 1731.) Let f0(z) = (ez – e−z)/(ez + e−z) = tanh z, and
let fn+1(z) = 1/fn(z) – (2n + 1)/z. Prove that, for all n, fn(z) is an analytic
function of the complex variable z in a neighborhood of the origin, and it
satisfies the differential equation . Use
this fact to prove that

then apply Hurwitz’s rule (exercise 14) to prove that

(This notation denotes the infinite continued fraction // 1, n − 1, 1, 1, 3n −
1, 1, 1, 5n − 1, 1, . . . //.) Also find the regular continued fraction
expansion of e−2/n when n > 0 is odd.

 17. [M23] (a) Prove that //x1, –x2// = //x1 – 1, 1, x2 – 1//. (b) Generalize
this identity, obtaining a formula for //x1, –x2, x3, –x4, x5, –x6, . . . , x2n−1, –
x2n// in which all partial quotients are positive integers when the x’s are
large positive integers. (c) The result of exercise 16 implies that tan 1 =
//1, –3, 5, –7, . . . //. Find the regular continued fraction expansion of tan 1.
18. [M25] Show that //a1, a2, . . . , am, x1, a1, a2, . . . , am, x2, a1, a2, . . . ,
am, x3, . . . // – //am, . . . , a2, a1, x1, am, . . . , a2, a1, x2, am, . . . , a2, a1, x3, .

. . // does not depend on x1, x2, x3, Hint: Multiply both continued
fractions by Km(a1, a2, . . . , am).
19. [M20] Prove that F(x) = logb(1 + x) satisfies Eq. (24).

20. [HM20] Derive (38) from (37).
21. [HM29] (E. Wirsing.) The bounds (39) were obtained for a function ϕ
corresponding to g with Tg(x) = 1/(x + 1). Show that the function
corresponding to Tg(x) = 1/(x + c) yields better bounds, when c > 0 is an
appropriate constant.
22. [HM46] (K. I. Babenko.) Develop efficient means to calculate accurate
approximations to the quantities λj and Ψj(x) in (44), for small j ≥ 3 and
for 0 ≤ x ≤ 1.
23. [HM23] Prove (53), using results from the proof of Theorem W.
24. [M22] What is the average value of a partial quotient An in the regular
continued fraction expansion of a random real number?
25. [HM25] Find an example of a set I = I1 ∪ I2 ∪ I3 ∪ ... ⊆ [0 . . 1], where
the I’s are disjoint intervals, for which (45) does not hold.
26. [M23] Show that if the numbers {1/n, 2/n, . . . , ⌊n/2⌋/n} are expressed
as regular continued fractions, the result is symmetric between left and
right, in the sense that //At, . . . , A2, A1// appears whenever //A1, A2, . . . ,
At// does.
27. [M21] Derive (55) from (49) and (54).
28. [M23] Prove the following identities involving the three number-
theoretic functions ϕ(n), μ(n), Λ(n):

a)

b)

c)

29. [M23] Assuming that Tn is given by (55), show that (57) equals (58).

 30. [HM32] The following “greedy” variant of Euclid’s algorithm is often
suggested: Instead of replacing v by u mod v during the division step,
replace it by |(u mod v) – v| if u mod v > v. Thus, for example, if u = 26
and v = 7, we have gcd(26, 7) = gcd(–2, 7) = gcd(7, 2); –2 is the
remainder of smallest magnitude when multiples of 7 are subtracted from
26. Compare this procedure with Euclid’s algorithm; estimate the number
of division steps this method saves, on the average.

 31. [M35] Find the worst case of the modification of Euclid’s algorithm
suggested in exercise 30: What are the smallest inputs u > v > 0 that
require n division steps?
32. [20] (a) A Morse code sequence of length n is a string of r dots and s
dashes, where r + 2s = n. For example, the Morse code sequences of
length 4 are

Noting that the continuant K4(x1, x2, x3, x4) is x1x2x3x4 + x1x2 + x1x4 + x3x4
+ 1, find and prove a simple relation between Kn(x1, . . . , xn) and Morse
code sequences of length n. (b) (L. Euler, Novi Comm. Acad. Sci. Pet. 9
(1762), 53–69.) Prove that

33. [M32] Let h(n) be the number of representations of n in the form

a) Show that if the conditions are relaxed to allow x′ = y′, the number of
representations is h(n) + ⌊(n − 1)/2⌋.

b) Show that for fixed y > 0 and 0 < t ≤ y, where t ⊥ y, and for each fixed
x′ in the range 0 < x′ < n/(y + t) such that x′t ≡ n (modulo y), there is
exactly one representation of n satisfying the restrictions of (a) and the
condition x ≡ t (modulo y).

c) Consequently, h(n) = ∑⌈(n/(y + t) – t′) /y⌉ – ⌊(n − 1)/2⌋, where the sum
is over all positive integers y, t, t′ such that t ⊥ y, t ≤ y, t′ ≤ y, tt′ ≡ n
(modulo y).

d) Show that each of the h(n) representations can be expressed uniquely
in the form

where m, k, d, and the xj are positive integers with x1 ≥ 2, xm+k ≥ 2,
and d is a divisor of n. The identity of exercise 32 now implies that
n/d = Km+k(x1, . . . , xm+k). Conversely, any given sequence of positive
integers x1, . . . , xm+k such that x1 ≥ 2, xm+k ≥ 2, and Km+k(x1, . . . ,
xm+k) divides n, corresponds in this way to m+k−1 representations of
n.

e) Therefore nTn = ⌊(5n – 3)/2⌋ + 2h(n).
34. [HM40] (H. Heilbronn.) Let hd(n) be the number of representations of
n as in exercise 33 such that xd < x′, plus half the number of
representations with xd = x′.

a) Let g(n) be the number of representations without the requirement that
x ⊥ y. Prove that

b) Generalizing exercise 33(b), show that for d ≥ 1, hd(n) = ∑(n/(y(y +
t))) + O(n), where the sum is over all integers y and t such that t ⊥ y
and .

c) Show that ∑(y/(y + t)) = ϕ(y) ln 2 + O(σ–1(y)), where the sum is over
the range. 0 < t ≤ y, t ⊥ y, and where σ–1(y) = ∑d\y (1/d).

d) Show that .
e) Hence we have the asymptotic formula

35. [HM41] (A. C. Yao and D. E. Knuth.) Prove that the sum of all partial
quotients for the fractions m/n, for 1 ≤ m < n, is equal to 2(∑⌊x/y⌋ +
⌊n/2⌋), where the sum is over all representations n = xx′ + yy′ satisfying
the conditions of exercise 33(a). Show that ∑⌊x/y⌋ = 3π− 2n(ln n)2 + O(n
log n (log log n)2), and apply this to the “ancient” form of Euclid’s
algorithm that uses only subtraction instead of division.

36. [M25] (G. H. Bradley.) What is the smallest value of un such that the
calculation of gcd(u1, . . . , un) by Algorithm 4.5.2C requires N divisions,
if Euclid’s algorithm is used throughout? Assume that N ≥ n ≥ 3.
37. [M38] (T. S. Motzkin and E. G. Straus.) Let a1, . . . , an be positive
integers. Show that max Kn(ap(1), . . . , ap(n)), over all permutations p(1) . .
. p(n) of {1, 2, . . . , n}, occurs when ap(1) ≥ ap(n) ≥ ap(2) ≥ ap(n−1) ≥ ... ; and
the minimum occurs when ap(1) ≤ ap(n) ≤ ap(3) ≤ ap(n−2) ≤ ap(5) ≤ ... ≤ ap(6) ≤
ap(n−3) ≤ ap(4) ≤ ap(n−1) ≤ ap(2).

38. [M25] (J. Mikusiński.) Let L(n) = maxm≥0 T(m, n). Theorem F shows
that ; prove that

.
 39. [M25] (R. W. Gosper.) If a baseball player’s batting average is .334,

what is the smallest possible number of times he has been at bat? [Note for
non-baseball-fans: Batting average = (number of hits)/(times at bat),
rounded to three decimal places.]

 40. [M28] (The Stern–Brocot tree.) Consider an infinite binary tree in
which each node is labeled with the fraction (pl + pr)/(ql + qr), where pl/ql
is the label of the node’s nearest left ancestor and pr/qr is the label of the
node’s nearest right ancestor. (A left ancestor is one that precedes a node
in symmetric order, while a right ancestor follows the node. See Section
2.3.1 for the definition of symmetric order.) If the node has no left
ancestors, pl/ql = 0/1; if it has no right ancestors, pr/qr = 1/0. Thus the label
of the root is 1/1; the labels of its two children are 1/2 and 2/1; the labels
of the four nodes on level 2 are 1/3, 2/3, 3/2, and 3/1, from left to right; the
labels of the eight nodes on level 3 are 1/4, 2/5, 3/5, 3/4, 4/3, 5/3, 5/2, 4/1;
and so on.

Prove that p is relatively prime to q in each label p/q; furthermore, the
node labeled p/q precedes the node labeled p′/q′ in symmetric order if and
only if the labels satisfy p/q < p′/q′. Find a connection between the
continued fraction for the label of a node and the path to that node, thereby
showing that each positive rational number appears as the label of exactly
one node in the tree.

41. [M40] (J. Shallit, 1979.) Show that the regular continued fraction
expansion of

contains only 1s and 2s and has a fairly simple pattern. Prove that the
partial quotients of Liouville’s numbers ∑n≥1 l−n! also have a regular
pattern, when l is any integer ≥ 2. [The latter numbers, introduced by J.
Liouville in J. de Math. Pures et Appl. 16 (1851), 133–142, were the first
explicitly defined numbers to be proved transcendental. The former
number and similar constants were first proved transcendental by A. J.
Kempner, Trans. Amer. Math. Soc. 17 (1916), 476–482.]
42. [M30] (J. Lagrange, 1798.) Let X have the regular continued fraction
expansion //A1, A2, . . . //, and let qn = Kn(A1, . . . , An). Let ǁxǁ denote the
distance from x to the nearest integer, namely minp |x – p|. Show that ǁqXǁ ≥
ǁqn−1Xǁ for 1 ≤ q < qn. (Thus the denominators qn of the so-called
convergents pn/qn = //A1, . . . , An// are the “record-breaking” integers that
make ǁqXǁ achieve new lows.)
43. [M30] (D. W. Matula.) Show that the “mediant rounding” rule for fixed
slash or floating slash numbers, Eq. 4.5.1–(1), can be implemented simply
as follows, when the number x > 0 is not representable: Let the regular
continued fraction expansion of x be a0 + //a1, a2, . . . //, and let pn =
Kn+1(a0, . . . , an), qn = Kn(a1, . . . , an). Then round(x) = (pi/qi), where
(pi/qi) is representable but (pi+1/qi+1) is not. [Hint: See exercise 40.]
44. [M25] Suppose we are doing fixed slash arithmetic with mediant
rounding, where the fraction (u/u′) is representable if and only if |u| < M
and 0 ≤ u′ < N and u ⊥ u′. Prove or disprove the identity ((u/u′) ⊕ (v/v′))
⊖ (v/v′) = (u/u′) for all representable (u/u′) and (v/v′), provided that

 and no overflow occurs.
45. [M25] Show that Euclid’s algorithm (Algorithm 4.5.2A) applied to two
n-bit binary numbers requires O(n2) units of time, as n → ∞. (The same
upper bound obviously holds for Algorithm 4.5.2B.)
46. [M43] Can the upper bound O(n2) in exercise 45 be decreased, if
another algorithm for calculating the greatest common divisor is used?

47. [M40] Develop a computer program to find as many partial quotients
of x as possible, when x is a real number given with high precision. Use
your program to calculate the first several thousand partial quotients of
Euler’s constant γ, which can be calculated as explained by D. W.
Sweeney in Math. Comp. 17 (1963), 170–178. (If γ is a rational number,
you might discover its numerator and denominator, thereby resolving a
famous problem in mathematics. According to the theory in the text, we
expect to get about 0.97 partial quotients per decimal digit, when the given
number is random. Multiprecision division is not necessary; see Algorithm
4.5.2L and the article by J. W. Wrench, Jr. and D. Shanks, Math. Comp. 20
(1966), 444–447.)
48. [M21] Let T0 = (1, 0, u), T1 = (0, 1, v), . . . , Tn+1 = ((–1)n+1v/d, (–
1)nu/d, 0) be the sequence of vectors computed by Algorithm 4.5.2X (the
extended Euclidean algorithm), and let //a1, . . . , an// be the regular
continued fraction for v/u. Express Tj in terms of continuants involving a1, .
. . , an, for 1 < j ≤ n.

49. [M33] By adjusting the final iteration of Algorithm 4.5.2X so that an is
optionally replaced by two partial quotients (an – 1, 1), we can assume
that the number of iterations, n, has a given parity. Continuing the previous
exercise, let λ and μ be arbitrary positive real numbers and let

, where d = gcd(u, v). Prove that if n is even, and if Tj = (xj,
yj, zj), we have min .

 50. [M25] Given an irrational number α ∊ (0 . . 1) and real numbers β and
γ with 0 ≤ β < γ < 1, let f(α, β, γ) be the smallest nonnegative integer n
such that β ≤ αn mod 1 < γ. (Such an integer exists because of Weyl’s
theorem, exercise 3.5–22.) Design an algorithm to compute f(α, β, γ).

 51. [M30] (Rational reconstruction.) The number 28481 turns out to be
equal to 41/316 (modulo 199999), in the sense that 316 · 28481 ≡ 41. How
could a person discover this? Given integers a and m with m > a > 1,
explain how to find integers x and y such that ax ≡ y (modulo m), x ⊥ y,

, and or to determine that no such x and y
exist. Can there be more than one solution?

4.5.4. Factoring into Primes
Several of the computational methods we have encountered in this book rest
on the fact that every positive integer n can be expressed in a unique way in
the form

where each pk is prime. (When n = 1, this equation holds for t = 0.) It is
unfortunately not a simple matter to find this prime factorization of n, or to
determine whether or not n is prime. So far as anyone knows, it is a great
deal harder to factor a large number n than to compute the greatest common
divisor of two large numbers m and n; therefore we should avoid factoring
large numbers whenever possible. But several ingenious ways to speed up
the factoring process have been discovered, and we will now investigate
some of them. [A comprehensive history of factoring before 1950 has been
compiled by H. C. Williams and J. O. Shallit, Proc. Symp. Applied Math. 48
(1993), 481–531.]
Divide and factor. First let us consider the most obvious algorithm for
factorization: If n > 1, we can divide n by successive primes p = 2, 3, 5, . . .
until discovering the smallest p for which n mod p = 0. Then p is the smallest
prime factor of n, and the same process may be applied to n ← n/p in an
attempt to divide this new value of n by p and by higher primes. If at any
stage we find that n mod p ≠ 0 but ⌊n/p⌋ ≤ p, we can conclude that n is
prime; for if n is not prime, then by (1) we must have , but p1 > p
implies that ≥ (p + 1)2 > p(p + 1) > p2 + (n mod p) ≥ ⌊n/p⌋p + (n mod p)
= n. This leads us to the following procedure:
Algorithm A (Factoring by division). Given a positive integer N, this
algorithm finds the prime factors p1 ≤ p2 ≤ ... ≤ pt of N as in Eq. (1). The
method makes use of an auxiliary sequence of trial divisors

which includes all prime numbers ≤ (and possibly values that are not
prime, if convenient). The sequence of d’s must also include at least one
value such that dk ≥ .

A1. [Initialize.] Set t ← 0, k ← 0, n ← N. (During this algorithm the
variables t, k, n are related by the following condition: “n = N/p1. . . pt,

and n has no prime factors less than dk.”)
A2. [n = 1?] If n = 1, the algorithm terminates.
A3. [Divide.] Set q ← ⌊n/dk⌋, r ← n mod dk. (Here q and r are the

quotient and remainder obtained when n is divided by dk.)
A4. [Zero remainder?] If r ≠ 0, go to step A6.
A5. [Factor found.] Increase t by 1, and set pt ← dk, n ← q. Return to step

A2.
A6. [Low quotient?] If q > dk, increase k by 1 and return to step A3.
A7. [n is prime.] Increase t by 1, set pt ← n, and terminate the algorithm.

As an example of Algorithm A, consider the factorization of the number
N = 25852. We find immediately that N = 2·12926; hence p1 = 2.
Furthermore, 12926 = 2 · 6463, so p2 = 2. But now n = 6463 is not divisible
by 2, 3, 5, . . . , 19; we find that n = 23 · 281, hence p3 = 23. Finally 281 = 12
· 23 + 5 and 12 ≤ 23; hence p4 = 281. The determination of 25852’s factors
has therefore involved a total of 12 division operations; on the other hand, if
we had tried to factor the slightly smaller number 25849 (which is prime), at
least 38 division operations would have been performed. This illustrates the
fact that Algorithm A requires a running time roughly proportional to max(

). (If t = 1, this formula is valid if we adopt the convention p0 =
1.)

Fig. 11. A simple factoring algorithm.

The sequence d0, d1, d2, . . . of trial divisors used in Algorithm A can be
taken to be simply 2, 3, 5, 7, 11, 13, 17, 19, 23, 25, 29, 31, 35, . . . , where
we alternately add 2 and 4 after the first three terms. This sequence contains
all numbers that are not multiples of 2 or 3; it also includes numbers such as
25, 35, 49, etc., which are not prime, but the algorithm will still give the
correct answer. A further savings of 20 percent in computation time can be
made by removing the numbers 30m ± 5 from the list for m ≥ 1, thereby
eliminating all of the spurious multiples of 5. The exclusion of multiples of 7
shortens the list by 14 percent more, etc. A compact bit table can be used to
govern the choice of trial divisors.

If N is known to be small, it is reasonable to have a table of all the
necessary primes as part of the program. For example, if N is less than a
million, we need only include the 168 primes less than a thousand (followed
by the value d168 = 1000, to terminate the list in case N is a prime larger than
9972). Such a table can be set up by means of a short auxiliary program; see,
for example, Algorithm 1.3.2P or exercise 8.

How many trial divisions are necessary in Algorithm A? Let π(x) be the
number of primes ≤ x, so that π(2) = 1, π(10) = 4; the asymptotic behavior of
this function has been studied extensively by many of the world’s greatest
mathematicians, beginning with Legendre in 1798. Numerous advances made
during the nineteenth century culminated in 1899, when Charles de La Vallée
Poussin proved that, for some A > 0,

[Mém. Couronnés Acad. Roy. Belgique 59 (1899), 1–74; see also J.
Hadamard, Bull. Soc. Math. de France 24 (1896), 199–220.] Integrating by
parts yields

for all fixed r ≥ 0. The error term in (3) has subsequently been improved; for
example, it can be replaced by O (x exp (–A(log x)3/5/(log log x)1/5)). [See A.
Walfisz, Weyl’sche Exponentialsummen in der neueren Zahlentheorie
(Berlin: 1963), Chapter 5.] Bernhard Riemann conjectured in 1859 that

where , and his formula agrees well with actual counts
when x is of reasonable size:

(See exercise 41.) However, the distribution of large primes is not that
simple, and Riemann’s conjecture (5) was disproved by J. E. Littlewood in
1914; see Hardy and Littlewood, Acta Math. 41 (1918), 119–196, where it
is shown that there is a positive constant C such that

for infinitely many x. Littlewood’s result shows that prime numbers are
inherently somewhat mysterious, and it will be necessary to develop deep
properties of mathematics before their distribution is really understood.
Riemann made another much more plausible conjecture, the famous
“Riemann hypothesis,” which states that the complex function ζ(z) is zero
only when the real part of z is equal to 1/2, except in the trivial cases where
z is a negative even integer. This hypothesis, if true, would imply that

; see exercise 25. Richard Brent has used a
method of D. H. Lehmer to verify Riemann’s hypothesis computationally for
all “small” values of z, by showing that ζ(z) has exactly 75,000,000 zeros
whose imaginary part is in the range 0 < z < 32585736.4; all of these zeros
have and ζ′(z) ≠ 0. [Math. Comp. 33 (1979), 1361–1372.]

In order to analyze the average behavior of Algorithm A, we would like
to know how large the largest prime factor pt will tend to be. This question
was first investigated by Karl Dickman [Arkiv för Mat., Astron. och Fys.
22A, 10 (1930), 1–14], who studied the probability that a random integer
between 1 and x will have its largest prime factor ≤ xα. Dickman gave a
heuristic argument to show that this probability approaches the limiting value
F(α) as x → ∞, where F can be calculated from the functional equation

His argument was essentially this: Given 0 < t < 1, the number of integers
less than x whose largest prime factor is between xt and xt+dt is xF′(t) dt. The
number of primes p in that range is π(xt+dt)–π(xt) = π(xt+(ln x)xt dt)–π(xt) = xt

dt/t. For every such p, the number of integers n such that “np ≤ x and the
largest prime factor of n is ≤ p” is the number of n ≤ x1–t whose largest prime
factor is ≤ (x1–t)t/(1–t), namely x1–t F (t/(1 – t)). Hence xF′(t) dt = (xt dt/t) (x1–

tF (t/(1 – t))), and (6) follows by integration. This heuristic argument can be
made rigorous; V. Ramaswami [Bull. Amer. Math. Soc. 55 (1949), 1122–
1127] showed that the probability in question for fixed α is asymptotically
F(α)+O(1/log x), as x → ∞, and many other authors have extended the
analysis [see the survey by Karl K. Norton, Memoirs Amer. Math. Soc. 106
(1971), 9–27].

If , formula (6) simplifies to

Thus, for example, the probability that a random positive integer ≤ x has a
prime factor > is 1 – F() = ln 2, about 69 percent. In all such cases,
Algorithm A must work hard.

The net result of this discussion is that Algorithm A will give the answer
rather quickly if we want to factor a six-digit number; but for large N the
amount of computer time for factorization by trial division will rapidly
exceed practical limits, unless we are unusually lucky.

Later in this section we will see that there are fairly good ways to
determine whether or not a reasonably large number n is prime, without
trying all divisors up to . Therefore Algorithm A would often run faster if
we inserted a primality test between steps A2 and A3; the running time for
this improved algorithm would then be roughly proportional to pt−1, the
second-largest prime factor of N, instead of to max(). By an
argument analogous to Dickman’s (see exercise 18), we can show that the
second-largest prime factor of a random integer ≤ x will be ≤ xβ with
approximate probability G(β), where

Clearly G(β) = 1 for β ≥ . (See Fig. 12.) Numerical evaluation of (6) and
(7) yields the following “percentage points”:

Fig. 12. Probability distribution functions for the two largest prime factors
of a random integer ≤ x .

Thus, the second-largest prime factor will be ≤ x.2117 about half the time, etc.

The total number of prime factors, t, has also been intensively analyzed.
Obviously 1 ≤ t ≤ lg N, but these lower and upper bounds are seldom
achieved. It is possible to prove that if N is chosen at random between 1 and
x , the probability that t ≤ ln ln approaches

as x → ∞, for any fixed c. In other words, the distribution of t is essentially
normal, with mean and variance ln ln x; about 99.73 percent of all the large
integers ≤ x have . Furthermore the average
value of t – ln ln x for 1 ≤ N ≤ x is known to approach

[See G. H. Hardy and E. M. Wright, An Introduction to the Theory of
Numbers, 5th edition (Oxford, 1979), §22.11; see also P. Erdös and M. Kac,
Amer. J. Math. 62 (1940), 738–742.]

The size of prime factors has a remarkable connection with
permutations: The average number of bits in the kth largest prime factor of a
random n-bit integer is asymptotically the same as the average length of the
kth largest cycle of a random n-element permutation, as n → ∞. [See D. E.
Knuth, Selected Papers on Analysis of Algorithms (2000), 329–330, 336–
337, for references to the relevant literature.] It follows that Algorithm A
usually finds a few small factors and then begins a long-drawn-out search for
the big ones that are left.

An excellent exposition of the probability distribution of the prime
factors of a random integer has been given by Patrick Billingsley, AMM 80
(1973), 1099–1115; see also his paper in Annals of Probability 2 (1974),
749–791.
Factoring by pseudorandom cycles. Near the beginning of Chapter 3, we
observed that “a random number generator chosen at random isn’t very
random.” This principle, which worked against us in that chapter, has the
redeeming virtue that it leads to a surprisingly efficient method of
factorization, discovered by J. M. Pollard [BIT 15 (1975), 331–334]. The
number of computational steps in Pollard’s method is on the order of ,

so it is significantly faster than Algorithm A when N is large. According to
(7) and Fig. 12, the running time will usually be well under .

Let f(x) be any polynomial with integer coefficients, and consider the
two sequences defined by

where p is any prime factor of N. It follows that

Now exercise 3.1–7 shows that we will have ym = yℓ(m)–1 for some m ≥ 1,
where ℓ(m) is the greatest power of 2 that is ≤ m. Thus xm – xℓ(m)–1 will be a
multiple of p. Furthermore if f(y) mod p behaves as a random mapping from
the set {0, 1, . . . , p − 1} into itself, exercise 3.1–12 shows that the average
value of the least such m will be of order . In fact, exercise 4 below
shows that this average value for random mappings is less than 1.625 Q(p),
where the function was defined in Section 1.2.11.3. If the
different prime divisors of N correspond to different values of m (as they
almost surely will, when N is large), we will be able to find them by
calculating gcd(xm – xℓ(m)–1, N) for m = 1, 2, 3, . . . , until the unfactored
residue is prime. Pollard called his technique the “rho method,” because an
eventually periodic sequence such as y0, y1, . . . is reminiscent of the Greek
letter ρ.

From the theory in Chapter 3, we know that a linear polynomial f(x) = ax
+ c will not be sufficiently random for our purposes. The next-simplest case
is quadratic, say f(x) = x2 + 1. We don’t know that this function is sufficiently
random, but our lack of knowledge tends to support the hypothesis of
randomness, and empirical tests show that this f does work essentially as
predicted. In fact, f is probably slightly better than random, since x2 + 1 takes
on only (p + 1) distinct values mod p; see Arney and Bender, Pacific J.
Math. 103 (1982), 269–294. Therefore the following procedure is
reasonable:
Algorithm B (Factoring by the rho method). This algorithm outputs the
prime factors of a given integer N ≥ 2, with high probability, although there is
a chance that it will fail.

B1. [Initialize.] Set x ← 5, x′ ← 2, k ← 1, l ← 1, n ← N. (During this
algorithm, n is the unfactored part of N, and the variables x and x′

represent the quantities xm mod n and xℓ(m)–1 mod n in (10), where f(x)
= x2 + 1, A = 2, l = ℓ(m), and k = 2l – m.)

B2. [Test primality.] If n is prime (see the discussion below), output n; the
algorithm terminates.

B3. [Factor found?] Set g ← gcd(x′ –x, n). If g = 1, go on to step B4;
otherwise output g. Now if g = n, the algorithm terminates (and it has
failed, because we know that n isn’t prime). Otherwise set n ← n/g, x
← x mod n, x′ ← x′ mod n, and return to step B2. (Note that g may not
be prime; this should be tested. In the rare event that g isn’t prime, its
prime factors won’t be determinable with this algorithm.)

B4. [Advance.] Set k ← k − 1. If k = 0, set x′ ← x, l ← 2l, k ← l. Set x ←
(x2 + 1) mod n and return to B3.

As an example of Algorithm B, let’s try to factor N = 25852 again. The
third execution of step B3 will output g = 4 (which isn’t prime). After six
more iterations the algorithm finds the factor g = 23. Algorithm B has not
distinguished itself in this example, but of course it was designed to factor
big numbers. Algorithm A takes much longer to find large prime factors, but
it can’t be beat when it comes to removing the small ones. In practice, we
should run Algorithm A awhile before switching over to Algorithm B.

We can get a better idea of Algorithm B’s prowess by considering the ten
largest six-digit primes. The number of iterations, m(p), that Algorithm B
needs to find the factor p is given in the following table:

Experiments by Tomás Oliveira e Silva indicate that m(p) has an average
value of about 2 , and it never exceeds 16 when p < 1000000000. The
maximum m(p) for p < 109 is m(850112303) = 416784; and the maximum of

 occurs when p = 695361131, m(p) = 406244. According to these
experimental results, almost all 18-digit numbers can be factored in fewer
than 64,000 iterations of Algorithm B (compared to roughly 50,000,000
divisions in Algorithm A).

The time-consuming operations in each iteration of Algorithm B are the
multiple-precision multiplication and division in step B4, and the gcd in step
B3. The technique of “Montgomery multiplication” (exercise 4.3.1–41) will
speed this up. Moreover, if the gcd operation is slow, Pollard suggests

gaining speed by accumulating the product mod n of, say, ten consecutive (x′
– x) values before taking each gcd; this replaces 90 percent of the gcd
operations by a single multiplication mod N while only slightly increasing
the chance of failure. He also suggests starting with m = q instead of m = 1 in
step B1, where q is, say, one tenth of the number of iterations you are
planning to use.

In those rare cases where failure occurs for large N, we could try using
f(x) = x2 + c for some c ≠ 0 or 1. The value c = –2 should also be avoided,
since the recurrence has solutions of the form xm = r2m +

r−2m. Other values of c do not seem to lead to simple relationships mod p,
and they should all be satisfactory when used with suitable starting values.

Richard Brent used a modification of Algorithm B to discover the prime
factor 1238926361552897 of 2256 + 1. [See Math. Comp. 36 (1981), 627–
630; 38 (1982), 253–255.]
Fermat’s method. Another approach to the factoring problem, which was
used by Pierre de Fermat in 1643, is more suited to finding large factors than
small ones. [Fermat’s original description of his method, translated into
English, can be found in L. E. Dickson’s monumental History of the Theory
of Numbers 1 (Carnegie Inst. of Washington, 1919), 357. An equivalent idea
had in fact been used already by Nārāya a Pa ita in his remarkable book
Ga ita Kaumudī (1356); see Parmanand Singh, Ga ita Bhāratī 22 (2000),
72–74.]

Assume that N = uv, where u ≤ v. For practical purposes we may assume
that N is odd; this means that u and v are odd, and we can let

Fermat’s method consists of searching systematically for values of x and y
that satisfy Eq. (13). The following algorithm shows how factoring can
therefore be done without using any multiplication or division:
Algorithm C (Factoring by addition and subtraction). Given an odd
number N, this algorithm determines the largest factor of N less than or equal
to .

C1. [Initialize.] Set .
(During this algorithm a, b, and r correspond respectively to 2x+1,
2y+1, and x2−y2−N as we search for a solution to (13); we will have
|r| < a and b < a.)

C2. [Done?] If r = 0, the algorithm terminates; we have

and (a − b)/2 is the largest factor of N less than or equal to .
C3. [Increase a.] Set r ← r + a and a ← a + 2.
C4. [Increase b.] Set r ← r − b and b ← b + 2.
C5. [Test r.] Return to step C4 if r > 0, otherwise go back to C2.

The reader may find it amusing to find the factors of 377 by hand, using
this algorithm. The number of steps needed to find the factors u and v of N =
uv is essentially proportional to ; this
can, of course, be a very large number, although each step can be done very
rapidly on most computers. An improvement that requires only O(N1/3)
operations in the worst case has been developed by R. S. Lehman [Math.
Comp. 28 (1974), 637–646].

It is not quite correct to call Algorithm C “Fermat’s method,” since
Fermat used a somewhat more streamlined approach. Algorithm C’s main
loop is quite fast on computers, but it is not very suitable for hand
calculation. Fermat didn’t actually maintain the running value of y; he would
look at x2− N and guess whether or not this quantity was a perfect square by
looking at its least significant digits. (The last two digits of a perfect square
must be 00, e1, e4, 25, o6, or e9, where e is an even digit and o is an odd
digit.) Therefore he avoided the operations of steps C4 and C5, replacing
them by an occasional determination that a certain number is not a perfect
square.

Fermat’s method of looking at the rightmost digits can, of course, be
generalized by using other moduli. Suppose for clarity that N = 8616460799,
a number whose historic significance is explained below, and consider the
following table:

If x2 – N is to be a perfect square y2, it must have a residue mod m consistent
with this fact, for all m. For example, if N = 8616460799 and x mod 3 ≠ 0,
then (x2 – N) mod 3 = 2, so x2 – N cannot be a perfect square; therefore x
must be a multiple of 3 whenever N = x2 – y2. The table tells us, in fact, that

This narrows down the search for x considerably. For example, x must be a
multiple of 12. We must have , and the least such
multiple of 12 is 92832. This value has residues (2, 5, 3) modulo (5, 7, 11)
respectively, so it fails (14) with respect to modulus 11. Increasing x by 12
changes the residue mod 5 by 2, mod 7 by 5, and mod 11 by 1; so it is easy to
see that the first value of x ≥ 92825 that satisfies all of the conditions in (14)
is x = 92880. Now 928802 – N = 10233601, and the pencil-and-paper
method for square root tells us that 10233601 = 31992 is indeed a perfect
square. Therefore we have found the desired solution x = 92880, y = 3199,
and the factorization is

This value of N is interesting because the English economist and logician
W. S. Jevons introduced it as follows in a well-known book: “Given any two
numbers, we may by a simple and infallible process obtain their product, but
it is quite another matter when a large number is given to determine its
factors. Can the reader say what two numbers multiplied together will
produce the number 8,616,460,799? I think it unlikely that anyone but myself
will ever know.” [The Principles of Science (1874), Chapter 7.] We have
just seen, however, that Fermat could have factored N in less than 10
minutes, on the back of an envelope! Jevons’s point about the difficulty of

factoring versus multiplying is well taken, but only if we form the product of
numbers that aren’t so close to each other.

In place of the moduli considered in (14), we can use any powers of
distinct primes. For example, if we had used 25 in place of 5, we would find
that the only permissible values of x mod 25 are 0, 5, 7, 10, 15, 18, and 20.
This gives more information than (14). In general, we will get more
information modulo p2 than we do modulo p, for odd primes p, whenever x2

– N ≡ 0 (modulo p) has a solution x. Individual primes p and q are, however,
preferable to moduli like p2 unless p is quite small, because we tend to get
even more information mod pq.

The modular method just used is called a sieve procedure, since we can
imagine passing all integers through a “sieve” for which only those values
with x mod 3 = 0 come out, then sifting these numbers through another sieve
that allows only numbers with x mod 5 = 0, 2, or 3 to pass, etc. Each sieve
by itself will remove about half of the remaining values (see exercise 6); and
when we sieve with respect to moduli that are relatively prime in pairs, each
sieve is independent of the others because of the Chinese remainder theorem
(Theorem 4.3.2C). So if we sieve with respect to, say, 30 different primes,
only about one value in every 230 will need to be examined to see if x2 – N is
a perfect square y2.
Algorithm D (Factoring with sieves). Given an odd number N, this
algorithm determines the largest factor of N less than or equal to . The
procedure uses moduli m1, m2, . . . , mr that are relatively prime to each other
in pairs and relatively prime to N. We assume that we have access to r sieve
tables S[i, j] for 0 ≤ j < mi, 1 ≤ i ≤ r, where

D1. [Initialize.] Set x ← ⌈ ⌉, and set ki ← (–x) mod mi for 1 ≤ i ≤ r.
(Throughout this algorithm the index variables k1, k2, . . . , kr will be set
so that ki = (–x) mod mi.)

D2. [Sieve.] If S[i, ki] = 1 for 1 ≤ i ≤ r, go to step D4.

D3. [Step x.] Set x ← x + 1, and set ki ← (ki – 1) mod mi for 1 ≤ i ≤ r.
Return to step D2.

D4. [Test x2 – N.] Set or to . If y2 = x2 –
N, then (x – y) is the desired factor, and the algorithm terminates.
Otherwise return to step D3.

There are several ways to make this procedure run fast. For example, we
have seen that if N mod 3 = 2, then x must be a multiple of 3; we can set x =
3x′, and use a different sieve corresponding to x′, increasing the speed
threefold. If N mod 9 = 1, 4, or 7, then x must be congruent respectively to
±1, ±2, or ±4 (modulo 9); so we run two sieves (one for x′ and one for x″,
where x = 9x′ + a and x = 9x″ – a) to increase the speed by a factor of 4 . If
N mod 4 = 3, then x mod 4 is known and the speed is increased by an
additional factor of 4; in the other case, when N mod 4 = 1, x must be odd so
the speed may be doubled. Another way to double the speed of the algorithm
(at the expense of storage space) is to combine pairs of moduli, using mr–k
mk in place of mk for 1 ≤ k < r.

An even more important method of speeding up Algorithm D is to use the
Boolean operations found on most binary computers. Let us assume, for
example, that MIX is a binary computer with 30 bits per word. The tables
S[i, ki] can be kept in memory with one bit per entry; thus 30 values can be
stored in a single word. The operation AND, which replaces the kth bit of the
accumulator by zero if the kth bit of a specified word in memory is zero, for
1 ≤ k ≤ 30, can be used to process 30 values of x at once! For convenience,
we can make several copies of the tables S[i, j] so that the table entries for
mi involve lcm(mi, 30) bits; then the sieve tables for each modulus fill an
integral number of words. Under these assumptions, 30 executions of the
main loop in Algorithm D are equivalent to code of the following form:

The number of cycles for 30 iterations is essentially 2 + 8r; if r = 11, this
means three cycles are being used on each iteration, just as in Algorithm C,
and Algorithm C involves more iterations.

If the table entries for mi do not come out to be an integral number of
words, further shifting of the table entries would be necessary on each
iteration in order to align the bits properly. This would add quite a lot of
coding to the main loop and it would probably make the program too slow to
compete with Algorithm C unless v/u ≤ 100 (see exercise 7).

Sieve procedures can be applied to a variety of other problems, not
necessarily having much to do with arithmetic. A survey of these techniques
has been prepared by Marvin C. Wunderlich, JACM 14 (1967), 10–19.

F. W. Lawrence proposed the construction of special sieve machines for
factorization in the 19th century [Quart. J. of Pure and Applied Math. 28
(1896), 285–311], and E. O. Carissan completed such a device with 14
moduli in 1919. [See Shallit, Williams, and Morain, Math. Intelligencer 17,
3 (1995), 41–47, for the interesting story of how Carissan’s long-lost sieve
was rediscovered and preserved for posterity.] D. H. Lehmer and his
associates constructed and used many different sieve devices during the

period 1926–1989, beginning with bicycle chains and later using
photoelectric cells and other kinds of technology; see, for example, AMM 40
(1933), 401–406. Lehmer’s electronic delay-line sieve, which began
operating in 1965, processed one million numbers per second. By 1995 it
was possible to construct a machine that sieved 6144 million numbers per
second, performing 256 iterations of steps D2 and D3 in about 5.2
nanoseconds [see Lukes, Patterson, and Williams, Nieuw Archief voor
Wiskunde (4) 13 (1995), 113–139]. Another way to factor with sieves was
described by D. H. and Emma Lehmer in Math. Comp. 28 (1974), 625–635.
Primality testing. None of the algorithms we have discussed so far is an
efficient way to determine that a large number n is prime. Fortunately, there
are other methods available for settling this question; efficient techniques
have been devised by É. Lucas and others, notably D. H. Lehmer [see Bull.
Amer. Math. Soc. 33 (1927), 327–340].

According to Fermat’s theorem (Theorem 1.2.4F), we have

whenever p is prime and x is not a multiple of p. Furthermore, there are
efficient ways to calculate xn−1 mod n, requiring only O(log n) operations of
multiplication mod n. (We shall study them in Section 4.6.3 below.)
Therefore we can often determine that n is not prime when this relationship
fails.

For example, Fermat once verified that the numbers 21 + 1, 22 + 1, 24 +
1, 28 + 1, and 216 + 1 are prime. In a letter to Mersenne written in 1640,
Fermat conjectured that 22n + 1 is always prime, but said he was unable to
determine definitely whether the number 4294967297 = 232 + 1 is prime or
not. Neither Fermat nor Mersenne ever resolved this problem, although they
could have done it as follows: The number 3232 mod (232 + 1) can be
computed by doing 32 operations of squaring modulo 232 + 1, and the answer
is 3029026160; therefore (by Fermat’s own theorem, which he discovered in
the same year 1640!) the number 232 + 1 is not prime. This argument gives us
absolutely no idea what the factors are, but it answers Fermat’s question.

Fermat’s theorem is a powerful test for showing nonprimality of a given
number. When n is not prime, it is always possible to find a value of x < n
such that xn−1 mod n ≠ 1; experience shows that, in fact, such a value can

almost always be found very quickly. There are some rare values of n for
which xn−1 mod n is frequently equal to unity, but then n has a factor less than

; see exercise 9.
The same method can be extended to prove that a large prime number n

really is prime, by using the following idea: If there is a number x for which
the order of x modulo n is equal to n – 1, then n is prime. (The order of x
modulo n is the smallest positive integer k such that xk mod n = 1; see
Section 3.2.1.2.) For this condition implies that the numbers x1 mod n, . . . ,
xn−1 mod n are distinct and relatively prime to n, so they must be the numbers
1, 2, . . . , n−1 in some order; thus n has no proper divisors. If n is prime,
such a number x (called a primitive root of n) will always exist; see exercise
3.2.1.2–16. In fact, primitive roots are rather numerous. There are φ(n − 1)
of them, and this is quite a substantial number, since n/φ(n − 1) = O(log log
n).

It is unnecessary to calculate xk mod n for all k ≤ n − 1 to determine if
the order of x is n − 1 or not. The order of x will be n − 1 if and only if

i) xn−1 mod n = 1;
ii) x(n−1)/p mod n ≠ 1 for all primes p that divide n − 1.

For xs mod n = 1 if and only if s is a multiple of the order of x modulo n. If
the two conditions hold, and if k is the order of x modulo n, we therefore
know that k is a divisor of n − 1, but not a divisor of (n − 1)/p for any prime
factor p of n − 1; the only remaining possibility is k = n − 1. This completes
the proof that conditions (i) and (ii) suffice to establish the primality of n.

Exercise 10 shows that we can in fact use different values of x for each
of the primes p, and n will still be prime. We may restrict consideration to
prime values of x, since the order of uv modulo n divides the least common
multiple of the orders of u and v by exercise 3.2.1.2–15. Conditions (i) and
(ii) can be tested efficiently by using the rapid methods for evaluating
powers of numbers discussed in Section 4.6.3. But it is necessary to know
the prime factors of n−1, so we have an interesting situation in which the
factorization of n depends on that of n − 1.
An example. The study of a reasonably typical large factorization will help
to fix the ideas we have discussed so far. Let us try to find the prime factors

of 2214 + 1, a 65-digit number. The factorization can be initiated with a bit of
clairvoyance if we notice that

this is a special case of the factorization 4x4 + 1 = (2x2 + 2x + 1)(2x2 – 2x +
1), which Euler communicated to Goldbach in 1742 [P. H. Fuss,
Correspondance Math. et Physique 1 (1843), 145]. The problem now boils
down to examining each of the 33-digit factors in (15).

A computer program readily discovers that 2107 –254 +1 = 5·857·n0,
where

is a 29-digit number having no prime factors less than 1000. A multiple-
precision calculation using Algorithm 4.6.3A shows that

so we suspect that n0 is prime. It is certainly out of the question to prove that
n0 is prime by trying the 10 million million or so potential divisors, but the
method discussed above gives a feasible test for primality: Our next goal is
to factor n0 – 1. With little difficulty, our computer will tell us that

Here 3n1–1 mod n1 ≠ 1, so n1 is not prime; by continuing Algorithm A or
Algorithm B we obtain another factor,

This time 3n2–1 mod n2 = 1, so we will try to prove that n2 is prime. Casting
out factors < 1000 yields n2 –1 = 2·2·2·2·3·3·547·n3, where n3 =
1824032775457. Since 3n3–1 mod n3 ≠ 1, we know that n3 cannot be prime,
and Algorithm A finds that n3 = 1103 · n4, where n4 = 1653701519. The
number n4 behaves like a prime (that is, 3n4–1 mod n4 = 1), so we calculate

Good; this is our first complete factorization. We are now ready to backtrack
to the previous subproblem, proving that n4 is prime. Using the procedure
suggested by exercise 10, we compute the following values:

(Here “(1)” means a result of 1 that needn’t be computed since it can be
deduced from previous calculations.) Thus n4 is prime, and n2 – 1 has been
completely factored. A similar calculation shows that n2 is prime, and this
complete factorization of n0 – 1 finally shows, after still another calculation
like (17), that n0 is prime.

The last three lines of (17) represent a search for an integer x that
satisfies x(n4–1)/2 ≢ xn4–1 ≡ 1 (modulo n4). If n4 is prime, we have only a 50-
50 chance of success, so the case p = 2 is typically the hardest one to verify.
We could streamline this part of the calculation by using the law of quadratic
reciprocity (see exercise 23), which tells us for example that 5(q−1)/2 ≡ 1
(modulo q) whenever q is a prime congruent to ±1 (modulo 5). Merely
calculating n4 mod 5 would have told us right away that x = 5 could not
possibly help in showing that n4 is prime. In fact, however, the result of
exercise 26 implies that the case p = 2 doesn’t really need to be considered
at all when testing n for primality, unless n − 1 is divisible by a high power
of 2, so we could have dispensed with the last three lines of (17) entirely.

The next quantity to be factored is the other half of (15), namely

Since 3n5–1 mod n5 ≠ 1, we know that n5 is not prime, and Algorithm B
shows that n5 = 843589 · n6, where n6 = 192343993140277293096491917.
Unfortunately, 3n6–1 mod n6 ≠ 1, so we are left with a 27-digit nonprime.
Continuing Algorithm B might well exhaust our patience (not our budget—

we’re using idle time on a weekend rather than “prime time”). But the sieve
method of Algorithm D will be able to crack n6 into its two factors,

(It turns out that Algorithm B would also have succeeded, after 6,432,966
iterations.) The factors of n6 could not have been discovered by Algorithm A
in a reasonable length of time.

Now the computation is complete: 2214 + 1 has the prime factorization

where n0 is the 29-digit prime in (16). A certain amount of good fortune
entered into these calculations, for if we had not started with the known
factorization (15) it is quite probable that we would first have cast out the
small factors, reducing n to n6n0. This 55-digit number would have been
much more difficult to factor—Algorithm D would be useless and Algorithm
B would have to work overtime because of the high precision necessary.

Dozens of further numerical examples can be found in an article by John
Brillhart and J. L. Selfridge, Math. Comp. 21 (1967), 87–96.
Improved primality tests. The procedure just illustrated requires the
complete factorization of n−1 before we can prove that n is prime, so it will
bog down for large n. Another technique, which uses the factorization of n +
1 instead, is described in exercise 15; if n − 1 turns out to be too hard, n + 1
might be easier.

Significant improvements are available for dealing with large n. For
example, it is not difficult to prove a stronger converse of Fermat’s theorem
that requires only a partial factorization of n − 1. Exercise 26 shows that we
could have avoided most of the calculations in (17); the three conditions 2n4–

1 mod n4 = gcd(2(n4–1)/23 – 1, n4) = gcd(2(n4–1)/1973 – 1, n4) = 1 are sufficient
by themselves to prove that n4 is prime. Brillhart, Lehmer, and Selfridge
have in fact developed a method that works when the numbers n − 1 and n +
1 have been only partially factored [Math. Comp. 29 (1975), 620–647,
Corollary 11]: Suppose n − 1 = f−r− and n + 1 = f+r+, where we know the
complete factorizations of f− and f+, and we also know that all factors of r−

and r+ are ≥ b. If the product (b3f−f+ max(f−, f+)) is greater than 2n, a small
amount of additional computation, described in their paper, will determine

whether or not n is prime. Therefore numbers of up to 35 digits can usually
be tested for primality in a fraction of a second, simply by casting out all
prime factors < 30030 from n ± 1 [see J. L. Selfridge and M. C. Wunderlich,
Congressus Numerantium 12 (1974), 109–120]. The partial factorization of
other quantities like n2 ± n + 1 and n2 + 1 can be used to improve this method
still further [see H. C. Williams and J. S. Judd, Math. Comp. 30 (1976),
157–172, 867–886].

In practice, when n has no small prime factors and 3n−1 mod n = 1,
further calculations almost always show that n is prime. (One of the rare
exceptions in the author’s experience is n = (228 – 9) = 2341 · 16381.) On
the other hand, some nonprime values of n are definitely bad news for the
primality test we have discussed, because it might happen that xn−1 mod n = 1
for all x relatively prime to n (see exercise 9). The smallest such number is n
= 3·11·17 = 561; here λ(n) = lcm(2, 10, 16) = 80 in the notation of Eq.
3.2.1.2–(9), so x80 mod 561 = 1 = x560 mod 561 whenever x is relatively
prime to 561. Our procedure would repeatedly fail to show that such an n is
nonprime, until we had stumbled across one of its divisors. To improve the
method, we need a quick way to determine the nonprimality of nonprime n,
even in such pathological cases.

The following surprisingly simple procedure is guaranteed to do the job
with high probability:
Algorithm P (Probabilistic primality test). Given an odd integer n, this
algorithm attempts to decide whether or not n is prime. By repeating the
algorithm several times, as explained in the remarks below, it is possible to
be extremely confident about the primality of n, in a precise sense, yet the
primality will not be rigorously proved. Let n = 1 + 2kq, where q is odd.

P1. [Generate x.] Let x be a random integer in the range 1 < x < n.
P2. [Exponentiate.] Set j ← 0 and y ← xq mod n. (As in our previous

primality test, xq mod n should be calculated in O(log q) steps; see
Section 4.6.3.)

P3. [Done?] (Now y = x2jq mod n.) If y = n−1, or if y = 1 and j = 0,
terminate the algorithm and say “n is probably prime.” If y = 1 and j >
0, go to P5.

P4. [Increase j.] Increase j by 1. If j < k, set y ← y2 mod n and return to P3.

P5. [Not prime.] Terminate and say “n is definitely not prime.”
The idea underlying Algorithm P is that if xq mod n ≠ 1 and n = 1 + 2kq

is prime, the sequence of values

will end with 1, and the value just preceding the first appearance of 1 will be
n − 1. (The only solutions to y2 ≡ 1 (modulo p) are y ≡ ±1, when p is prime,
since (y − 1)(y + 1) must be a multiple of p.)

Exercise 22 proves the basic fact that Algorithm P will be wrong at most
1/4 of the time, for all n. Actually it will rarely fail at all, for most n; but the
crucial point is that the probability of failure is bounded regardless of the
value of n.

Suppose we invoke Algorithm P repeatedly, choosing x independently
and at random whenever we get to step P1. If the algorithm ever reports that
n is nonprime, we can be sure this is so. But if the algorithm reports 25 times
in a row that n is “probably prime,” we can say that n is “almost surely
prime.” For the probability is less than (1/4)25 that such a 25-times-in-a-row
procedure gives the wrong information about its input. This is less than one
chance in a quadrillion; even if we tested a billion different numbers with
such a procedure, the expected number of mistakes would be less than

. It’s much more likely that our computer has dropped a bit in its
calculations, due to hardware malfunctions or cosmic radiations, than that
Algorithm P has repeatedly guessed wrong!

Probabilistic algorithms like this lead us to question our traditional
standards of reliability. Do we really need to have a rigorous proof of
primality? For people unwilling to abandon traditional notions of proof,
Gary L. Miller has demonstrated (in slightly weaker form) that if a certain
well-known conjecture in number theory called the Extended Riemann
Hypothesis can be proved, then either n is prime or there is an x < 2(ln n)2

such that Algorithm P will discover the nonprimality of n. [See J. Comp.
System Sci. 13 (1976), 300–317. The constant 2 in this upper bound is due to
Eric Bach, Math. Comp. 55 (1990), 355–380. See Chapter 8 of Algorithmic
Number Theory 1 by E. Bach and J. O. Shallit (MIT Press, 1996), for an
exposition of various generalizations of the Riemann hypothesis.] Thus, we
would have a rigorous way to test primality in O(log n)5 elementary

operations, as opposed to a probabilistic method whose running time is
O(log n)3, if the Extended Riemann Hypothesis were proved. But one might
well ask whether any purported proof of that hypothesis will ever be as
reliable as repeated application of Algorithm P on random x’s.

A probabilistic test for primality was proposed in 1974 by R. Solovay
and V. Strassen, who devised the interesting but more complicated test
described in exercise 23(b). [See SICOMP 6 (1977), 84–85; 7 (1978), 118.]
Algorithm P is a simplified version of a procedure due to M. O. Rabin,
based in part on ideas of Gary L. Miller [see Algorithms and Complexity
(1976), 35–36], and independently discovered by J. L. Selfridge. B. Arazi
[Comp. J. 37 (1994), 219–222] has observed that Algorithm P can be
speeded up significantly for large n by using Montgomery’s fast method for
remainders (exercise 4.3.1–41).

A completely rigorous and deterministic way to test for primality in
polynomial time was finally discovered in 2002 by Manindra Agrawal,
Neeraj Kayal, and Nitin Saxena, who proved the following result:
Theorem A. Let r be an integer such that n ⊥ r and the order of n modulo r
exceeds (lg n)2. Then n is prime if and only if the polynomial congruence

holds for . (See exercise 3.2.2–11(a).)
An excellent exposition of this theorem has been prepared by Andrew

Granville [Bull. Amer. Math. Soc. 42 (2005), 3–38], who presents an
elementary proof that it yields a primality test with running time Ω(log n)6

and O(log n)11. He also explains a subsequent improvement due to H. Lenstra
and C. Pomerance, who showed that the running time can be reduced to
O(log n)6+∊ if the polynomial zr − 1 is replaced by a more general family of
polynomials. And he discusses refinements by P. Berrizbeitia, Q. Cheng, P.
Mihăilescu, R. Avanzi, and D. Bernstein, leading to a probabilistic algorithm
by which a proof of primality can almost surely be found in O(log n)4+∊ steps
whenever n is prime.
Factoring via continued fractions. The factorization procedures we have
discussed so far will often balk at numbers of 30 digits or more, and another
idea is needed if we are to go much further. Fortunately there is such an idea;
in fact, there were two ideas, due respectively to A. M. Legendre and M.

Kraitchik, which led D. H. Lehmer and R. E. Powers to devise a new
technique many years ago [Bull. Amer. Math. Soc. 37 (1931), 770–776].
However, the method was not used at the time because it was comparatively
unsuitable for desk calculators. This negative judgment prevailed until the
late 1960s, when John Brillhart found that the Lehmer–Powers approach
deserved to be resurrected, since it was quite well suited to computer
programming. In fact, he and Michael A. Morrison later developed it into the
champion of all multiprecision factorization methods that were known in the
1970s. Their program would handle typical 25-digit numbers in about 30
seconds, and 40-digit numbers in about 50 minutes, on an IBM 360/91
computer [see Math. Comp. 29 (1975), 183–205]. The method had its first
triumphant success in 1970, discovering that 2128 +1 = 59649589127497217
· 5704689200685129054721.

The basic idea is to search for numbers x and y such that

Fermat’s method imposes the stronger requirement x2 – y2 = N, but actually
the congruence (18) is enough to split N into factors: It implies that N is a
divisor of x2 – y2 = (x – y)(x + y), yet N divides neither x – y nor x + y; hence
gcd(N, x – y) and gcd(N, x + y) are proper factors of N that can be found by
the efficient methods of Section 4.5.2.

One way to discover solutions of (18) is to look for values of x such that
x2 ≡ a (modulo N), for small values of |a|. As we will see, it is often a simple
matter to piece together solutions of this congruence to obtain solutions of
(18). Now if x2 = a+kNd2 for some k and d, with small |a|, the fraction x/d is
a good approximation to ; conversely, if x/d is an especially good
approximation to , the difference |x2 – kNd2| will be small. This
observation suggests looking at the continued fraction expansion of ,
since we have seen in Eq. 4.5.3–(12) and exercise 4.5.3–42 that continued
fractions yield good rational approximations.

Continued fractions for quadratic irrationalities have many pleasant
properties, which are proved in exercise 4.5.3–12. The algorithm below
makes use of these properties to derive solutions to the congruence

Here we use a fixed set of small primes p1 = 2, p2 = 3, . . . , up to pm; only
primes p such that either p = 2 or (kN)(p−1)/2 mod p ≤ 1 should appear in this
list, since other primes will never be factors of the numbers generated by the
algorithm (see exercise 14). If (x1, e01, e11, . . . , em1), . . . , (xr, e0r, e1r, . . . ,
emr) are solutions of (19) such that the vector sum

is even in each component, then

yields a solution to (18), except for the possibility that x ≡ ±y. Condition (20)
essentially says that the vectors are linearly dependent modulo 2, so we must
have a solution to (20) if we have found at least m + 2 solutions to (19).
Algorithm E (Factoring via continued fractions). Given a positive integer
N and a positive integer k such that kN is not a perfect square, this algorithm
attempts to discover solutions to the congruence (19) for a given sequence of
primes p1, . . . , pm, by analyzing the convergents of the continued fraction for

. (Another algorithm, which uses the outputs to discover factors of N,
is the subject of exercise 12.)

E1. [Initialize.] Set D ← kN, , R′ ← 2R, U′ ← R′, V ← D –
R2, V′ ← 1, A ← ⌊R′/V ⌋, U ← R′–(R′ mod V), P′ ← R, P ← (AR+1)
mod N, S ← 1. (This algorithm follows the general procedure of
exercise 4.5.3–12, finding the continued fraction expansion of .
The variables U, U′, V, V′, P,P′, A, and S represent, respectively, what
that exercise calls , , Vn, Vn−1, pn mod N,
pn−1 mod N, An, and n mod 2, where n is initially 1. We will always
have 0 < V ≤ U ≤ R′, so the highest precision is needed only for P and
P′.)

E2. [Advance U, V, S.] Set T ← V, V ← A(U′ – U) + V′, V′ ← T, A ← ⌊U/V
⌋, U′ ← U, U ← R′ – (U mod V), S ← 1 – S.

E3. [Factor V.] (Now we have P2–kNQ2 = (–1)SV, for some Q relatively
prime to P,by exercise 4.5.3–12(c).) Set (e0, e1, . . . , em) ← (S, 0, . . . ,
0), T ← V. Now do the following, for 1 ≤ j ≤ m: If T mod pj = 0, set T
← T/pj and ej ← ej + 1, and repeat this process until T mod pj ≠ 0.

E4. [Solution?] If T = 1, output the values (P, e0, e1, . . . , em), which
comprise a solution to (19). (If enough solutions have been generated,
we may terminate the algorithm now.)

E5. [Advance P,P′.] If V ≠ 1, set T ← P,P ← (AP + P′) mod N, P′ ← T,
and return to step E2. Otherwise the continued fraction process has
started to repeat its cycle, except perhaps for S, so the algorithm
terminates. (The cycle will usually be so long that this doesn’t
happen.)

We can illustrate the application of Algorithm E to relatively small
numbers by considering the case N = 197209, k = 1, m = 3, p1 = 2, p2 = 3, p3
= 5. The computation begins as shown in Table 1.

Table 1 An Illustration of Algorithm E N = 197209, k = 1, m = 3, p1 = 2,
p2 = 3, p3 = 5

Continuing the computation gives 25 outputs in the first 100 iterations; in
other words, the algorithm is finding solutions quite rapidly. But some of the
solutions are trivial. For example, if the computation above were continued
14 more times, we would obtain the output 1971972 ≡ 24 · 32 · 50, which is
of no interest since 197197 ≡ –12. The first two solutions above are already
enough to complete the factorization: We have found that

thus (18) holds with x = (159316 · 133218) mod 197209 = 126308, y = 540.
By Euclid’s algorithm, gcd(126308–540, 197209) = 199; hence we obtain
the pretty factorization

We can get some understanding of why Algorithm E factors large
numbers so successfully by considering a heuristic analysis of its running
time, following unpublished ideas that R. Schroeppel communicated to the
author in 1975. Let us assume for convenience that k = 1. The number of
outputs needed to produce a factorization of N will be roughly proportional
to the number m of small primes being cast out. Each execution of step E3
takes about order m log N units of time, so the total running time will be
roughly proportional to m2 log N/P,where P is the probability of a successful
output per iteration. If we make the conservative assumption that V is
randomly distributed between 0 and 2 , the probability P is
times the number of integers < 2 whose prime factors are all in the set
{p1, . . . , pm}. Exercise 29 gives a lower bound for P,from which we
conclude that the running time is at most of order

If we let ln m be approximately , we have
, assuming that pm = O(m log m), so formula (22)

reduces to

Stating this another way, the running time of Algorithm E is expected to be at
most N∊(N) under reasonably plausible assumptions, where the exponent

 goes to 0 as N → ∞.
When N is in a practical range, we should of course be careful not to

take such asymptotic estimates too seriously. For example, if N = 1050 we
have N1/α = (lg N)α when α ≈ 4.75, and the same relation holds for α ≈ 8.42
when N = 10200. The function N∊(N) has an order of growth that is sort of a
cross between N1/α and (lg N)α; but all three of these forms are about the
same, unless N is intolerably large. Extensive computational experiments by
M. C. Wunderlich have shown that a well-tuned version of Algorithm E
performs much better than our estimate would indicate [see Lecture Notes in
Math. 751 (1979), 328–342]; although when N =

1050, he obtained running times of about N0.15 while factoring thousands of
numbers in the range 1013 ≤ N ≤ 1042.

Algorithm E begins its attempt to factorize N by essentially replacing N
by kN, and this is a rather curious way to proceed (if not downright stupid).
“Excuse me, do you mind if I multiply your number by 3 before I try to factor
it?” Nevertheless, it turns out to be a good idea, since certain values of k will
make the V numbers potentially divisible by more small primes, hence they
will be more likely to factor completely in step E3. On the other hand, a
large value of k will make the V numbers larger, hence they will be less
likely to factor completely; we want to balance these tendencies by choosing
k wisely. Consider, for example, the divisibility of V by powers of 5. We
have P2 –kNQ2 = (–1)SV in step E3, so if 5 divides V we have P2 ≡ kNQ2

(modulo 5). In this congruence Q cannot be a multiple of 5, since it is
relatively prime to P,so we may write (P/Q)2 ≡ kN (modulo 5). If we assume
that P and Q are random relatively prime integers, so that the 24 possible
pairs (P mod 5, Q mod 5) ≠ (0, 0) are equally likely, the probability that 5
divides V is therefore , , 0, 0, or according as kN mod 5 is 0, 1, 2, 3,
or 4. Similarly the probability that 25 divides V is 0, , 0, 0,
respectively, unless kN is a multiple of 25. In general, given an odd prime p
with (kN)(p−1)/2 mod p = 1, we find that V is a multiple of pe with probability
2/(pe−1(p + 1)); and the average number of times p divides V comes to 2p/(p2

– 1). This analysis, suggested by R. Schroeppel, suggests that the best choice
of k is the value that maximizes

where f is the function defined in exercise 28, since this is essentially the
expected value of ln() when we reach step E4.

Best results will be obtained with Algorithm E when both k and m are
well chosen. The proper choice of m can only be made by experimental
testing, since the asymptotic analysis we have made is too crude to give
sufficiently precise information, and since a variety of refinements to the
algorithm tend to have unpredictable effects. For example, we can make an
important improvement by comparing step E3 with Algorithm A: The
factoring of V can stop whenever we find T mod pj ≠ 0 and ⌊T/pj⌋ ≤ pj, since

T will then be either 1 or prime. If T is a prime greater than pm (it will be at
most in such a case), we can still output (P, e0, . . . , em, T),
since a complete factorization has been obtained. The second phase of the
algorithm will use only those outputs whose prime T’s have occurred at least
twice. This modification gives the effect of a much longer list of primes,
without increasing the factorization time. Wunderlich’s experiments indicate
that m ≈ 150 works well in the presence of this refinement, when N is in the
neighborhood of 1040.

Since step E3 is by far the most time-consuming part of the algorithm,
Morrison, Brillhart, and Schroeppel have suggested several ways to abort
this step when success becomes improbable: (a) Whenever T changes to a
single-precision value, continue only if ⌊T/pj⌋ > pj and 3T−1 mod T ≠ 1. (b)
Give up if T is still after casting out factors . (c) Cast out
factors only up to p5, say, for batches of 100 or so consecutive V’s; continue
the factorization later, but only on the V from each batch that has produced the
smallest residual T. (Before casting out the factors up to p5, it is wise to
calculate V mod , where the f’s are small enough to make

 fit in single precision, but large enough to make V mod
 unlikely. One single-precision remainder will therefore

characterize the value of V modulo five small primes.)
For estimates of the cycle length in the output of Algorithm E, see H. C.

Williams, Math. Comp. 36 (1981), 593–601.
*A theoretical upper bound. From the standpoint of computational
complexity, we would like to know if there is any method of factorization
whose expected running time can be proved to be O(N∊(N)), where ∊(N) → 0
as N → ∞. We have seen that Algorithm E probably has such behavior, but it
seems hopeless to find a rigorous proof, because continued fractions are not
sufficiently well disciplined. The first proof that a good factorization
algorithm exists in this sense was discovered by John Dixon in 1978; Dixon
showed, in fact, that it suffices to consider a simplified version of Algorithm
E, in which the continued fraction apparatus is removed but the basic idea of
(18) remains.

Dixon’s method [Math. Comp. 36 (1981), 255–260] is simply this,
assuming that N is known to have at least two distinct prime factors, and that

N is not divisible by the first m primes p1, p2, . . . , pm: Choose a random
integer X in the range 0 < X < N, and let V = X2 mod N. If V = 0, the number
gcd(X, N) is a proper factor of N. Otherwise cast out all of the small prime
factors of V as in step E3; in other words, express V in the form

where T is not divisible by any of the first m primes. If T = 1, the algorithm
proceeds as in step E4 to output (X, e1, . . . , em), which represents a solution
to (19) with e0 = 0. This process continues with new random values of X
until there are sufficiently many outputs to discover a factor of N by the
method of exercise 12.

In order to analyze this algorithm, we want to find bounds on (a) the
probability that a random X will yield an output, and (b) the probability that a
large number of outputs will be required before a factor is found. Let P (m,
N) be the probability (a), namely the probability that T = 1 when X is chosen
at random. After M values of X have been tried, we will obtain MP (m, N)
outputs, on the average; and the number of outputs has a binomial
distribution, so the standard deviation is less than the square root of the
mean. The probability (b) is fairly easy to deal with, since exercise 13
proves that the algorithm needs more than m + k outputs with probability ≤
2−k.

Exercise 30 proves that P (m, N) ≥ mr/(r!N) when r = 2⌊log N/(2 log
pm)⌋, so we can estimate the running time almost as we did in (22) but with
the quantity replaced by N. This time we choose

where |θ| ≤ 1 and r is even, and we choose m so that

this means

We will choose M so that Mmr/(r!N) ≥ 4m; thus the expected number of
outputs MP (m, N) will be at least 4m. The running time of the algorithm is of
order Mm log N, plus O(m3) steps for exercise 12; it turns out that O(m3) is
less than Mm log N, which is

The probability that this method fails to find a factor is negligibly small,
since the probability is at most e−m/2 that fewer than 2m outputs are obtained
(see exercise 31), while the probability is at most 2−m that no factors are
found from the first 2m outputs, and m ≫ ln N. We have proved the following
slight strengthening of Dixon’s original theorem:

Theorem D. There is an algorithm whose running time is O(N∊(N)), where
 and c is any constant greater than , that

finds a nontrivial factor of N with probability 1 – O(1/N), whenever N has
at least two distinct prime divisors.
Other approaches. Another factorization technique was suggested by John
M. Pollard [Proc. Cambridge Phil. Soc. 76 (1974), 521–528], who gave a
practical way to discover prime factors p of N when p − 1 has no large prime
factors. The latter algorithm (see exercise 19) is probably the first thing to try
after Algorithms A and B have run too long on a large N.

A survey paper by R. K. Guy, written in collaboration with J. H.
Conway, Congressus Numerantium 16 (1976), 49–89, gave a unique
perspective on the developments up till that time. Guy stated, “I shall be
surprised if anyone regularly factors numbers of size 1080 without special
form during the present century”; and he was indeed destined to be surprised
many times during the next 20 years.

Tremendous advances in factorization techniques for large numbers were
made during the 1980s, beginning with Carl Pomerance’s quadratic sieve
method of 1981 [see Lecture Notes in Comp. Sci. 209 (1985), 169–182].
Then Hendrik Lenstra devised the elliptic curve method [Annals of Math.
(2) 126 (1987), 649–673], which heuristically is expected to take about exp

 multiplications to find a prime factor p. This is
asymptotically the square root of the running time in our estimate for
Algorithm E when , and it becomes even better when N has
relatively small prime factors. An excellent exposition of this method has
been given by Joseph H. Silverman and John Tate in Rational Points on
Elliptic Curves (New York: Springer, 1992), Chapter 4.

John Pollard came back in 1988 with another new technique, which has
become known as the number field sieve; see Lecture Notes in Math. 1554
(1993) for a series of papers about this method, which is the current
champion for factoring extremely large integers. Its running time is predicted
to be of order

as N → ∞. The crossover point at which a well-tuned version of the number
field sieve begins to beat a well-tuned version of the quadratic sieve appears
to be at N ≈ 10112, according to A. K. Lenstra.

Details of the new methods are beyond the scope of this book, but we
can get an idea of their effectiveness by noting some of the early success
stories in which unfactored Fermat numbers of the form 22k + 1 were
cracked. For example, the factorization

was found by the number field sieve, after four months of computation that
occupied otherwise idle time on about 700 workstations [Lenstra, Lenstra,
Manasse, and Pollard, Math. Comp. 61 (1993), 319–349; 64 (1995), 1357];
here p99 denotes a 99-digit prime number. The next Fermat number has twice
as many digits, but it yielded to the elliptic curve method on October 20,
1995:

[Richard Brent, Math. Comp. 68 (1999), 429–451.] In fact, Brent had
already used the elliptic curve method to resolve the next case as early as
1988:

by a stroke of good luck, all but one of the prime factors was < 1022, so the
elliptic curve method was a winner.

What about 24096 + 1? At present, that number seems completely out of
reach. It has five factors < 1016, but the unfactored residual has 1187 decimal
digits. The next case, 28192 + 1, has four known factors < 1027 [Crandall and
Fagin, Math. Comp. 62 (1994), 321; Brent, Crandall, Dilcher, and van
Halewyn, Math. Comp. 69 (2000), 1297–1304] and a huge unfactored
residual.
Secret factors. Worldwide interest in the problem of factorization increased
dramatically in 1977, when R. L. Rivest, A. Shamir, and L. Adleman
discovered a way to encode messages that can apparently be decoded only
by knowing the factors of a large number N, even though the method of
encoding is known to everyone. Since a significant number of the world’s
greatest mathematicians have been unable to find efficient methods of
factoring, this scheme [CACM 21 (1978), 120–126] almost certainly
provides a secure way to protect confidential data and communications in
computer networks.

Let us imagine a small electronic device called an RSA box that has two
large prime numbers p and q stored in its memory. We will assume that p−1
and q –1 are not divisible by 3. The RSA box is connected somehow to a
computer, and it has told the computer the product N = pq; however, no
human being will be able to discover the values of p and q except by
factoring N, since the RSA box is cleverly designed to self-destruct if
anybody tries to tamper with it. In other words, it will erase its memory if it
is jostled or if it is subjected to any radiation that could change or read out
the data stored inside. Furthermore, the RSA box is sufficiently reliable that
it never needs to be maintained; we simply would discard it and buy another,
if an emergency arose or if it wore out. The prime factors p and q were
generated by the RSA box itself, using some scheme based on truly random
phenomena in nature like cosmic rays. The important point is that nobody

knows p or q, not even a person or organization that owns or has access to
this RSA box; there is no point in bribing or blackmailing anyone or holding
anybody hostage in order to discover N’s factors.

To send a secret message to the owner of an RSA box whose product
number is N, you break the message up into a sequence of numbers (x1, . . . ,
xk), where each xi lies in the range 0 ≤ xi < N; then you transmit the numbers

The RSA box, knowing p and q, can decode the message, because it has
precomputed a number d < N such that 3d ≡ 1 (modulo (p − 1)(q − 1)); it can
now compute each secret component (mod N)d mod N = xi in a reasonable
amount of time, using the method of Section 4.6.3. Naturally the RSA box
keeps this magic number d to itself; in fact, the RSA box might choose to
remember only d instead of p and q, because its only duties after having
computed N are to protect its secrets and to take cube roots mod N.

Such an encoding scheme is ineffective if x < , since x3 mod N = x3

and the cube root will easily be found. The logarithmic law of leading digits
in Section 4.2.4 implies that the leading place x1 of a k-place message (x1, . .
. , xk) will be less than about of the time, so this is a problem that
needs to be resolved. Exercise 32 presents one way to avoid the difficulty.

The security of the RSA encoding scheme relies on the fact that nobody
has been able to discover how to take cube roots quickly mod N without
knowing N’s factors. It seems likely that no such method will be found, but
we cannot be absolutely sure. So far all that can be said for certain is that all
of the ordinary ways to discover cube roots will fail. For example, there is
essentially no point in trying to compute the number d as a function of N; the
reason is that if d is known, or in fact if any number m of reasonable size is
known such that xm mod N = 1 holds for a significant number of x’s, then we
can find the factors of N in a few more steps (see exercise 34). Thus, any
method of attack based explicitly or implicitly on finding such an m can be no
better than factoring.

Some precautions are necessary, however. If the same message is sent to
three different people on a computer network, a person who knows x3

modulo N1, N2, and N3 could reconstruct x3 mod N1N2N3 = x3 by the Chinese
remainder theorem, so x would no longer be a secret. In fact, even if a “time-

stamped” message (2⌈lg ti⌉x + ti)3 mod Ni is sent to seven different people,
with known or guessable ti, the value of x can be deduced (see exercise 44).
Therefore some cryptographers have recommended encoding with the
exponent 216 + 1 = 65537 instead of 3; this exponent is prime, and the
computation of x65537 mod N takes only about 8.5 times as long as the
computation of x3 mod N. [CCITT Recommendations Blue Book (Geneva:
International Telecommunication Union, 1989), Fascicle VIII.8,
Recommendation X.509, Annex C, pages 74–76.] The original proposal of
Rivest, Shamir, and Adleman was to encode x by xa mod N where a is any
exponent prime to φ(N), not just a = 3; in practice, however, we prefer an
exponent for which encoding is faster than decoding.

The numbers p and q shouldn’t merely be “random” primes in order to
make the RSA scheme effective. We have mentioned that p − 1 and q − 1
should not be divisible by 3, since we want to ensure that unique cube roots
exist modulo N. Another condition is that p − 1 should have at least one very
large prime factor, and so should q−1; otherwise N can be factored using the
algorithm of exercise 19. In fact, that algorithm essentially relies on finding a
fairly small number m with the property that xm mod N is frequently equal to
1, and we have just seen that such an m is dangerous. When p−1 and q−1
have large prime factors p1 and q1, the theory in exercise 34 implies that m is
either a multiple of p1q1 (hence m will be hard to discover) or the
probability that xm ≡ 1 will be less than 1/p1q1 (hence xm mod N will almost
never be 1). Besides this condition, we don’t want p and q to be close to
each other, lest Algorithm D succeed in discovering them; in fact, we don’t
want the ratio p/q to be near a simple fraction, otherwise Lehman’s
generalization of Algorithm C could find them.

The following procedure for generating p and q is almost surely
unbreakable: Start with a truly random number p0 between, say, 1080 and
1081. Search for the first prime number p1 greater than p0; this will require
testing about ln p0 ≈ 90 odd numbers, and it will be sufficient to have p1 a
“probable prime” with probability > 1 – 2−100 after 50 trials of Algorithm P.
Then choose another truly random number p2 between, say, 1039 and 1040.
Search for the first prime number p of the form kp1 + 1 where k ≥ p2, k is

even, and k ≡ p1 (modulo 3). This will require testing about ln p1p2 ≈ 90
numbers before a prime p is found. The prime p will be about 120 digits
long; a similar construction can be used to find a prime q about 130 digits
long. For extra security, it is probably advisable to check that neither p+1 nor
q +1 consists entirely of rather small prime factors (see exercise 20). The
product N = pq, whose order of magnitude will be about 10250, now meets all
of our requirements, and it is inconceivable at this time that such an N could
be factored.

For example, suppose we knew a method that could factor a 250-digit
number N in N0.1 microseconds. This amounts to 1025 microseconds, and
there are only 31,556,952,000,000 μs per year, so we would need more than
3 × 1011 years of CPU time to complete the factorization. Even if a
government agency purchased 10 billion computers and set them all to
working on this problem, it would take more than 31 years before one of
them would crack N into factors; meanwhile the fact that the government had
purchased so many specialized machines would leak out, and people would
start using 300-digit N’s.

Since the encoding method x ↦ x3 mod N is known to everyone, there are
additional advantages besides the fact that the code can be cracked only by
the RSA box. Such “public key” systems were first published by W. Diffie
and M. E. Hellman in IEEE Trans. IT-22 (1976), 644–654. As an example of
what can be done when the encoding method is public knowledge, suppose
Alice wants to communicate with Bob securely via electronic mail, signing
her letter so that Bob can be sure nobody else has forged it. Let EA(M) be the
encoding function for messages M sent to Alice, let DA(M) be the decoding
done by Alice’s RSA box, and let EB(M), DB(M) be the corresponding
encoding and decoding functions for Bob’s RSA box. Then Alice can send a
signed message by affixing her name and the date to some confidential
message, then transmitting EB (DA(M)) to Bob, using her machine to compute
DA(M). When Bob gets this message, his RSA box converts it to DA(M), and
he knows EA so he can compute M = EA (DA(M)). This should convince him
that the message did indeed come from Alice; nobody else could have sent
the message DA(M). (Well, Bob himself now knows DA(M), so he could
impersonate Alice by passing EX (DA(M)) to Xavier. To defeat any such

attempted forgery, the content of M should clearly indicate that it is for Bob’s
eyes only.)

We might ask, how do Alice and Bob know each other’s encoding
functions EA and EB? It wouldn’t do simply to have them stored in a public
file, since some Charlie could tamper with that file, substituting an N that he
has computed by himself; Charlie could then surreptitiously intercept and
decode a private message before Alice or Bob would discover that
something is amiss. The solution is to keep the product numbers NA and NB in
a special public directory that has its own RSA box and its own widely
publicized product number ND. When Alice wants to know how to
communicate with Bob, she asks the directory for Bob’s product number; the
directory computer sends her a signed message giving the value of NB.
Nobody can forge such a message, so it must be legitimate.

An interesting alternative to the RSA scheme has been proposed by
Michael Rabin [M.I.T. Lab. for Comp. Sci., report TR-212 (1979)], who
suggests encoding by the function x2 mod N instead of x3 mod N. In this case
the decoding mechanism, which we can call a SQRT box, returns four
different messages; the reason is that four different numbers have the same
square modulo N, namely x, –x, fx mod N, and (–fx) mod N, where

If we agree in advance that x is even, or that x < N, then the ambiguity
drops to two messages, presumably only one of which makes any sense. The
ambiguity can in fact be eliminated entirely, as shown in exercise 35. Rabin’s
scheme has the important property that it is provably as difficult to find
square roots mod N as to find the factorization N = pq; for by taking the
square root of x2 mod N when x is chosen at random, we have a 50-50
chance of finding a value y such that x2 ≡ y2 and x ≢ ±y, after which gcd(x –
y, N) = p or q. However, the system has a fatal flaw that does not seem to be
present in the RSA scheme (see exercise 33): Anyone with access to a SQRT
box can easily determine the factors of its N. This not only permits cheating
by dishonest employees, or threats of extortion, it also allows people to
reveal their p and q, after which they might claim that their “signature” on
some transmitted document was a forgery. Thus it is clear that the goal of
secure communication leads to subtle problems quite different from those we
usually face in the design and analysis of algorithms.

Historical note: It was revealed in 1997 that Clifford Cocks had
considered the encoding of messages by the transformation xpq mod pq
already in 1973, but his work was kept secret.
The largest known primes. We have discussed several computational
methods elsewhere in this book that require the use of large prime numbers,
and the techniques just described can be used to discover primes of up to,
say, 25 digits or fewer, with relative ease. Table 2 shows the ten largest
primes that are less than the word size of typical computers. (Some other
useful primes appear in the answers to exercises 3.2.1.2–22 and 4.6.4–57.)

The ten largest primes less than N are N – a1, . . . , N – a10.

Table 2 Useful Prime Numbers
Actually much larger primes of special forms are known, and it is

occasionally important to find primes that are as large as possible. Let us
therefore conclude this section by investigating the interesting manner in
which the largest explicitly known primes have been discovered. Such
primes are of the form 2n − 1, for various special values of n, and so they are
especially suited to certain applications of binary computers.

A number of the form 2n –1 cannot be prime unless n is prime, since 2uv

–1 is divisible by 2u − 1. In 1644, Marin Mersenne astonished his
contemporaries by stating, in essence, that the numbers 2p − 1 are prime for p
= 2, 3, 5, 7, 13, 17, 19, 31, 67, 127, 257, and for no other p less than 257.
(This statement appeared in connection with a discussion of perfect numbers
in the preface to his Cogitata Physico-Mathematica. Curiously, he also
made the following remark: “To tell if a given number of 15 or 20 digits is
prime or not, all time would not suffice for the test, whatever use is made of

what is already known.”) Mersenne, who had corresponded frequently with
Fermat, Descartes, and others about similar topics in previous years, gave no
proof of his assertions, and for over 200 years nobody knew whether he was
correct. Euler showed that 231 – 1 is prime in 1772, after having tried
unsuccessfully to prove this in previous years. About 100 years later, É.
Lucas discovered that 2127 – 1 is prime, but 267 – 1 was questionable;
therefore Mersenne might not be completely accurate. Then I. M. Pervushin
proved in 1883 that 261 – 1 is prime [see Istoriko-Mat. Issledovani 6
(1953), 559], and this touched off speculation that Mersenne had only made a
copying error, writing 67 for 61. Eventually other errors in Mersenne’s
statement were discovered; R. E. Powers [AMM 18 (1911), 195] showed
that 289 – 1 is prime, as had been conjectured by some earlier writers, and
three years later he proved that 2107 – 1 also is prime. M. Kraitchik found in
1922 that 2257 – 1 is not prime [see his Recherches sur la Théorie des
Nombres (Paris: 1924), 21]; computational errors may have crept in to his
calculations, but his conclusion has turned out to be correct.

Numbers of the form 2p − 1 are now called Mersenne numbers, and it is
known that Mersenne primes are obtained for p equal to

The first entries above 100000 were found by David Slowinski and
associates while testing new supercomputers [see J. Recreational Math. 11
(1979), 258–261]; he found 756839, 859433, and 1257787 in collaboration
with Paul Gage during the 1990s. But the remaining exponents, beginning
with 1398269, were found respectively by Joël Armengaud, Gordon Spence,
Roland Clarkson, Nayan Hajratwala, Michael Cameron, Michael Shafer,
Josh Findley, Martin Nowak, Curtis Cooper/Steven Boone, Hans-Michael
Elvenich, Odd Magnar Strindmo, and Edson Smith using off-the-shelf
personal computers, most recently in 2013. They used a program by George
Woltman, who launched the Great Internet Mersenne Prime Search project
(GIMPS) in 1996, with Internet administrative software contributed
subsequently by Scott Kurowski.

Notice that the prime 8191 = 213 – 1 does not occur in (26); Mersenne
had stated that 28191 – 1 is prime, and others had conjectured that any
Mersenne prime could perhaps be used in the exponent.

The search for large primes has not been systematic, because people
have generally tried to set a hard-to-beat world record instead of spending
time with smaller exponents. For example, 2132049 – 1 was proved prime in
1983, and 2216091 – 1 in 1984, but the case 2110503 – 1 was not discovered
until 1988. Therefore one or more unknown Mersenne primes less than
257885161 – 1 might still exist. According to Woltman, all exponents <
25,000,000 were checked as of March 1, 2008; his volunteers are
systematically filling the remaining gaps.

Since 257885161 – 1 has more than 17 million decimal digits, it is clear
that some special techniques have been used to prove that such numbers are
prime. An efficient way to test the primality of a given Mersenne number 2p

− 1 was first devised by É. Lucas [Amer. J. Math. 1 (1878), 184–239, 289–
321, especially page 316] and improved by D. H. Lehmer [Annals of Math.
(2) 31 (1930), 419–448, especially page 443]. The Lucas–Lehmer test,
which is a special case of the method now used for testing the primality of n
when the factors of n + 1 are known, is the following:
Theorem L. Let q be an odd prime, and define the sequence 〈Ln〉 by the
rule

Then 2q − 1 is prime if and only if Lq–2 = 0.

For example, 23 – 1 is prime since L1 = (42 – 2) mod 7 = 0. This test is
particularly well suited to binary computers, since calculation mod (2q − 1)
is so convenient; see Section 4.3.2. Exercise 4.3.2–14 explains how to save
time when q is extremely large.
Proof. We will prove Theorem L using only very simple principles of
number theory, by investigating several features of recurring sequences that
are of independent interest. Consider the sequences 〈Un〉 and 〈Vn〉
defined by

The following equations are readily proved by induction:

Let us now prove an auxiliary result, when p is prime and e ≥ 1 :

This follows from the more general considerations of exercise 3.2.2–11, but
a direct proof can be given for sequence (28). Assume that Un = bpe, Un+1 =
a. By (32) and (28), U2n = bpe(2a – 4bpe) ≡ 2aUn (modulo pe+1), while we
have Similarly, U3n = U2n+1Un – U2nUn–1 ≡
3a2Un and U3n+1 = U2n+1Un+1 – U2nUn ≡ a3. In general,

so (33) follows if we take k = p.
From formulas (30) and (31) we can obtain other expressions for Un and

Vn, expanding (2 ±)n by the binomial theorem:

Now if we set n = p, where p is an odd prime, and if we use the fact that ()
is a multiple of p except when k = 0 or k = p, we find that

If p ≠ 3, Fermat’s theorem tells us that 3p–1 ≡ 1; hence (3(p−1)/2 – 1) ×
(3(p−1)/2 + 1) ≡ 0, and 3(p–1)/2 ≡ ±1. When Up ≡ –1, we have Up+1 = 4Up–
Up−1 = 4Up+Vp–Up+1 ≡ –Up+1; hence Up+1 mod p = 0. When Up ≡ +1, we
have Up−1 = 4Up–Up+1 = 4Up–Vp – Up –1 ≡ – Up − 1; hence Up − 1 mod p = 0.
We have proved that, for all primes p, there is an integer ∊(p) such that

Now if N is any positive integer, and if m = m(N) is the smallest positive
integer such that Um(N) mod N = 0, we have

(This number m(N) is called the rank of apparition of N in the sequence.) To
prove (37), observe that the sequence Um, Um+1, Um+2, . . . is congruent
(modulo N) to aU0, aU1, aU2, . . . , where a = Um+1 mod N is relatively
prime to N because gcd(Un, Un+1) = 1.

With these preliminaries out of the way, we are ready to prove Theorem
L. By (27) and induction,

Furthermore, the identity 2Un+1 = 4Un + Vn implies that gcd(Un, Vn) ≤ 2,
since any common factor of Un and Vn must divide Un and 2Un+1, while Un ⊥
Un+1. So Un and Vn have no odd factor in common, and if Lq−2 = 0 we must
have

Now if m = m(2q − 1) is the rank of apparition of 2q − 1, it must be a
divisor of 2q−1 but not of 2q−2; thus m = 2q−1. We will prove that n = 2q − 1
must therefore be prime: Let the factorization of n be . All primes
pj are greater than 3, since n is odd and congruent to (–1)q − 1 = –2 (modulo
3). From (33), (36), and (37) we know that Ut ≡ 0 (modulo 2q − 1), where

and each ∊j is ±1. It follows that t is a multiple of m = 2q−1. Let

 (pj + ∊j); we have

. Also, because pj + ∊j is even, t
≤ n0/2r−1, since a factor of two is lost each time the least common multiple of
two even numbers is taken. Combining these results, we have

; hence r ≤ 2 and t = m or t = 2m,
a power of 2. Therefore e1 = 1, er = 1, and if n is not prime we must have n =

2q − 1 = (2k + 1)(2l − 1) where 2k + 1 and 2l − 1 are prime. The latter
factorization is obviously impossible when q is odd, so n is prime.

Conversely, suppose that n = 2q − 1 is prime; we must show that V2q−2 ≡
0 (modulo n). For this purpose it suffices to prove that V2q−1 ≡ –2 (modulo n),
since V2q−1 = (V2q−2)2 – 2. Now

Since n is an odd prime, the binomial coefficient

is divisible by n except when 2k = 0 and 2k = n + 1; hence

Here 2 ≡ (2(q+1)/2)2, so 2(n−1)/2 ≡ (2(q+1)/2)(n−1) ≡ 1 by Fermat’s theorem.
Finally, by a simple case of the law of quadratic reciprocity (see exercise
23), 3(n−1)/2 ≡ –1, since n mod 3 = 1 and n mod 4 = 3. This means V2q−1 ≡ –2,
so we must have V2q−2 ≡ 0 as desired.

An anonymous author whose works are now preserved in Italian
libraries had discovered by 1460 that 217 – 1 and 219 – 1 are prime. Ever
since then, the world’s largest explicitly known prime numbers have almost
always been Mersenne primes. But the situation might change, since
Mersenne primes are getting harder to find, and since exercise 27 presents an
efficient test for primes of other forms. [See E. Picutti, Historia Math. 16
(1989), 123–136; Hugh C. Williams, Édouard Lucas and Primality Testing
(1998), Chapter 2.]

Exercises

1. [10] If the sequence d0, d1, d2, . . . of trial divisors in Algorithm A
contains a number that is not prime, why will it never appear in the output?

2. [15] If it is known that the input N to Algorithm A is equal to 3 or more,
could step A2 be eliminated?

3. [M20] Show that there is a number P with the following property: If
1000 ≤ n ≤ 1000000, then n is prime if and only if gcd(n, P) = 1.

4. [M29] In the notation of exercise 3.1–7 and Section 1.2.11.3, prove that
the average value of the least n such that Xn = Xℓ(n)–1 lies between 1.5Q(m) –
0.5 and 1.625Q(m) – 0.5.

5. [21] Use Fermat’s method (Algorithm D) to find the factors of 11111 by
hand, when the moduli are 3, 5, 7, 8, and 11.

6. [M24] If p is an odd prime and if N is not a multiple of p, prove that the
number of integers x such that 0 ≤ x < p and x2 – N ≡ y2 (modulo p) has a
solution y is equal to (p ± 1)/2.

7. [25] Discuss the problems of programming the sieve of Algorithm D on
a binary computer when the table entries for modulus mi do not exactly fill an
integral number of memory words.
 8. [23] (The sieve of Eratosthenes, 3rd century B.C.) The following
procedure evidently discovers all odd prime numbers less than a given
integer N, since it removes all the nonprime numbers: Start with all the odd
numbers between 1 and N; then successively strike out the multiples ,
pk(pk + 2), pk(pk + 4), . . . , of the kth prime pk, for k = 2, 3, 4, . . . , until
reaching a prime pk with > N.

Show how to adapt the procedure just described into an algorithm that is
directly suited to efficient computer calculation, using no multiplication.

9. [M25] Let n be an odd number, n ≥ 3. Show that if the number λ(n) of
Theorem 3.2.1.2B is a divisor of n−1 but not equal to n−1, then n must have
the form p1p2 . . . pt where the p’s are distinct primes and t ≥ 3.

 10. [M26] (John Selfridge.) Prove that if, for each prime divisor p of n −
1, there is a number xp such that mod n ≠ 1 but mod n = 1,
then n is prime.
11. [M20] What outputs does Algorithm E give when N = 197209, k = 5, m
= 1? [Hint: .]

 12. [M28] Design an algorithm that uses the outputs of Algorithm E to find
a proper factor of N, if Algorithm E has produced enough outputs to deduce
a solution of (18).

13. [HM25] (J. D. Dixon.) Prove that whenever the algorithm of exercise
12 is presented with a solution (x, e0, . . . , em) whose exponents are
linearly dependent modulo 2 on the exponents of previous solutions, the
probability is 21–d that a factorization will not be found, when N has d
distinct prime factors and x is chosen at random.
14. [M20] Prove that the number T in step E3 of Algorithm E will never be
a multiple of an odd prime p for which (kN)(p−1)/2 mod p > 1.

 15. [M34] (Lucas and Lehmer.) Let P and Q be relatively prime integers,
and let U0 = 0, U1 = 1, Un+1 = PUn – QUn–1 for n ≥ 1. Prove that if N is a
positive integer relatively prime to 2P2 – 8Q, and if UN+1 mod N = 0,
while U(N+1)/p mod N ≠ 0 for each prime p dividing N + 1, then N is prime.
(This gives a test for primality when the factors of N + 1 are known instead
of the factors of N − 1. We can evaluate Um in O(log m) steps as in
exercise 4.6.3–26.) [Hint: See the proof of Theorem L.]
16. [M50] Are there infinitely many Mersenne primes?
17. [M25] (V. R. Pratt.) A complete proof of primality by the converse of
Fermat’s theorem takes the form of a tree whose nodes have the form (q,
x), where q and x are positive integers satisfying the following arithmetic
conditions: (i) If (q1, x1), . . . , (qt, xt) are the children of (q, x) then q = q1 .
. . qt +1. [In particular, if (q, x) is childless, then q = 2.] (ii) If (r, y) is a
child of (q, x), then x(q−1)/r mod q ≠ 1. (iii) For each node (q, x), we have
xq−1 mod q = 1. From these conditions it follows that q is prime and x is a
primitive root modulo q, for all nodes (q, x). [For example, the tree

demonstrates that 1009 is prime.] Prove that such a tree with root (q, x)
has at most f(q) nodes, where f is a rather slowly growing function.

 18. [HM23] Give a heuristic proof of (7), analogous to the text’s
derivation of (6). What is the approximate probability that ?

 19. [M25] (J. M. Pollard.) Show how to compute a number M that is
divisible by all odd primes p such that p − 1 is a divisor of some given
number D. [Hint: Consider numbers of the form an − 1.] Such an M is
useful in factorization, for by computing gcd(M, N) we may discover a
factor of N. Extend this idea to an efficient method that has high probability
of discovering prime factors p of a given large number N, when all prime
power factors of p − 1 are less than 103 except for at most one prime factor
less than 105. [For example, the second-largest prime dividing (15) would
be detected by this method, since it is 1 + 24 · 52 · 67 · 107 · 199 · 41231.]
20. [M40] Consider exercise 19 with p + 1 replacing p − 1.
21. [M49] (R. K. Guy.) Let m(p) be the number of iterations required by
Algorithm B to cast out the prime factor p. Is

 22. [M30] (M. O. Rabin.) Let pn be the probability that Algorithm P
guesses wrong, when n is an odd integer ≥ 3. Show that pn < for all n.

23. [M35] The Jacobi symbol is defined to be –1, 0, or +1 for all
integers p ≥ 0 and all odd integers q > 1 by the rules
(modulo q) when q is prime; when q is the product q1 .
. . qt of t primes (not necessarily distinct). Thus it generalizes the Legendre
symbol of exercise 1.2.4–47.

a) Prove that satisfies the following relationships, hence it can be
computed efficiently:

;
 if both p and q are odd. [The latter law,

which is a reciprocity relation reducing the evaluation of to the
evaluation of , has been proved in exercise 1.2.4–47(d) when both p
and q are prime, so you may assume its validity in that special case.]

b) (Solovay and Strassen.) Prove that if n is odd but not prime, the
number of integers x such that
(modulo n) is at most . (Thus, the following testing procedure

correctly determines whether or not a given n is prime, with
probability at least 1/2 for all fixed n: “Generate x at random with

. If (modulo n), say that n is probably
prime, otherwise say that n is definitely not prime.”)

c) (L. Monier.) Prove that if n and x are numbers for which Algorithm P
concludes that “n is probably prime”, then
(modulo n). [Hence Algorithm P is always superior to the test in (b).]

 24. [M25] (L. Adleman.) When n > 1 and x > 1 are integers, n odd, let us
say that n “passes the x test of Algorithm P” if either x mod n = 0 or if
steps P2–P5 lead to the conclusion that n is probably prime. Prove that, for
any N, there exists a set of positive integers x1, . . . , xm ≤ N with m ≤ ⌊lg
N⌋ such that a positive odd integer in the range 1 < n ≤ N is prime if and
only if it passes the x test of Algorithm P for x = x1 mod n, . . . , x = xm mod
n. Thus, the probabilistic test for primality can in principle be converted
into an efficient test that leaves nothing to chance. (You need not show how
to compute the xj efficiently; just prove that they exist.)
25. [HM41] (B. Riemann.) Prove that

where the sum is over all complex σ + iτ such that τ > 0 and ζ (σ + iτ) =
0.
 26. [M25] (H. C. Pocklington, 1914.) Let N = fr + 1, where 0 < r ≤ f + 1.

Prove that N is prime if, for every prime divisor p of f, there is an integer
xp such that .

 27. [M30] Show that there is a way to test numbers of the form N = 5·2n +
1 for primality, using approximately the same number of squarings mod N
as the Lucas– Lehmer test for Mersenne primes in Theorem L. [Hint: See
the previous exercise.]
28. [M27] Given a prime p and a positive integer d, what is the value of
f(p, d), the average number of times that p divides A2 –dB2 (counting
multiplicity), when A and B are random integers that are independent
except for the condition A ⊥ B?

29. [M25] Prove that the number of positive integers ≤ n whose prime
factors are all contained in a given set of primes {p1, . . . , pm} is at least
mr/r!, when r = ⌊log n/log pm⌋ and p1 < ... < pm.
30. [HM35] (J. D. Dixon and Claus-Peter Schnorr.) Let p1 < ... < pm be
primes that do not divide the odd number N, and let r be an even integer ≤
log N/log pm. Prove that the number of integers X in the range 0 ≤ X < N
such that X2 mod N = Hint: Let the
prime factorization of N be Show that a sequence of exponents
(e1, . . . , em) leads to 2d solutions X whenever we have e1 + ... + em ≤ r
and is a quadratic residue modulo qi for 1 ≤ i ≤ d. Such
exponent sequences can be obtained as ordered pairs

 where r and
 and

31. [M20] Use exercise 1.2.10–21 to estimate the probability that Dixon’s
factorization algorithm (as described preceding Theorem D) obtains fewer
than 2m outputs.

 32. [M21] Show how to modify the RSA encoding scheme so that there is
no problem with messages < , in such a way that the length of
messages is not substantially increased.
33. [M50] Prove or disprove: If a reasonably efficient algorithm exists that
has a nonnegligible probability of being able to find x mod N, given a
number N = pq whose prime factors satisfy p ≡ q ≡ 2 (modulo 3) and given
the value of x3 mod N, then there is a reasonably efficient algorithm that
has a nonnegligible probability of being able to find the factors of N. [If
this could be proved, it would not only show that the cube root problem is
as difficult as factoring, it would also show that the RSA scheme has the
same fatal flaw as the SQRT scheme.]
34. [M30] (Peter Weinberger.) Suppose N = pq in the RSA scheme, and
suppose you know a number m such that xm mod N = 1 for at least 10−12 of
all positive integers x. Explain how you could go about factoring N without
great difficulty, if m is not too large (say m < N10).

 35. [M25] (H. C. Williams, 1979.) Let N be the product of two primes p
and q, where p mod 8 = 3 and q mod 8 = 7. Prove that the Jacobi symbol
satisfies , and use this property to design an
encoding/decoding scheme analogous to Rabin’s SQRT box but with no
ambiguity of messages.
36. [HM24] The asymptotic analysis following (22) is too coarse to give
meaningful values unless N is extremely large, since ln ln N is always
rather small when N is in a practical range. Carry out a more precise
analysis that gives insight into the behavior of (22) for reasonable values
of N; also explain how to choose a value of ln m that minimizes (22)
except for a factor of size at most exp(O(log log N)).
37. [M27] Prove that the square root of every positive integer D has a
periodic continued fraction of the form

unless D is a perfect square, where and (a1, . . . , an) is a
palindrome (that is, ai = an+1–i for 1 ≤ i ≤ n).

38. [25] (Useless primes.) For 0 ≤ d ≤ 9, find Pd, the largest 50-digit
prime number that has the maximum possible number of decimal digits
equal to d. (First maximize the number of d’s, then find the largest such
prime.)
39. [40] Many primes p have the property that 2p + 1 is also prime; for
example, 5 → 11 → 23 → 47. More generally, say that q is a successor of
p if p and q are both prime and q = 2kp + 1 for some k ≥ 0. For example, 2
→ 3 → 7 → 29 → 59 → 1889 → 3779 → 7559 → 4058207223809 →
32465657790473 → 4462046030502692971872257 → 95〈30 omitted
digits〉37 → ... ; the smallest successor of 95 . . . 37 has 103 digits.

Find the longest chain of successive primes that you can.
 40. [M36] (A. Shamir.) Consider an abstract computer that can perform the

operations x + y, x – y, x · y, and ⌊x/y⌋ on integers x and y of arbitrary
length, in just one unit of time, no matter how large those integers are. The
machine stores integers in a random-access memory and it can select
different program steps depending on whether or not x = y, given x and y.
The purpose of this exercise is to demonstrate that there is an amazingly

fast way to factorize numbers on such a computer. (Therefore it will
probably be quite difficult to show that factorization is inherently
complicated on real machines, although we suspect that it is.)

a) Find a way to compute n! in O(log n) steps on such a computer, given
an integer value n ≥ 2. [Hint: If A is a sufficiently large integer, the
binomial coefficients can be computed readily
from the value of (A + 1)m.]

b) Show how to compute a number f(n) in O(log n) steps on such a
computer, given an integer value n ≥ 2, having the following
properties: f(n) = n if n is prime, otherwise f(n) is a proper (but not
necessarily prime) divisor of n. [Hint: If n ≠ 4, one such function f(n)
is gcd(m(n), n), where m(n) = min{m | m! mod n = 0}.]

(As a consequence of (b), we can completely factor a given number n by
doing only O(log n)2 arithmetic operations on arbitrarily large integers:
Given a partial factorization n = n1 . . . nr, each nonprime ni can be
replaced by f(ni) · (ni/f(ni)) in ∑O(log ni) = O(log n) steps, and this
refinement can be repeated until all ni are prime.)

 41. [M28] (Lagarias, Miller, and Odlyzko.) The purpose of this exercise is
to show that the number of primes less than N3 can be calculated by looking
only at the primes less than N2, and thus to evaluate π(N3) in O(N2+∊) steps.

Say that an “m-survivor” is a positive integer whose prime factors all
exceed m; thus, an m-survivor remains in the sieve of Eratosthenes
(exercise 8) after all multiples of primes ≤ m have been sieved out. Let f(x,
m) be the number of m-survivors that are ≤ x, and let fk(x, m) be the
number of such survivors that have exactly k prime factors (counting
multiplicity).

a) Prove that π(N3) = π(N) + f(N3, N) – 1 – f2(N3, N).

b) Explain how to compute f2(N3, N) from the values of π(x) for x ≤ N2.
Use your method to evaluate f2(1000, 10) by hand.

c) Same question as (b), but evaluate f(N3, N) instead of f2(N3, N). [Hint:
Use the identity f(x, pj) = f(x, pj–1) – f(x/pj, pj–1), where pj is the jth
prime and p0 = 1.]

d) Discuss data structures for the efficient evaluation of the quantities in
(b) and (c).

42. [M35] (H. W. Lenstra, Jr.) Given 0 < r < s < N with r ⊥ s and N ⊥ s,
show that it is possible to find all divisors of N that are ≡ r (modulo s) by
performing O(⌈N/s3⌉1/2 log s) well-chosen arithmetic operations on (lg N)-
bit numbers. [Hint: Apply exercise 4.5.3–49.]

 43. [M43] Let m = pq be an r-bit Blum integer as in Theorem 3.5P, and let
Qm = {y | y = x2 mod m for some x}. Then Qm has (p + 1)(q + 1)/4
elements, and every element y ∊ Qm has a unique square root such
that x ∊ Qm. Suppose G(y) is an algorithm that correctly guesses mod 2
with probability ≥ + ∊, when y is a random element of Qm. The goal of
this exercise is to prove that the problem solved by G is almost as hard as
the problem of factoring m.

a) Construct an algorithm A(G, m, ∊, y, δ) that uses random numbers and
algorithm G to guess whether a given integer y is in Qm, without
necessarily computing . Your algorithm should guess correctly with
probability ≥ 1 – δ, and its running time T(A) should be at most
O(∊−2(log δ−1)T (G)), assuming that T(G) ≥ r2. (If T(G) < r2, replace
T(G) by (T (G) + r2) in this formula.)

b) Construct an algorithm F(G, m, ∊) that finds the factors of m with
expected running time T(F) = O(r2(∊−6 + ∊−4(log ∊−1)T (G))).

Hints: For fixed y ∊ Qm, and for 0 ≤ v < m, let τv = v mod m and λv =
τv mod 2. Notice that λ(–v) + λv = 1 and λ(v1 + ... + vn) = (λv1 + ... + λvn

+ ⌊(τv1 + ... + τ vm)/m⌋) mod 2. Furthermore we have
; here v stands for mod m. If ±v ∊ Qm

we have ; therefore algorithm G gives us a way to guess
λv for about half of all v.

44. [M35] (J. Håstad.) Show that it is not difficult to find x when ai0

+ai1x+ai2x2 + ai3x3 ≡ 0 (modulo mi), 0 < x < mi, gcd(ai0, ai1, ai2, ai3, mi) =
1, and mi > 1027 for 1 ≤ i ≤ 7, if mi ⊥ mj for 1 ≤ i < j ≤ 7. (All variables are
integers; all but x are known.) Hint: When L is any nonsingular matrix of

real numbers, the algorithm of Lenstra, Lenstra, and Lovász
[Mathematische Annalen 261 (1982), 515–534] efficiently finds a nonzero
integer vector v = (v1, . . . , vn) such that length

 45. [M41] (J. M. Pollard and Claus-Peter Schnorr.) Find an efficient way
to solve the congruence

for integers x and y, given integers a, b, and n with ab ⊥ n and n odd,
even if the factorization of n is unknown. [Hint: Use the identity

 = x2 – ay2, where x = x1x2 – ay1y2 and y = x1y2 +
x2y1.]

46. [HM30] (L. Adleman.) Let p be a rather large prime number and let a
be a primitive root modulo p; thus, all integers b in the range 1 ≤ b < p can
be written b = an mod p, for some unique n with 1 ≤ n < p.

Design an algorithm that almost always finds n, given b, in O(p∊) steps
for all ∊ > 0, using ideas similar to those of Dixon’s factoring algorithm.
[Hint: Start by building a repertoire of numbers ni such that ani mod p has
only small prime factors.]
47. [M50] A certain literary quotation x = x1x2, represented in ASCII code,
has the enciphered value

(8372e6cadf564a9ee347092daefc242058b8044228597e5f2326bbbff1583ea
4200d895d9564d39229c79af8
 72a72e38bb92852a22679080e269c30690fab0ec19f78e9ef8bae74b600f4eb
ef42a1dd5a6d806dc70b96de2
 bf4a6c7d2ebb51bfd156dd8ac3cb0ae1c1c38d76a3427bcc3f12af7d4d04314
c0d8377a0c79db1b1f0cd1702,
 2aabcd0f9f1f9fb382313246de168bae6a28d177963a8ebe6023f1c5bd8632c
aee9604f63c6a6e33ceb1e1bd
 4732a2973f5021e96e05e0da932b5b1d2bc618351ca584bb6e49255ba22dca5
5ebd6b93a9c94d8749bb53be2
 90650878b17f4fe30bbb08453929a94a2efe3367e2cd92ea31a5e0d9f466870
b162272e9e164e8c3238da519)

in hexadecimal notation, where N is
 c97d1cbcc3b67d1ba197100df7dbd2d2864c4fef4a78e62ddd1423d972bc7a4
20f66046386462d260d68a8b2
 3fbf12354705d874f79c22698f750c1b4435bc99174e58180bd18560a5c69c4
eafb573446f79f588f624ec18

 4c3e7098e65ac7b88f89e1fadcdc3558c878dde6bc7c32be57c5e7e8d95d697
ad3c6c343485132dcbb74f411.

What is x?

The problem of distinguishing prime numbers from
composites, and of resolving composite numbers into their
prime factors, is one of the most important and useful in all
of arithmetic. . . . The dignity of science seems to demand

that every aid to the solution of such an elegant and
celebrated problem be zealously cultivated.

— C. F. GAUSS, Disquisitiones Arithmeticæ, Article 329 (1801)

4.6. Polynomial Arithmetic
The techniques we have been studying apply in a natural way to many types
of mathematical quantities, not simply to numbers. In this section we shall
deal with polynomials, which are the next step up from numbers. Formally
speaking, a polynomial over S is an expression of the form

where the coefficients un, . . . , u1, u0 are elements of some algebraic system
S, and the variable x may be regarded as a formal symbol with an
indeterminate meaning. We will assume that the algebraic system S is a
commutative ring with identity; this means that S admits the operations of
addition, subtraction, and multiplication, satisfying the customary properties:
Addition and multiplication are binary operations defined on S; they are
associative and commutative, and multiplication distributes over addition.
There is an additive identity element 0 and a multiplicative identity element
1, such that a + 0 = a and a · 1 = a for all a in S. Subtraction is the inverse of
addition, but we assume nothing about the possibility of division as an
inverse to multiplication. The polynomial 0xn+m + ... + 0xn+1 + unxn + ... +
u1x + u0 is regarded as the same polynomial as (1), although its expression is
formally different.

We say that (1) is a polynomial of degree n and leading coefficient un if
un ≠ 0; and in this case we write

By convention, we also set

where “0” denotes the zero polynomial whose coefficients are all zero. We
say that u(x) is a monic polynomial if its leading coefficient ℓ(u) is 1.

Arithmetic on polynomials consists primarily of addition, subtraction,
and multiplication; in some cases, further operations such as division,
exponentiation, factoring, and taking the greatest common divisor are
important. Addition, subtraction, and multiplication are defined in a natural
way, as though the variable x were an element of S: We add or subtract
polynomials by adding or subtracting the coefficients of like powers of x.
Multiplication is done by the rule

where

In the latter formula ui or vj are treated as zero if i > r or j > s.
The algebraic system S is usually the set of integers, or the rational

numbers; or it may itself be a set of polynomials (in variables other than x),
in which case (1) is a multivariate polynomial, a polynomial in several
variables. Another important case occurs when the algebraic system S
consists of the integers 0, 1, . . . , m − 1, with addition, subtraction, and
multiplication performed mod m (see Eq. 4.3.2–(11)); this is called
polynomial arithmetic modulo m. Polynomial arithmetic modulo 2, when
each of the coefficients is 0 or 1, is especially important.

The reader should note the similarity between polynomial arithmetic and
multiple-precision arithmetic (Section 4.3.1), where the radix b is substituted
for x. The chief difference is that the coefficient uk of xk in polynomial
arithmetic bears no essential relation to its neighboring coefficients uk±1, so
the idea of “carrying” from one place to the next is absent. In fact,
polynomial arithmetic modulo b is essentially identical to multiple-precision
arithmetic with radix b, except that all carries are suppressed. For example,
compare the multiplication of (1101)2 by (1011)2 in the binary number system
with the analogous multiplication of x3 + x2 + 1 by x3 + x + 1 modulo 2:

The product of these polynomials modulo 2 is obtained by suppressing all
carries, and it is x6 +x5 +x4 +x3 +x2 +x+1. If we had multiplied the same
polynomials over the integers, without taking residues modulo 2, the result
would have been x6 + x5 + x4 + 3x3 + x2 + x + 1; again carries are
suppressed, but in this case the coefficients can get arbitrarily large.

In view of this strong analogy with multiple-precision arithmetic, it is
unnecessary to discuss polynomial addition, subtraction, and multiplication
much further in this section. However, we should point out some aspects that
often make polynomial arithmetic somewhat different from multiple-
precision arithmetic in practice: There is often a tendency to have a large
number of zero coefficients, and polynomials of huge degrees, so special
forms of representation are desirable; see Section 2.2.4. Furthermore,
arithmetic on polynomials in several variables leads to routines that are best
understood in a recursive framework; this situation is discussed in Chapter 8.

Although the techniques of polynomial addition, subtraction, and
multiplication are comparatively straightforward, several other important
aspects of polynomial arithmetic deserve special examination. The following
subsections therefore discuss division of polynomials, with associated
techniques such as finding greatest common divisors and factoring. We shall
also discuss the problem of efficient evaluation of polynomials, namely the
task of finding the value of u(x) when x is a given element of S, using as few
operations as possible. The special case of evaluating xn rapidly when n is
large is quite important by itself, so it is discussed in detail in Section 4.6.3.

The first major set of computer subroutines for doing polynomial
arithmetic was the ALPAK system [W. S. Brown, J. P. Hyde, and B. A.
Tague, Bell System Tech. J. 42 (1963), 2081–2119; 43 (1964), 785–804,
1547–1562]. Another early landmark in this field was the PM system of

George Collins [CACM 9 (1966), 578–589]; see also C. L. Hamblin, Comp.
J. 10 (1967), 168–171.

Exercises

1. [10] If we are doing polynomial arithmetic modulo 10, what is 7x+2
minus x2 +5? What is 6x2 + x + 3 times 5x2 + 2?

2. [17] True or false: (a) The product of monic polynomials is monic. (b)
The product of polynomials of degrees m and n has degree m+n. (c) The sum
of polynomials of degrees m and n has degree max(m, n).

3. [M20] If each of the coefficients ur, . . . , u0, vs, . . . , v0 in (4) is an
integer satisfying the conditions |ui| ≤ m1, |vj| ≤ m2, what is the maximum
absolute value of the product coefficients wk?

 4. [21] Can the multiplication of polynomials modulo 2 be facilitated by
using the ordinary arithmetic operations on a binary computer, if
coefficients are packed into computer words?
 5. [M21] Show how to multiply two polynomials of degree ≤ n, modulo
2, with an execution time proportional to O(nlg 3) when n is large, by
adapting Karatsuba’s method (see Section 4.3.3).

4.6.1. Division of Polynomials
It is possible to divide one polynomial by another in essentially the same
way that we divide one multiple-precision integer by another, when
arithmetic is being done on polynomials over a field. A field S is a
commutative ring with identity, in which exact division is possible as well as
the operations of addition, subtraction, and multiplication; this means as
usual that whenever u and v are elements of S, and v ≠ 0, there is an element
w in S such that u = vw. The most important fields of coefficients that arise in
applications are

a) the rational numbers (represented as fractions, see Section 4.5.1);
b) the real or complex numbers (represented within a computer by means

of floating point approximations; see Section 4.2);
c) the integers modulo p where p is prime (where division can be

implemented as suggested in exercise 4.5.2–16);

d) rational functions over a field, that is, quotients of two polynomials
whose coefficients are in that field, the denominator being monic.

Of special importance is the field of integers modulo 2, whose only elements
are 0 and 1. Polynomials over this field (namely polynomials modulo 2) have
many analogies to integers expressed in binary notation; and rational
functions over this field have striking analogies to rational numbers whose
numerator and denominator are represented in binary notation.

Given two polynomials u(x) and v(x) over a field, with v(x) ≠ 0, we can
divide u(x) by v(x) to obtain a quotient polynomial q(x) and a remainder
polynomial r(x) satisfying the conditions

It is easy to see that there is at most one pair of polynomials (q(x),
r(x))satisfying these relations; for if (q1(x), r1(x)) and (q2(x), r2(x)) both
satisfy (1) with respect to the same polynomials u(x) and v(x), then q1(x)v(x)
+ r1(x) = q2(x)v(x) + r2(x), so (q1(x) – q2(x))v(x) = r2(x) – r1(x). Now if
q1(x) – q2(x) is nonzero, we have deg ((q1–q2)·v) = deg(q1–q2)+deg(v) ≥
deg(v) > deg(r2–r1), a contradiction; hence q1(x) – q2(x) = 0 and r1(x) =
r2(x).

The following algorithm, which is essentially the same as Algorithm
4.3.1D for multiple-precision division but without any concerns of carries,
may be used to determine q(x) and r(x):
Algorithm D (Division of polynomials over a field). Given polynomials

over a field S, where vn ≠ 0 and m ≥ n ≥ 0, this algorithm finds the
polynomials

over S that satisfy (1).
D1. [Iterate on k.] Do step D2 for k = m – n, m – n − 1, . . . , 0; then

terminate the algorithm with (rn−1, . . . , r0) = (un−1, . . . , u0).
D2. [Division loop.] Set qk ← un+k/vn, and then set uj ← uj – qkvj–k for j =

n + k − 1, n + k – 2, . . . , k. (The latter operation amounts to replacing
u(x) by u(x) – qkxkv(x), a polynomial of degree < n + k.)

An example of Algorithm D appears below in (5). The number of
arithmetic operations is essentially proportional to n(m – n + 1). Note that
explicit division of coefficients is done only at the beginning of step D2, and
the divisor is always vn; thus if v(x) is a monic polynomial (with vn = 1),
there is no actual division at all. If multiplication is easier to perform than
division it will be preferable to compute 1/vn at the beginning of the
algorithm and to multiply by this quantity in step D2.

We shall often write u(x) mod v(x) for the remainder r(x) in (1).
Unique factorization domains. If we restrict consideration to polynomials
over a field, we are not coming to grips with many important cases, such as
polynomials over the integers or polynomials in several variables. Let us
therefore now consider the more general situation that the algebraic system S
of coefficients is a unique factorization domain, not necessarily a field. This
means that S is a commutative ring with identity, and that

i) uv ≠ 0, whenever u and v are nonzero elements of S;
ii) every nonzero element u of S is either a unit or has a “unique”

representation as a product of primes p1, . . . , pt:

A unit is an element that has a reciprocal, namely an element u such that uv =
1 for some v in S; and a prime is a nonunit element p such that the equation p
= qr can be true only if either q or r is a unit. The representation (2) is to be
unique in the sense that if p1 . . . pt = q1. . . qs, where all the p’s and q’s are
primes, then s = t and there is a permutation π1 . . . πt of {1, . . . , t} such that
p1 = a1qπ1, . . . , pt = atqπt for some units a1, . . . , at. In other words,
factorization into primes is unique, except for unit multiples and except for
the order of the factors.

Any field is a unique factorization domain, in which each nonzero
element is a unit and there are no primes. The integers form a unique
factorization domain in which the units are +1 and –1, and the primes are ±2,
±3, ±5, ±7, ±11, etc. The case that S is the set of all integers is of principal
importance, because it is often preferable to work with integer coefficients
instead of arbitrary rational coefficients.

One of the key facts about polynomials (see exercise 10) is that the
polynomials over a unique factorization domain form a unique

factorization domain. A polynomial that is prime in this domain is usually
called an irreducible polynomial. By using the unique factorization theorem
repeatedly, we can prove that multivariate polynomials over the integers, or
over any field, in any number of variables, can be uniquely factored into
irreducible polynomials. For example, the multivariate polynomial 90x3 –
120x2y + 18x2yz – 24xy2z over the integers is the product of five irreducible
polynomials 2 · 3 · x · (3x – 4y) · (5x + yz). The same polynomial, as a
polynomial over the rationals, is the product of three irreducible polynomials
(6x) · (3x – 4y) · (5x + yz); this factorization can also be written x · (90x −
120y) · () and in infinitely many other ways, although the
factorization is essentially unique.

As usual, we say that u(x) is a multiple of v(x), and that v(x) is a divisor
of u(x), if u(x) = v(x)q(x) for some polynomial q(x). If we have an algorithm
to tell whether or not u is a multiple of v for arbitrary nonzero elements u and
v of a unique factorization domain S, and to determine w if u = v·w, then
Algorithm D gives us a method to tell whether or not u(x) is a multiple of
v(x) for arbitrary nonzero polynomials u(x) and v(x) over S. For if u(x) is a
multiple of v(x), it is easy to see that un+k must be a multiple of vn each time
we get to step D2, hence the quotient u(x)/v(x) will be found. Applying this
observation recursively, we obtain an algorithm that decides if a given
polynomial over S, in any number of variables, is a multiple of another given
polynomial over S, and the algorithm will find the quotient when it exists.

A set of elements of a unique factorization domain is said to be
relatively prime if no prime of that unique factorization domain divides all of
them. A polynomial over a unique factorization domain is called primitive if
its coefficients are relatively prime. (This concept should not be confused
with the quite different idea of “primitive polynomials modulo p” discussed
in Section 3.2.2.) The following fact, introduced for the case of polynomials
over the integers by C. F. Gauss in article 42 of his celebrated book
Disquisitiones Arithmeticæ (Leipzig: 1801), is of prime importance:
Lemma G (Gauss’s Lemma). The product of primitive polynomials over a
unique factorization domain is primitive.
Proof. Let u(x) = umxm + ... + u0 and v(x) = vnxn + ... + v0 be primitive
polynomials. If p is any prime of the domain, we must show that p does not
divide all the coefficients of u(x)v(x). By assumption, there is an index j such

that uj is not divisible by p, and an index k such that vk is not divisible by p.
Let j and k be as small as possible; then the coefficient of xj+k in u(x)v(x) is

and it is easy to see that this is not a multiple of p (since its first term isn’t,
but all of its other terms are).

If a nonzero polynomial u(x) over a unique factorization domain S is not
primitive, we can write u(x) = p1 · u1(x), where p1 is a prime of S dividing
all the coefficients of u(x), and where u1(x) is another nonzero polynomial
over S. All of the coefficients of u1(x) have one less prime factor than the
corresponding coefficients of u(x). Now if u1(x) is not primitive, we can
write u1(x) = p2 ·u2(x), etc.; this process must ultimately terminate in a
representation u(x) = c · uk(x), where c is an element of S and uk(x) is
primitive. In fact, we have the following companion to Lemma G:
Lemma H. Any nonzero polynomial u(x) over a unique factorization
domain S can be factored in the form u(x) = c · v(x), where c is in S and
v(x) is primitive. Furthermore, this representation is unique, in the sense
that if u = c1 · v1(x) = c2 · v2(x), then c1 = ac2 and v2(x) = av1(x) where a is
a unit of S.
Proof. We have shown that such a representation exists, so only the
uniqueness needs to be proved. Assume that c1 · v1(x) = c2 · v2(x), where
v1(x) and v2(x) are primitive. Let p be any prime of S. If pk divides c1, then
pk also divides c2; otherwise pk would divide all the coefficients of c2 ·
v2(x), so p would divide all the coefficients of v2(x), a contradiction.
Similarly, pk divides c2 only if pk divides c1. Hence, by unique factorization,
c1 = ac2 where a is a unit; and 0 = ac2 · v1(x) – c2 · v2(x) = c2 · (av1(x) –
v2(x)), so av1(x) – v2(x) = 0.

Therefore we may write any nonzero polynomial u(x) as

where cont(u), the content of u, is an element of S, and pp (u(x)), the
primitive part of u(x), is a primitive polynomial over S. When u(x) = 0, it is
convenient to define cont(u) = pp (u(x)) = 0. Combining Lemmas G and H
gives us the relations

where a and b are units, depending on the way contents are calculated, with
ab = 1. When we are working with polynomials over the integers, the only
units are +1 and –1, and it is conventional to define pp(u(x)) so that its
leading coefficient is positive; then (4) is true with a = b = 1. When working
with polynomials over a field we may take cont(u) = ℓ(u), so that pp (u(x))
is monic; in this case again (4) holds with a = b = 1, for all u(x) and v(x).

For example, if we are dealing with polynomials over the integers, let
u(x) = –26x2 + 39 and v(x) = 21x + 14. Then

Greatest common divisors. When there is unique factorization, it makes
sense to speak of a greatest common divisor of two elements; this is a
common divisor that is divisible by as many primes as possible. (See Eq.
4.5.2–(6).) Since a unique factorization domain may have many units,
however, there is ambiguity in this definition of greatest common divisor; if
w is a greatest common divisor of u and v, so is a · w, when a is any unit.
Conversely, the assumption of unique factorization implies that if w1 and w2
are both greatest common divisors of u and v, then w1 = a · w2 for some unit
a. In other words it does not make sense, in general, to speak of “the”
greatest common divisor of u and v; there is a set of greatest common
divisors, each one being a unit multiple of the others.

Let us now consider the problem of finding a greatest common divisor of
two given polynomials over an algebraic system S, a question originally
raised by Pedro Nuñez in his Libro de Algebra (Antwerp: 1567). If S is a
field, the problem is relatively simple; our division algorithm, Algorithm D,
can be extended to an algorithm that computes greatest common divisors, just
as Euclid’s algorithm (Algorithm 4.5.2A) yields the greatest common divisor
of two given integers based on a division algorithm for integers:

where r(x) is given by (1). This procedure is called Euclid’s algorithm for
polynomials over a field. It was first used by Simon Stevin in
L’Arithmetique (Leiden: 1585); see A. Girard, Les Œuvres Mathématiques
de Simon Stevin 1 (Leiden: 1634), 56.

For example, let us determine the gcd of x8 + x6 + 10x4 + 10x3 + 8x2 + 2x
+ 8 and 3x6 +5x4 +9x2 +4x+8, mod 13, by using Euclid’s algorithm for
polynomials over the integers modulo 13. First, writing only the coefficients
to show the steps of Algorithm D, we have

so that x8 + x6 + 10x4 + 10x3 + 8x2 + 2x + 8 equals

Similarly,

(The equality sign here means congruence modulo 13, since all arithmetic on
the coefficients has been done mod 13.) This computation shows that 12 is a
greatest common divisor of the two original polynomials. Now any nonzero
element of a field is a unit of the domain of polynomials over that field, so it
is conventional in the case of fields to divide the result of the algorithm by its
leading coefficient, producing a monic polynomial that is called the greatest
common divisor of the two given polynomials. The gcd computed in (6) is
accordingly taken to be 1, not 12. The last step in (6) could have been
omitted, for if deg(v) = 0, then gcd(u(x), v(x)) = 1, no matter what
polynomial is chosen for u(x). Exercise 4 determines the average running
time for Euclid’s algorithm on random polynomials modulo p.

Let us now turn to the more general situation in which our polynomials
are given over a unique factorization domain that is not a field. From Eqs. (4)

we can deduce the important relations

where a and b are units. Here gcd(u(x), v(x)) denotes any particular
polynomial in x that is a greatest common divisor of u(x) and v(x). Equations
(7) reduce the problem of finding greatest common divisors of arbitrary
polynomials to the problem of finding greatest common divisors of primitive
polynomials.

Algorithm D for division of polynomials over a field can be generalized
to a pseudo-division of polynomials over any algebraic system that is a
commutative ring with identity. We can observe that Algorithm D requires
explicit division only by ℓ(v), the leading coefficient of v(x), and that step
D2 is carried out exactly m – n + 1 times; thus if u(x) and v(x) start with
integer coefficients, and if we are working over the rational numbers, then
the only denominators that appear in the coefficients of q(x) and r(x) are
divisors of ℓ(v)m−n+1. This suggests that we can always find polynomials
q(x) and r(x) such that

where m = deg(u) and n = deg(v), for any polynomials u(x) and v(x) ≠ 0,
provided that m ≥ n.
Algorithm R (Pseudo-division of polynomials). Given polynomials

where vn ≠ 0 and m ≥ n ≥ 0, this algorithm finds polynomials q(x) = qm–nxm–n

+ ... + q0 and r(x) = rn−1xn−1 + ... + r0 satisfying (8).
R1. [Iterate on k.] Do step R2 for k = m – n, m – n − 1, . . . , 0; then

terminate the algorithm with (rn−1, . . . , r0) = (un−1, . . . , u0).

R2. [Multiplication loop.] Set , and set uj ← vnuj – un+kvj–k
for j = n + k − 1, n + k – 2, . . . , 0. (When j < k this means that uj ←
vnuj, since we treat v–1, v–2, . . . as zero. These multiplications could
have been avoided if we had started the algorithm by replacing ut by

, for 0 ≤ t < m – n.)

An example calculation appears below in (10). It is easy to prove the
validity of Algorithm R by induction on m−n, since each execution of step R2
essentially replaces u(x) by ℓ(v)u(x) – ℓ(u)xkv(x), where k = deg(u) –
deg(v). Notice that no division whatever is used in this algorithm; the
coefficients of q(x) and r(x) are themselves certain polynomial functions of
the coefficients of u(x) and v(x). If vn = 1, the algorithm is identical to
Algorithm D. If u(x) and v(x) are polynomials over a unique factorization
domain, we can prove as before that the polynomials q(x) and r(x) are
unique; therefore another way to do the pseudo-division over a unique
factorization domain is to multiply u(x) by and apply Algorithm D,
knowing that all the quotients in step D2 will exist.

Algorithm R can be extended to a “generalized Euclidean algorithm” for
primitive polynomials over a unique factorization domain, in the following
way: Let u(x) and v(x) be primitive polynomials with deg(u) ≥ deg(v), and
determine the polynomial r(x) satisfying (8) by means of Algorithm R. Now
we can prove that gcd(u(x), v(x)) = gcd(v(x), r(x)): Any common divisor of
u(x) and v(x) divides v(x) and r(x); conversely, any common divisor of v(x)
and r(x) divides ℓ(v)m−n+1u(x), and it must be primitive (since v(x) is
primitive) so it divides u(x). If r(x) = 0, we therefore have gcd(u(x), v(x)) =
v(x); on the other hand if r(x) ≠ 0, we have gcd(v(x), r(x)) = gcd(v(x),
pp(r(x))) since v(x) is primitive, so the process can be iterated.
Algorithm E (Generalized Euclidean algorithm). Given nonzero
polynomials u(x) and v(x) over a unique factorization domain S, this
algorithm calculates a greatest common divisor of u(x) and v(x). We assume
that auxiliary algorithms exist to calculate greatest common divisors of
elements of S, and to divide a by b in S when b ≠ 0 and a is a multiple of b.

E1. [Reduce to primitive.] Set d ← gcd(cont(u), cont(v)), using the
assumed algorithm for calculating greatest common divisors in S. (By
definition, cont(u) is a greatest common divisor of the coefficients of
u(x).) Replace u(x) by the polynomial u(x) by the polynomial
u(x)/cont(u) = pp (u(x)); similarly, replace v(x) by pp (v(x)).

E2. [Pseudo-division.] Calculate r(x) using Algorithm R. (It is unnecessary
to calculate the quotient polynomial q(x)) If r(x) = 0, go to E4. If deg(r)
= 0, replace v(x) by the constant polynomial “1” and go to E4.

E3. [Make remainder primitive.] Replace u(x) by v(x) and replace v(x) by
pp (r(x)). Go back to step E2. (This is the “Euclidean step,” analogous
to the other instances of Euclid’s algorithm that we have seen.)

E4. [Attach the content.] The algorithm terminates, with d · v(x) as the
desired answer.
As an example of Algorithm E, let us calculate the gcd of the
polynomials

over the integers. These polynomials are primitive, so step E1 sets d ← 1. In
step E2 we have the pseudo-division

Here the quotient q(x) is 1 · 32x2 + 0 · 31x + –6 · 30; we have

Now step E3 replaces u(x) by v(x) and v(x) by pp (r(x)) = 5x4 – x2 + 3. The
subsequent calculation is summarized in the following table, where only the
coefficients are shown:

It is instructive to compare this calculation with the computation of the
same greatest common divisor over the rational numbers, instead of over the
integers, by using Euclid’s algorithm for polynomials over a field as
described earlier in this section. The following surprisingly complicated
sequence appears:

To improve that algorithm, we can reduce u(x) and v(x) to monic
polynomials at each step, since this removes unit factors that make the
coefficients more complicated than necessary; this is actually Algorithm E
over the rationals:

In both (13) and (14) the sequence of polynomials is essentially the same
as (12), which was obtained by Algorithm E over the integers; the only
difference is that the polynomials have been multiplied by certain rational
numbers. Whether we have 5x4–x2+3 or or , the
computations are essentially the same. But either algorithm using rational
arithmetic tends to run slower than the all-integer Algorithm E, since rational
arithmetic usually requires more evaluations of integer gcds within each step
when the polynomials have large degree.

It is instructive to compare (12), (13), and (14) with (6) above, where
we determined the gcd of the same polynomials u(x) and v(x) modulo 13

with considerably less labor. Since ℓ(u) and ℓ(v) are not multiples of 13, the
fact that gcd(u(x), v(x)) = 1 modulo 13 is sufficient to prove that u(x) and
v(x) are relatively prime over the integers (and therefore over the rational
numbers). We will return to this time-saving observation at the close of
Section 4.6.2.
The subresultant algorithm. An ingenious algorithm that is generally
superior to Algorithm E, and that gives us further information about
Algorithm E’s behavior, was discovered by George E. Collins [JACM 14
(1967), 128–142] and subsequently improved by W. S. Brown and J. F.
Traub [JACM 18 (1971), 505–514; see also W. S. Brown, ACM Trans.
Math. Software 4 (1978), 237–249]. This algorithm avoids the calculation of
primitive parts in step E3, dividing instead by an element of S that is known
to be a factor of r(x):
Algorithm C (Greatest common divisor over a unique factorization
domain). This algorithm has the same input and output assumptions as
Algorithm E, and has the advantage that fewer calculations of greatest
common divisors of coefficients are needed.

C1. [Reduce to primitive.] As in step E1 of Algorithm E, set d ←
gcd(cont(u), cont(v)), and replace (u(x), v(x)) by (pp(u(x)), pp(v(x))).
Set g ← h ← 1.

C2. [Pseudo-division.] Set δ ← deg(u) – deg(v). Calculate r(x) using
Algorithm R. If r(x) = 0, go to C4. If deg(r) = 0, replace v(x) by the
constant polynomial “1” and go to C4.

C3. [Adjust remainder.] Replace the polynomial u(x) by v(x), and replace
v(x) by r(x)/ghδ. (At this point all coefficients of r(x) are multiples of
ghδ.) Then set g ← ℓ(u), h ← h1–δgδ and return to C2. (The new value
of h will be in the domain S, even if δ > 1.

C4. [Attach the content.] Return d · pp(v(x)) as the answer.
If we apply this algorithm to the polynomials (9) considered earlier, the

following sequence of results is obtained at the beginning of step C2:

At the conclusion of the algorithm, r(x)/ghδ = 260708.
The sequence of polynomials consists of integral multiples of the

polynomials in the sequence produced by Algorithm E. In spite of the fact
that the polynomials are not reduced to primitive form, the coefficients are
kept to a reasonable size because of the reduction factor in step C3.

In order to analyze Algorithm C and to prove that it is valid, let us call
the sequence of polynomials it produces u1(x), u2(x), u3(x), . . . , where u1(x)
= u(x) and u2(x) = v(x). Let δj = nj – nj+1 for j ≥ 1, where nj = deg(uj); and
let g1 = h1 = 1, gj = ℓ(uj), for j ≥ 2. Then we have

and so on. The process terminates when nk+1 = deg(uk+1) ≤ 0. We must show
that u3(x), u4(x), . . . , have coefficients in S, namely that the factors
exactly divide all coefficients of the remainders, and we must also show that
the hj values all belong to S. The proof is rather involved, and it can be most
easily understood by considering an example.

Suppose, as in (15), that n1 = 8, n2 = 6, n3 = 4, n4 = 2, n5 = 1, n6 = 0, so
that δ1 = δ2 = δ3 = 2, δ4 = δ5 = 1. Let us write u1(x) = a8x8 + a7x7 + ... + a0,
u2(x) = b6x6 + b5x5 + ... + b0, . . . , u5(x) = e1x + e0, u6(x) = f0, so that h1 = 1,

, , . In these terms it is helpful to consider
the array shown in Table 1. For concreteness, let us assume that the
coefficients of the polynomials are integers. We have

; so if we multiply row A5 by and subtract
appropriate multiples of rows B7, B6, and B5 (corresponding to the
coefficients of q1(x)) we will get row C5. If we also multiply row A4 by

and subtract multiples of rows B6, B5, and B4, we get row C4. In a similar
way, we have ; so we can multiply row B3
by , subtract integer multiples of rows C5, C4, and C3, then divide by to
obtain row D3.

In order to prove that u4(x) has integer coefficients, let us consider the
matrix

The indicated row operations and a permutation of rows will transform M
into

Because of the way M′ has been derived from M, we must have

if M0 and represent any square matrices obtained by selecting eight
corresponding columns from M and M′. For example, let us select the first
seven columns and the column containing d1; then

Since b6c4 ≠ 0, this proves that d1 is an integer. Similarly, d2 and d0 are
integers.

In general, we can show that uj+1(x) has integer coefficients in a similar
manner. If we start with the matrix M consisting of rows An2–nj through A0
and Bn1–nj through B0, and if we perform the row operations indicated in
Table 1, we will obtain a matrix M′ consisting in some order of rows Bn1–nj
through Bn3–nj+1, then Cn2–nj through Cn4–nj+1, . . . , Pnj−2–nj through P1, then
Qnj−1–nj through Q0, and finally R0 (a row containing the coefficients of
uj+1(x)). Extracting appropriate columns shows that

Table 1 Coefficients that Arise in Algorithm C
where rt is a given coefficient of uj+1(x) and M0 is a submatrix of M. The h’s
have been chosen very cleverly so that this equation simplifies to

(see exercise 24). Therefore every coefficient of uj+1(x) can be expressed as
the determinant of an (n1 +n2 –2nj +2)×(n1 +n2 –2nj +2) matrix whose
elements are coefficients of u(x) and v(x).

It remains to be shown that the cleverly chosen h’s also are integers. A
similar technique applies: Let’s look, for example, at the matrix

Row operations as specified in Table 1, and permutation of rows, leads to

hence if we consider any submatrices M0 and obtained by selecting six
corresponding columns of M and M′ we have .
When M0 is chosen to be the first six columns of M, we find that det

, so h3 is an integer.
In general, to show that hj is an integer for j ≥ 3, we start with the matrix

M consisting of rows An2–nj−1 through A0 and Bn1–nj−1 through B0; then we
perform appropriate row operations until obtaining a matrix M′ consisting of
rows Bn1–nj−1 through Bn3–nj, then Cn2+nj–1 through Cn4–nj, . . . , Pnj−2–nj−1
through P0, then Qnj−1–nj−1 through Q0. Letting M0 be the first n1 + n2 – 2nj
columns of M, we obtain

an equation that neatly simplifies to

(This proof, although stated for the domain of integers, obviously applies to
any unique factorization domain.)

In the process of verifying Algorithm C, we have also learned that every
element of S dealt with by the algorithm can be expressed as a determinant
whose entries are the coefficients of the primitive parts of the original

polynomials. A well-known theorem of Hadamard (see exercise 15) states
that

therefore every coefficient appearing in the polynomials computed by
Algorithm C is at most

if all coefficients of the given polynomials u(x) and v(x) are bounded by N in
absolute value. This same upper bound applies to the coefficients of all
polynomials u(x) and v(x) computed during the execution of Algorithm E,
since the polynomials obtained in Algorithm E are always divisors of the
polynomials obtained in Algorithm C.

This upper bound on the coefficients is extremely gratifying, because it is
much better than we would ordinarily have a right to expect. For example,
consider what happens if we avoid the corrections in steps E3 and C3,
merely replacing v(x) by r(x). This is the simplest gcd algorithm, and it is the
one that traditionally appears in textbooks on algebra (for theoretical
purposes, not intended for practical calculations). If we suppose that δ1 = δ2

= ... = 1, we find that the coefficients of u3(x) are bounded by N3, the
coefficients of u4(x) are bounded by N7, those of u5(x) by N17, . . . ; the
coefficients of uk(x) are bounded by Nak,where ak = 2ak−1 + ak−2. Thus the
upper bound, in place of (26) for m = n + 1, would be approximately

and experiments show that the simple algorithm does in fact have this
behavior; the number of digits in the coefficients grows exponentially at each
step! In Algorithm E, by contrast, the growth in the number of digits is only
slightly more than linear at most.

Another byproduct of our proof of Algorithm C is the fact that the
degrees of the polynomials will almost always decrease by 1 at each step, so
that the number of iterations of step C2 (or E2) will usually be deg(v) if the
given polynomials are “random.” In order to see why this happens, notice for
example that we could have chosen the first eight columns of M and M′ in

(17) and (18); then we would have found that u4(x) has degree less than 3 if
and only if d3 = 0, that is, if and only if

In general, δj will be greater than 1 for j > 1 if and only if a similar
determinant in the coefficients of u(x) and v(x) is zero. Since such a
determinant is a nonzero multivariate polynomial in the coefficients, it will
be nonzero “almost always,” or “with probability 1.” (See exercise 16 for a
more precise formulation of this statement, and see exercise 4 for a related
proof.) The example polynomials in (15) have both δ2 and δ3 equal to 2, so
they are exceptional indeed.

The considerations above can be used to derive the well-known fact that
two polynomials are relatively prime if and only if their resultant is nonzero;
the resultant is a determinant having the form of rows A5 through A0 and B7
through B0 in Table 1. (This is “Sylvester’s determinant”; see exercise 12.
Further properties of resultants are discussed in B. L. van der Waerden,
Modern Algebra, translated by Fred Blum (New York: Ungar, 1949),
Sections 27–28.)From the standpoint discussed above, we could say that the
gcd is “almost always” of degree zero, since Sylvester’s determinant is
almost never zero. But many calculations of practical interest would never be
undertaken if there weren’t some reasonable chance that the gcd would be a
polynomial of positive degree.

We can see exactly what happens during Algorithms E and C when the
gcd is not 1 by considering u(x) = w(x)u1(x) and v(x) = w(x)u2(x), where
u1(x) and u2(x) are relatively prime and w(x) is primitive. Then if the
polynomials u1(x), u2(x), u3(x), . . . are obtained when Algorithm E works on
u(x) = u1(x) and v(x) = u2(x), it is easy to see that the sequence obtained for
u(x) = w(x)u1(x) and v(x) = w(x)u2(x) is simply w(x)u1(x), w(x)u2(x),

w(x)u3(x), w(x)u4(x), etc. With Algorithm C the behavior is different: If the
polynomials u1(x), u2(x), u3(x), . . . are obtained when Algorithm C is
applied to u(x) = u1(x) and v(x) = u2(x), and if we assume that deg(uj+1) =
deg(uj) – 1 (which is almost always true when j > 1), then the sequence

is obtained when Algorithm C is applied to u(x) = w(x)u1(x) and v(x) =
w(x)u2(x), where ℓ = ℓ(w). (See exercise 13.) Even though these additional
ℓ-factors are present, Algorithm C will be superior to Algorithm E, because
it is easier to deal with slightly larger polynomials than to calculate primitive
parts repeatedly.

Polynomial remainder sequences such as those in Algorithms C and E
are not useful merely for finding greatest common divisors and resultants.
Another important application is to the enumeration of real roots, for a given
polynomial in a given interval, according to the famous theorem of J. Sturm
[Mém. Présentés par Divers Savants 6 (Paris, 1835), 271–318]. Let u(x) be
a polynomial over the real numbers, having distinct complex roots. We shall
see in the next section that the roots are distinct if and only if gcd(u(x), u′(x))
= 1, where u′(x) is the derivative of u(x); accordingly, there is a polynomial
remainder sequence proving that u(x) is relatively prime to u′(x). We set
u0(x) = u(x), u1(x) = u′(x), and (following Sturm) we negate the sign of all
remainders, obtaining

for some positive constants cj and dj, where deg(uk+1) = 0. We say that the
variation V (u, a) of u(x) at a is the number of changes of sign in the
sequence u0(a), u1(a), . . . , uk+1(a), not counting zeros. For example, if the
sequence of signs is 0, +, –, –, 0, +, +, –, we have V (u, a) = 3. Sturm’s
theorem asserts that the number of roots of u(x) in the interval a < x ≤ b is
V (u, a) – V (u, b); and the proof is surprisingly short (see exercise 22).

Although Algorithms C and E are interesting, they aren’t the whole story.
Important alternative ways to calculate polynomial gcds over the integers are
discussed at the end of Section 4.6.2. There is also a general determinant-
evaluation algorithm that may be said to include Algorithm C as a special
case; see E. H. Bareiss, Math. Comp. 22 (1968), 565–578.

 In the fourth edition of this book I plan to redo the exposition of the

present section, taking into proper account the 19th-century research on
determinants, as well as the work of W. Habicht, Comm. Math. Helvetici 21
(1948), 99–116. An excellent discussion of the latter has been given by R.
Loos in Computing, Supplement 4 (1982), 115–137. An interesting method
for evaluating determinants, published in 1853 by Felice Chiò and
rediscovered by C. L. Dodgson (aka Lewis Carroll), is also highly relevant.
See D. E. Knuth, Electronic J. Combinatorics 3, 2 (1996), paper #R5, §3,
for a summary of the early history of identities between determinants of
submatrices.

Exercises

1. [10] Compute the pseudo-quotient q(x) and pseudo-remainder r(x),
namely the polynomials satisfying (8), when u(x) = x6 + x5 – x4 + 2x3 + 3x2 –
x + 2 and v(x) = 2x3 + 2x2 – x + 3, over the integers.

2. [15] What is the greatest common divisor of 3x6 + x5 + 4x4 + 4x3 + 3x2

+ 4x + 2 and its “reverse” 2x6 + 4x5 + 3x4 + 4x3 + 4x2 + x + 3, modulo 7?
 3. [M25] Show that Euclid’s algorithm for polynomials over a field S can
be extended to find polynomials U(x) and V (x) over S such that

(See Algorithm 4.5.2X.) What are the degrees of the polynomials U(x)
and V (x) that are computed by this extended algorithm? Prove that if S is
the field of rational numbers, and if u(x) = xm − 1 and v(x) = xn − 1, then
the extended algorithm yields polynomials U(x) and V (x) having integer
coefficients. Find U(x) and V (x) when u(x) = x21 – 1 and v(x) = x13 – 1.

 4. [M30] Let p be prime, and suppose that Euclid’s algorithm applied to
the polynomials u(x) and v(x) modulo p yields a sequence of polynomials
having respective degrees m, n, n1, . . . , nt, –∞, where m = deg(u), n =

deg(v), and nt ≥ 0. Assume that m ≥ n. If u(x) and v(x) are monic
polynomials, independently and uniformly distributed over all the pm+n

pairs of monic polynomials having respective degrees m and n, what are the
average values of the three quantities t, n1 + ... + nt, and (n – n1)n1 + ... +
(nt−1 – nt)nt, as functions of m, n, and p? (These three quantities are the
fundamental factors in the running time of Euclid’s algorithm applied to
polynomials modulo p, assuming that division is done by Algorithm D.)
[Hint: Show that u(x) mod v(x) is uniformly distributed and independent of
v(x).]

5. [M22] What is the probability that u(x) and v(x) are relatively prime
modulo p, if u(x) and v(x) are independently and uniformly distributed monic
polynomials of degree n?

6. [M23] We have seen that Euclid’s Algorithm 4.5.2A for integers can be
directly adapted to an algorithm for the greatest common divisor of
polynomials. Can the binary gcd algorithm, Algorithm 4.5.2B, be adapted in
an analogous way to an algorithm that applies to polynomials?

7. [M10] What are the units in the domain of all polynomials over a
unique factorization domain S?
 8. [M22] Show that if a polynomial with integer coefficients is
irreducible over the domain of integers, it is irreducible when considered
as a polynomial over the field of rational numbers.

9. [M25] Let u(x) and v(x) be primitive polynomials over a unique
factorization domain S. Prove that u(x) and v(x) are relatively prime if and
only if there are polynomials U(x) and V (x) over S such that u(x)V (x) +
U(x)v(x) is a polynomial of degree zero. [Hint: Extend Algorithm E, as
Algorithm 4.5.2A is extended in exercise 3.]

10. [M28] Prove that the polynomials over a unique factorization domain
form a unique factorization domain. [Hint: Use the result of exercise 9 to
help show that there is at most one kind of factorization possible.]
11. [M22] What row names would have appeared in Table 1 if the
sequence of degrees had been 9, 6, 5, 2, –∞ instead of 8, 6, 4, 2, 1, 0?

 12. [M24] Let u1(x), u2(x), u3(x), . . . be a sequence of polynomials
obtained during a run of Algorithm C. “Sylvester’s matrix” is the square
matrix formed from rows An2–1 through A0 and Bn1–1 through B0 (in a

notation analogous to that of Table 1). Show that if u1(x) and u2(x) have a
common factor of positive degree, then the determinant of Sylvester’s
matrix is zero; conversely, given that deg(uk) = 0 for some k, show that the
determinant of Sylvester’s matrix is nonzero by deriving a formula for its
absolute value in terms of ℓ(uj) and deg(uj), 1 ≤ j ≤ k.
13. [M22] Show that the leading coefficient ℓ of the primitive part of
gcd(u(x), v(x)) enters into Algorithm C’s polynomial sequence as shown in
(28), when δ1 = δ2 = ... = δk−1 = 1. What is the behavior for general δj?

14. [M29] Let r(x) be the pseudo-remainder when u(x) is pseudo-divided
by v(x). If deg(u) ≥ deg(v) + 2 and deg(v) ≥ deg(r) + 2, show that r(x) is a
multiple of ℓ(v).
15. [M26] Prove Hadamard’s inequality (25). [Hint: Consider the matrix
AAT.]

 16. [M22] Let f(x1, . . . , xn) be a multivariate polynomial that is not
identically zero, and let r(S1, . . . , Sn) be the set of roots (x1, . . . , xn) of
f(x1, . . . , xn) = 0 such that x1 ∊ S1, . . . , xn ∊ Sn. If the degree of f is at most
dj ≤ |Sj| in the variable xj, prove that

Therefore the probability of finding a root at random, |r(S1, . . . , Sn)|/|S1|
. . . |Sn|, approaches zero as the sets Sj get bigger. [This inequality has
many applications in the design of randomized algorithms, because it
provides a good way to test whether a complicated sum of products of
sums is identically zero without expanding out all the terms.]

17. [M32] (P. M. Cohn’s algorithm for division of string polynomials.)
Let A be an alphabet, that is, a set of symbols. A string α on A is a
sequence of n ≥ 0 symbols, α = a1 . . . an, where each aj is in A. The length
of α, denoted by |α|, is the number n of symbols. A string polynomial on A
is a finite sum U = ∑k rk αk, where each rk is a nonzero rational number
and each αk is a string on A; we assume that αj ≠ αk when j ≠ k. The degree
of U, deg(U), is defined to be –∞ if U = 0 (that is, if the sum is empty),
otherwise deg(U) = max |αk |. The sum and product of string polynomials
are defined in an obvious manner; thus, (∑j rjαj)(∑k skβk) = ∑j,k rjskαjβk,

where the product of two strings is obtained by simply juxtaposing them,
after which we collect like terms. For example, if A = {a, b}, U = ab + ba
– 2a – 2b, and V = a + b − 1, then deg(U) = 2, deg(V) = 1, V2 = aa + ab +
ba + bb – 2a – 2b + 1, and V2 – U = aa + bb + 1. Clearly deg(UV) =
deg(U) + deg(V), and deg(U + V) ≤ max(deg(U), deg(V)), with equality in
the latter formula if deg(U) ≠ deg(V). (String polynomials may be regarded
as ordinary multivariate polynomials over the field of rational numbers,
except that the variables are not commutative under multiplication. In the
conventional language of pure mathematics, the set of string polynomials
with the operations defined here is the “free associative algebra”
generated by A over the rationals.)

a) Let Q1, Q2, U, and V be string polynomials with deg(U) ≥ deg(V) and
such that deg(Q1U – Q2V) < deg(Q1U). Give an algorithm to find a
string polynomial Q such that deg(U – QV) < deg(U). (Thus if we are
given U and V such that Q1U = Q2V + R and deg(R) < deg(Q1U), for
some Q1 and Q2, then there is a solution to these conditions with Q1 =
1.)

b) Given that U and V are string polynomials with deg(V) > deg(Q1U –
Q2V) for some Q1 and Q2, show that the result of (a) can be improved
to find a quotient Q such that U = QV + R, deg(R) < deg(V). (This is the
analog of (1) for string polynomials; part (a) showed that we can make
deg(R) < deg(U), under weaker hypotheses.)

c) A homogeneous polynomial is one whose terms all have the same
degree (length). If U1, U2, V1, V2 are homogeneous string polynomials
with U1V1 = U2V2 and deg(V1) ≥ deg(V2), show that there is a
homogeneous string polynomial U such that U2 = U1U and V1 = UV2.

d) Given that U and V are homogeneous string polynomials with UV = V
U, prove that there is a homogeneous string polynomial W such that U =
rW m, V = sW n for some integers m, n and rational numbers r, s. Give
an algorithm to compute such a W having the largest possible degree.
(This algorithm is of interest, for example, when U = α and V = β are
strings satisfying αβ = βα; then W is simply a string γ. When U = xm and
V = xn, the solution of largest degree is the string W = xgcd(m,n), so this
algorithm includes a gcd algorithm for integers as a special case.)

 18. [M24] (Euclidean algorithm for string polynomials.) Let V1 and V2
be string polynomials, not both zero, having a common left multiple. (This
means that there exist string polynomials U1 and U2, not both zero, such that
U1V1 = U2V2.) The purpose of this exercise is to find an algorithm to
compute their greatest common right divisor gcrd(V1, V2) and their least
common left multiple lclm(V1, V2). The latter quantities are defined as
follows: gcrd(V1, V2) is a common right divisor of V1 and V2 (that is, V1 =
W1 gcrd(V1, V2) and V2 = W2 gcrd(V1, V2) for some W1 and W2), and any
common right divisor of V1 and V2 is a right divisor of gcrd(V1, V2);
lclm(V1, V2) = Z1V1 = Z2V2 for some Z1 and Z2, and any common left
multiple of V1 and V2 is a left multiple of lclm(V1, V2).

For example, let U1 = abbbab + abbab – bbab + ab – 1, V1 = babab +
abab + ab – b; U2 = abb + ab – b, V2 = babbabab + bababab + babab +
abab – babb – 1. Then we have U1V1 = U2V2 = abbbabbabab + abbabbabab
+ abbbababab + abbababab – bbabbabab + abbbabab – bbababab +
2abbabab – abbbabb + ababab – abbabb – bbabab – babab + bbabb – abb
– ab + b. For these string polynomials it can be shown that gcrd(V1, V2) = ab
+ 1, and lclm(V1, V2) = U1V1.

The division algorithm of exercise 17 may be restated thus: If V1 and V2
are string polynomials, with V2 ≠ 0, and if U1 ≠ 0 and U2 satisfy the equation
U1V1 = U2V2, then there exist string polynomials Q and R such that

It follows readily that Q and R are uniquely determined; they do not depend
on the given U1 and U2. Furthermore the result is right-left symmetric, in the
sense that

Show that this division algorithm can be extended to an algorithm that
computes lclm(V1, V2) and gcrd(V1, V2); in fact, the extended algorithm finds
string polynomials Z1 and Z2 such that Z1V1 + Z2V2 = gcrd(V1, V2). [Hint:
Use auxiliary variables u1, u2, v1, v2, w1, w2, , , z1, z2, , , whose
values are string polynomials; start by setting u1 ← U1, u2 ← U2, v1 ← V1, v2
← V2, and throughout the algorithm maintain the conditions

at the nth iteration. This might be regarded as the “ultimate” extension of
Euclid’s algorithm.]

19. [M39] (Common divisors of square matrices.) Exercise 18 shows that
the concept of greatest common right divisor can be meaningful when
multiplication is not commutative. Prove that any two n × n matrices A and
B of integers have a greatest common right matrix divisor D. [Suggestion:
Design an algorithm whose inputs are A and B, and whose outputs are
integer matrices D, P,Q, X, Y,where A = P D, B = QD, and D = XA + Y B.]
Find a greatest common right divisor of the matrices and .
20. [M40] Investigate approximate polynomial gcds and the accuracy of
Euclid’s algorithm: What can be said about calculation of the greatest
common divisor of polynomials whose coefficients are floating point
numbers?
21. [M25] Prove that the computation time required by Algorithm C to
compute the gcd of two nth degree polynomials over the integers is
O(n4(log Nn)2), if the coefficients of the given polynomials are bounded by
N in absolute value.
22. [M23] Prove Sturm’s theorem. [Hint: Some sign sequences are
impossible.]
23. [M22] Prove that if u(x) in (29) has deg(u) real roots, then we have
deg(uj+1) = deg(uj) – 1 for 0 ≤ j ≤ k.

24. [M21] Show that (19) simplifies to (20) and (23) simplifies to (24).
25. [M24] (W. S. Brown.) Prove that all the polynomials uj(x) in (16) for j
≥ 3 are multiples of gcd(ℓ(u), ℓ(v)), and explain how to improve
Algorithm C accordingly.

 26. [M26] The purpose of this exercise is to give an analog for
polynomials of the fact that continued fractions with positive integer entries
give the best approximations to real numbers (exercise 4.5.3–42).

Let u(x) and v(x) be polynomials over a field, with deg(u) > deg(v), and
let a1(x), a2(x), . . . be the quotient polynomials when Euclid’s algorithm is
applied to u(x) and v(x). For example, the sequence of quotients in (5) and
(6) is 9x2 + 7, 5x2 + 5, 6x3 + 5x2 + 6x + 5, 9x + 12. We wish to show that the
convergents pn(x)/qn(x) of the continued fraction //a1(x), a2(x), . . . // are the
“best approximations” of low degree to the rational function v(x)/u(x), where
we have pn(x) = Kn−1(a2(x), . . . , an(x)) and qn(x) = Kn(a1(x), . . . , an(x)) in
terms of the continuant polynomials of Eq. 4.5.3–(4). By convention, we let
p0(x) = q–1(x) = 0, p–1(x) = q0(x) = 1.

Prove that if p(x) and q(x) are polynomials such that deg(q) < deg(qn)
and deg(pu – qv) ≤ deg(pn−1u – qn−1v), for some n ≥ 1, then p(x) = cpn−1(x)
and q(x) = cqn−1(x) for some constant c. In particular, each qn(x) is a
“record-breaking” polynomial in the sense that no nonzero polynomial q(x)
of smaller degree can make the quantity p(x)u(x) – q(x)v(x), for any
polynomial p(x), achieve a degree as small as pn(x)u(x) – qn(x)v(x).

27. [M23] Suggest a way to speed up the division of u(x) by v(x) when we
know in advance that the remainder will be zero.

*4.6.2. Factorization of Polynomials
Let us now consider the problem of factoring polynomials, not merely
finding the greatest common divisor of two or more of them.
Factoring modulo p. As in the case of integer numbers (Sections 4.5.2,
4.5.4), the problem of factoring seems to be more difficult than finding the
greatest common divisor. But factorization of polynomials modulo a prime
integer p is not as hard to do as we might expect. It is much easier to find the
factors of an arbitrary polynomial of degree n, modulo 2, than to use any
known method to find the factors of an arbitrary n-bit binary number. This
surprising situation is a consequence of an instructive factorization algorithm
discovered in 1967 by Elwyn R. Berlekamp [Bell System Technical J. 46
(1967), 1853–1859].

Let p be a prime number; all arithmetic on polynomials in the following
discussion will be done modulo p. Suppose that someone has given us a
polynomial u(x), whose coefficients are chosen from the set {0, 1, . . . , p −
1}; we may assume that u(x) is monic. Our goal is to express u(x) in the form

where p1(x), . . . , pr(x) are distinct, monic, irreducible polynomials.
As a first step, we can use a standard technique to determine whether any

of the exponents e1, . . . , er are greater than unity. If

then the derivative (formed in the usual way, but modulo p) is

and this is a multiple of the squared factor v(x). Therefore our first step in
factoring u(x) is to form

If d(x) is equal to 1, we know that u(x) is squarefree, the product of distinct
primes p1(x) . . . pr(x). If d(x) is not equal to 1 and d(x) ≠ u(x), then d(x) is a
proper factor of u(x); the relation between the factors of d(x) and the factors
of u(x)/d(x) speeds up the factorization process nicely in this case (see
exercises 34 and 36). Finally, if d(x) = u(x), we must have u′(x) = 0; hence
the coefficient uk of xk is nonzero only when k is a multiple of p. This means

that u(x) can be written as a polynomial of the form v(xp), and in such a case
we have

the factorization process can be completed by finding the irreducible factors
of v(x) and raising them to the pth power.

Identity (5) may appear somewhat strange to the reader; it is an important
fact that is basic to Berlekamp’s algorithm and to several other methods we
shall discuss. We can prove it as follows: If v1(x) and v2(x) are any
polynomials modulo p, then

since the binomial coefficients are all multiples of p.
Furthermore if a is any integer, we have ap ≡ a (modulo p) by Fermat’s
theorem. Therefore when v(x) = vmxm + vm−1xm−1 + ... + v0, we find that

The remarks above show that the problem of factoring a polynomial
reduces to the problem of factoring a squarefree polynomial. Let us therefore
assume that

is the product of distinct primes. How can we be clever enough to discover
the pj(x)’s when only u(x) is given? Berlekamp’s idea is to make use of the
Chinese remainder theorem, which is valid for polynomials just as it is valid
for integers (see exercise 3). If (s1, s2, . . . , sr) is any r-tuple of integers mod
p, the Chinese remainder theorem implies that there is a unique polynomial
v(x) such that

The notation “g(x) ≡ h(x) (modulo f(x))” that appears here has the same
meaning as “g(x) ≡ h(x) (modulo f(x) and p)” in exercise 3.2.2–11, since we
are considering polynomial arithmetic modulo p. The polynomial v(x) in (7)

gives us a way to get at the factors of u(x), for if r ≥ 2 and s1 ≠ s2, we will
have gcd(u(x), v(x) – s1) divisible by p1(x) but not by p2(x).

Since this observation shows that we can get information about the
factors of u(x) from appropriate solutions v(x) of (7), let us analyze (7) more
closely. In the first place we can observe that the polynomial v(x) satisfies
the condition (modulo pj(x)) for 1 ≤ j ≤ r; therefore

In the second place we have the basic polynomial identity

(see exercise 6); hence

is an identity for any polynomial v(x), when we are working modulo p. If
v(x) satisfies (8), it follows that u(x) divides the left-hand side of (10), so
every irreducible factor of u(x) must divide one of the p relatively prime
factors of the right-hand side of (10). In other words, all solutions of (8) must
have the form of (7), for some s1, s2, . . . , sr; there are exactly pr solutions
of (8).

The solutions v(x) to congruence (8) therefore provide a key to the
factorization of u(x). It may seem harder to find all solutions to (8) than to
factor u(x) in the first place, but in fact this is not true, since the set of
solutions to (8) is closed under addition. Let deg(u) = n; we can construct the
n × n matrix

Where

Then v(x) = vn−1xn–1 + ... + v1x + v0 is a solution to (8) if and only if

for the latter equation holds if and only if

Berlekamp’s factoring algorithm therefore proceeds as follows:
B1. [Remove duplicate factors.] Ensure that u(x) is squarefree; in other

words, if gcd(u(x), u′(x)) ≠ 1, reduce the problem of factoring u(x), as
stated earlier in this section.

B2. [Get Q.] Form the matrix Q defined by (11) and (12). This can be done
in different ways, depending on the size of p, as explained below.

B3. [Find null space.] “Triangularize” the matrix Q – I, where I = (δij) is
the n×n identity matrix, finding its rank n−r and finding linearly
independent vectors v[1], . . . , v[r] such that v[j](Q – I) = (0, 0, . . . , 0)
for 1 ≤ j ≤ r. (The first vector v[1] may always be taken as (1, 0, . . . , 0),
representing the trivial solution v[1](x) = 1 to (8). The computation can
be done using appropriate column operations, as explained in
Algorithm N below.) At this point, r is the number of irreducible
factors of u(x), because the solutions to (8) are the pr polynomials
corresponding to the vectors t1v[1] + ... + trv[r] for all choices of
integers 0 ≤ t1, . . . , tr < p. Therefore if r = 1 we know that u(x) is
irreducible, and the procedure terminates.

B4. [Split.] Calculate gcd(u(x), v[2](x) – s) for 0 ≤ s < p, where v[2](x) is
the polynomial represented by vector v[2]. The result will be a
nontrivial factorization of u(x), because v[2](x) – s is nonzero and has
degree less than deg(u), and by exercise 7 we have

whenever v(x) satisfies (8).
If the use of v[2](x) does not succeed in splitting u(x) into r factors,

further factors can be obtained by calculating gcd(v[k](x) – s, w(x)) for 0
≤ s < p and all factors w(x) found so far, for k = 3, 4, . . . , until r factors
are obtained. (If we choose si ≠ sj in (7), we obtain a solution v(x) to (8)
that distinguishes pi(x) from pj(x); some v[k](x) – s will be divisible by
pi(x) and not by pj(x), so this procedure will eventually find all of the
factors.)

If p is 2 or 3, the calculations of this step are quite efficient; but if p is
more than 25, say, there is a much better way to proceed, as we shall see
later.

Historical notes: M. C. R. Butler [Quart. J. Math. 5 (1954), 102–107]
observed that the matrix Q–I corresponding to a squarefree polynomial with
r irreducible factors will have rank n – r, modulo p. Indeed, this fact was
implicit in a more general result of K. Petr [Časopis pro Pěstování
Matematiky a Fysiky 66 (1937), 85–94], who determined the characteristic
polynomial of Q. See also Š. Schwarz, Quart. J. Math. 7 (1956), 110–124.

As an example of Algorithm B, let us now determine the factorization of

modulo 13. (This polynomial appears in several of the examples in Section
4.6.1.) A quick calculation using Algorithm 4.6.1E shows that gcd(u(x), u′
(x)) = 1; therefore u(x) is squarefree, and we turn to step B2. Step B2
involves calculating the Q matrix, which in this case is an 8 × 8 array. The
first row of Q is always (1, 0, 0, . . . , 0), representing the polynomial x0 mod
u(x) = 1. The second row represents x13 mod u(x), and, in general, xk mod
u(x) may readily be determined as follows (for relatively small values of k):
If

and if

then

where

In this formula ak,–1 is treated as zero, so that ak+1,0 = –ak,n–1u0. The simple
“shift register” recurrence (16) makes it easy to calculate xk mod u(x) for k =
1, 2, 3, . . . , (n − 1)p. Inside a computer, this calculation is of course

generally done by maintaining a one-dimensional array (an−1, . . . , a1, a0)
and repeatedly setting

and a0 ← (–tu0) mod p. (We have seen similar procedures in connection with
random number generation, 3.2.2–(10).) For the example polynomial u(x) in
(15), we obtain the following sequence of coefficients of xk mod u(x), using
arithmetic modulo 13:

Therefore the second row of Q is (2, 1, 7, 11, 10, 12, 5, 11). Similarly we
may determine x26 mod u(x), . . . , x91 mod u(x), and we find that

That finishes step B2; the next step of Berlekamp’s procedure requires
finding the “null space” of Q – I. In general, suppose that A is an n × n matrix
over a field, whose rank n – r is to be determined; suppose further that we
wish to determine linearly independent vectors v[1], v[2], . . . , v[r] such that
v[1] A = v[2]A = ... = v[r]A = (0, . . . , 0). An algorithm for this calculation can
be based on the observation that any column of A may be multiplied by a
nonzero quantity, and any multiple of one of its columns may be added to a
different column, without changing the rank or the vectors v[1], . . . , v[r].
(These transformations amount to replacing A by AB, where B is a
nonsingular matrix.) The following well-known “triangularization”
procedure may therefore be used.
Algorithm N (Null space algorithm). Let A be an n × n matrix, whose
elements aij belong to a field and have subscripts in the range 0 ≤ i, j < n.
This algorithm outputs r vectors v[1], . . . , v[r], which are linearly
independent over the field and satisfy v[j]A = (0, . . . , 0), where n – r is the
rank of A.

N1. [Initialize.] Set c0 ← c1 ← ... ← cn−1 ← –1, r ← 0. (During the
calculation we will have cj ≥ 0 only if acjj = –1 and all other entries of
row cj are zero.)

N2. [Loop on k.] Do step N3 for k = 0, 1, . . . , n − 1, then terminate the
algorithm.

N3. [Scan row for dependence.] If there is some j in the range 0 ≤ j < n
such that akj ≠ 0 and cj < 0, then do the following: Multiply column j of
A by –1/akj (so that akj becomes equal to – 1); then add aki times
column j to column i for all i ≠ j; finally set cj ← k. (Since it is not
difficult to show that asj = 0 for all s < k, these operations have no
effect on rows 0, 1, . . . , k − 1 of A.)

On the other hand, if there is no j in the range 0 ≤ j < n such that akj ≠
0 and cj < 0, then set r ← r + 1 and output the vector

defined by the rule

An example will reveal the mechanism of this algorithm. Let A be the
matrix Q – I of (17) over the field of integers modulo 13. When k = 0, we
output the vector v[1] = (1, 0, 0, 0, 0, 0, 0, 0). When k = 1, we may take j in
step N3 to be either 0, 2, 3, 4, 5, 6, or 7; the choice here is completely
arbitrary, although it affects the particular vectors that are chosen to be output
by the algorithm. For hand calculation, it is most convenient to pick j = 5,
since a15 = 12 = –1 already; the column operations of step N3 then change A
to the matrix

(The circled element in column “5”, row “1”, is used here to indicate that c5
= 1. Remember that Algorithm N numbers the rows and columns of the matrix
starting with 0, not 1.) When k = 2, we may choose j = 4 and proceed in a
similar way, obtaining the following matrices, which all have the same null
space as Q – I:

Now every column that has no circled entry is completely zero; so when k =
6 and k = 7 the algorithm outputs two more vectors, namely

From the form of matrix A after k = 5, it is evident that these vectors satisfy
the equation vA = (0, . . . , 0). Since the computation has produced three
linearly independent vectors, u(x) must have exactly three irreducible
factors.

Finally we can go to step B4 of the factoring procedure. The calculation
of gcd(u(x), v[2](x) – s) for 0 ≤ s < 13, where v[2](x) = x6 + 5x5 + 9x4 + 5x2 +
5x, gives x5 + 5x4 + 9x3 + 5x + 5 as the answer when s = 0, and x3 + 8x2 + 4x
+ 12 when s = 2; the gcd is unity for other values of s. Therefore v[2](x) gives
us only two of the three factors. Turning to gcd(v[3](x) – s, x5 + 5x4 + 9x3 + 5x
+ 5), where v[3](x) = x7 +12x5 +10x4 +9x3 +11x2 +9x, we obtain the factor x4

+2x3 + 3x2 + 4x + 6 when s = 6, x + 3 when s = 8, and unity otherwise. Thus
the complete factorization is

Let us now estimate the running time of Berlekamp’s method when an nth
degree polynomial is factored modulo p. First assume that p is relatively
small, so that the four arithmetic operations can be done modulo p in
essentially a fixed length of time. (Division modulo p can be converted to
multiplication, by storing a table of reciprocals as suggested in exercise 9;
for example, when working modulo 13, we have = 7, = 9, etc.) The
computation in step B1 takes O(n2) units of time; step B2 takes O(pn2). For
step B3 we use Algorithm N, which requires O(n3) units of time at most.
Finally, in step B4 we can observe that the calculation of gcd(f(x), g(x)) by
Euclid’s algorithm takes O(deg(f) deg(g)) units of time; hence the calculation
of gcd(v[j](x) – s, w(x)) for fixed j and s and for all factors w(x) of u(x) found
so far takes O(n2) units. Step B4 therefore requires O(prn2) units of time at
most. Berlekamp’s procedure factors an arbitrary polynomial of degree n,
modulo p, in O(n3 + prn2) steps, when p is a small prime; and exercise 5
shows that the average number of factors, r, is approximately ln n. Thus the
algorithm is much faster than any known methods of factoring n-digit numbers
in the p-ary number system.

Of course, when n and p are small, a trial-and-error factorization
procedure analogous to Algorithm 4.5.4A will be even faster than
Berlekamp’s method. Exercise 1 implies that it is a good idea to cast out
factors of small degree first when p is small, before going to any more
complicated procedure, even when n is large.

When p is large, a different implementation of Berlekamp’s procedure
would be used for the calculations. Division modulo p would not be done
with an auxiliary table of reciprocals; instead the method of exercise 4.5.2–
16, which takes O ((log p)2) steps, would probably be used. Then step B1
would take O(n2(log p)2) units of time; similarly, step B3 would take
O(n3(log p)2). In step B2, we can form xp mod u(x) in a more efficient way
than (16) when p is large: Section 4.6.3 shows that this value can be obtained
by essentially using O(log p) operations of squaring mod u(x), going from xk

mod u(x) to x2k mod u(x), together with the operation of multiplying by x.
The squaring operation is relatively easy to perform if we first make an
auxiliary table of xm mod u(x) for m = n, n + 1, . . . , 2n – 2; if xk mod u(x) =
cn−1xn−1 + ... + c1x + c0, then

where x2n−2, . . . , xn can be replaced by polynomials in the auxiliary table.
The total time to compute xp mod u(x) comes to O (n2(log p)3) units, and we
obtain the second row of Q. To get further rows of Q, we can compute x2p

mod u(x), x3p mod u(x), . . . , simply by multiplying repeatedly by xp mod
u(x), in a fashion analogous to squaring mod u(x); step B2 is completed in O
(n3(log p)2) additional units of time. Thus steps B1, B2, and B3 take a total
of O (n2(log p)3+n3(log p)2)time units; these three steps tell us the number of
factors of u(x).

But when p is large and we get to step B4, we are asked to calculate a
greatest common divisor for p different values of s, and that is out of the
question if p is even moderately large. This hurdle was first surmounted by
Hans Zassenhaus [J. Number Theory 1 (1969), 291–311], who showed how
to determine all of the “useful” values of s (see exercise 14); but an even
better way to proceed was found by Zassenhaus and Cantor in 1980. If v(x) is
any solution to (8), we know that u(x) divides v(x)p – v(x) = v(x) · (v(x)
(p−1)/2 + 1) · (v(x)(p−1)/2 – 1). This suggests that we calculate

with a little bit of luck, (20) will be a nontrivial factor of u(x). In fact, we
can determine exactly how much luck is involved, by considering (7). Let
v(x) ≡ sj (modulo pj(x)) for 1 ≤j ≤ r; then pj(x) divides v(x)(p−1)/2 – 1 if and

only if (modulo p). We know that exactly (p − 1)/2 of the
integers s in the range 0 ≤ s < p satisfy s(p−1)/2 ≡ 1 (modulo p), hence about
half of the pj(x) will appear in the gcd(20). More precisely, if v(x) is a
random solution of (8), where all pr solutions are equally likely, the
probability that the gcd(20) equals u(x) is exactly

and the probability that it equals 1 is ((p + 1)/2p)r. The probability that a
nontrivial factor will be obtained is therefore

for all r ≥ 2 and p ≥ 3.
It is therefore a good idea to replace step B4 by the following procedure,

unless p is quite small: Set v(x) ← a1v[1](x) + a2v[2](x) + ... + arv[r](x),
where the coefficients aj are randomly chosen in the range 0 ≤ aj < p. Let the
current partial factorization of u(x) be u1(x) . . . ut(x) where t is initially 1.
Compute

for all i such that deg(ui) > 1; replace ui(x) by gi(x) · (ui(x)/gi(x)) and
increase the value of t, whenever a nontrivial gcd is found. Repeat this
process for different choices of v(x) until t = r.

If we assume (as we may) that only O(log r) random solutions v(x) to (8)
will be needed, we can give an upper bound on the time required to perform
this alternative to step B4. It takes O (rn(log p)2) steps to compute v(x); and
if deg(ui) = d, it takes O(d2(log p)3) steps to compute v(x)(p-1)/2 mod ui(x) and
O (d2 (log p)2) further steps to compute gcd(ui(x), v(x)(p−1)/2 – 1). Thus the
total time is O(n2(log p)3 log r).
Distinct-degree factorization. We shall now turn to a somewhat simpler
way to find factors modulo p. The ideas we have studied so far in this
section involve many instructive insights into computational algebra, so the
author does not apologize to the reader for presenting them; but it turns out
that the problem of factorization modulo p can actually be solved without
relying on so many concepts.

In the first place we can make use of the fact that an irreducible
polynomial q(x) of degree d is a divisor of xpd – x, and it is not a divisor of
xpc – x for 1 ≤ c < d; see exercise 16. We can therefore cast out the
irreducible factors of each degree separately, by adopting the following
strategy.

D1. [Go squarefree.] Rule out squared factors, as in Berlekamp’s method.
Also set v(x) ← u(x), w(x) ← “x”, and d ← 0. (Here v(x) and w(x) are
variables that have polynomials as values.)

D2. [If not done, take pth power.] (At this point w(x) = xpd mod v(x); all of
the irreducible factors of v(x) are distinct and have degree > d.) If d + 1
> deg(v), the procedure terminates since we either have v(x) = 1 or
v(x) is irreducible. Otherwise increase d by 1 and replace w(x) by
w(x)p mod v(x).

D3. [Extract factors.] Find gd(x) = gcd(w(x) – x, v(x)). (This is the product
of all the irreducible factors of u(x) whose degree is d.) If gd(x) ≠ 1,
replace v(x) by v(x)/gd(x) and w(x) by w(x) mod v(x); and if the degree
of gd(x) is greater than d, use the algorithm below to find its factors.
Return to step D2.

This procedure determines the product of all irreducible factors of each
degree d, and therefore it tells us how many factors there are of each degree.
Since the three factors of our example polynomial (19) have different
degrees, they would all be discovered without any need to factorize the
polynomials gd(x).

To complete the method, we need a way to split the polynomial gd(x)
into its irreducible factors when deg(gd) > d. Michael Rabin pointed out in
1976 that this can be done by doing arithmetic in the field of pd elements.
David G. Cantor and Hans Zassenhaus discovered in 1979 that there is an
even simpler way to proceed, based on the following identity: If p is any odd
prime, we have

for all polynomials t(x), since t(x)pd – t(x) is a multiple of all irreducible
polynomials of degree d. (We may regard t(x) as an element of the field of
size pd, when that field consists of all polynomials modulo an irreducible
f(x) as in exercise 16.) Now exercise 29 shows that gcd(gd(x), t(x)(pd−1)/2 –
1) will be a nontrivial factor of gd(x) about 50 percent of the time, when t(x)
is a random polynomial of degree ≤ 2d − 1; hence we will not need many
random trials to discover all of the factors. We may assume without loss of
generality that t(x) is monic, since integer multiples of t(x) make no
difference except possibly to change t(x)(pd−1)/2 into its negative. Thus in the
case d = 1, we can take t(x) = x + s, where s is chosen at random.

Sometimes this procedure will in fact succeed for d > 1 when only linear
polynomials t(x) are used. For example, there are eight irreducible
polynomials f(x) of degree 3, modulo 3, and they will all be distinguished by
calculating gcd(f(x), (x + s)13 – 1) for 0 ≤ s < 3:

Exercise 31 contains a partial explanation of why linear polynomials can be
effective. But when there are more than 2p irreducible polynomials of degree
d, some irreducibles must exist that cannot be distinguished by linear choices
of t(x).

An alternative to (21) that works when p = 2 is discussed in exercise 30.
Faster algorithms for distinct-degree factorization when p is very large have
been found by J. von zur Gathen, V. Shoup, and E. Kaltofen; the running time
is O(n2+ε + n1+ε log p) arithmetic operations modulo p for numbers of
practical size, and O(n(5+ω+ε)/4 log p) such operations as n → ∞, when ω is

the exponent of “fast” matrix multiplication in exercise 4.6.4–66. [See
Computational Complexity 2 (1992), 187–224; J. Symbolic Comp. 20
(1995), 363–397; Math. Comp. 67 (1998), 1179–1197.]

Historical notes: The idea of finding all the linear factors of a
squarefree polynomial f(x) modulo p by first calculating g(x) = gcd(xp−1 – 1,
f(x)) and then calculating gcd(g(x), (x + s)(p−1)/2 ± 1) for arbitrary s is due to
A. M. Legendre, Mémoires Acad. Sci. (Paris, 1785), 484–490; his motive
was to find all of the integer solutions to Diophantine equations of the form
f(x) = py, that is, f(x) ≡ 0 (modulo p). The more general degree-separation
technique embodied in Algorithm D was discovered by C. F. Gauss before
1800, but not published [see his Werke 2 (1876), 237], and then by Évariste
Galois in the now-classic paper that launched the theory of finite fields
[Bulletin des Sciences Mathématiques, Physiques et Chimiques 13 (1830),
428–435; reprinted in J. de Math. Pures et Appliquées 11 (1846), 398–407].
However, this work of Gauss and Galois was ahead of its time, and not well
understood until J. A. Serret gave a detailed exposition somewhat later
[Mémoires Acad. Sci., series 2, 35 (Paris, 1866), 617–688; Algorithm D is
in §7]. Special procedures for splitting gd(x) into irreducible factors were
devised subsequently by various authors, but methods of full generality that
would work efficiently for large p were apparently not discovered until the
advent of computers made them desirable. The first such randomized
algorithm with a rigorously analyzed running time was published by E.
Berlekamp [Math. Comp. 24 (1970), 713–735]; it was refined and
simplified by Robert T. Moenck [Math. Comp. 31 (1977), 235–250], M. O.
Rabin [SICOMP 9 (1980), 273–280], D. G. Cantor and H. J. Zassenhaus
[Math. Comp. 36 (1981), 587–592]. Paul Camion independently found a
generalization to special classes of multivariate polynomials [Comptes
Rendus Acad. Sci. A291 (Paris, 1980), 479–482; IEEE Trans. IT-29 (1983),
378–385].

The average number of operations needed to factor a random polynomial
mod p has been analyzed by P. Flajolet, X. Gourdon, and D. Panario, Lecture
Notes in Comp. Sci. 1099 (1996), 232–243.
Factoring over the integers. It is somewhat more difficult to find the
complete factorization of polynomials with integer coefficients when we are

not working modulo p, but some reasonably efficient methods are available
for this purpose.

Isaac Newton gave a method for finding linear and quadratic factors of
polynomials with integer coefficients in his Arithmetica Universalis (1707).
His method was extended by N. Bernoulli in 1708 and, more explicitly, by an
as tronomer named Friedrich von Schubert in 1793, who showed how to find
all factors of degree n in a finite number of steps; see M. Mignotte and D.
Ştefănescu, Revue d’Hist. Math. 7 (2001), 67–89. L. Kronecker
rediscovered their approach independently, about 90 years later; but
unfortunately the method is very inefficient when n is five or more. Much
better results can be obtained with the help of the “mod p” factorization
methods presented above.

Suppose that we want to find the irreducible factors of a given
polynomial

over the integers. As a first step, we can divide by the greatest common
divisor of the coefficients; this leaves us with a primitive polynomial. We
may also assume that u(x) is squarefree, by dividing out gcd(u(x), u′(x)) as in
exercise 34.

Now if u(x) = v(x)w(x), where each of these polynomials has integer
coefficients, we obviously have u(x) ≡ v(x)w(x) (modulo p) for all primes p,
so there is a nontrivial factorization modulo p unless p divides ℓ(u). An
efficient algorithm for factoring u(x) modulo p can therefore be used in an
attempt to reconstruct possible factorizations of u(x) over the integers.

For example, let

We have seen above in (19) that

and the complete factorization of u(x) modulo 2 shows one factor of degree 6
and another of degree 2 (see exercise 10). From (23) we can see that u(x)
has no factor of degree 2, so it must be irreducible over the integers.

This particular example was perhaps too simple; experience shows that
most irreducible polynomials can be recognized as such by examining their
factors modulo a few primes, but it is not always so easy to establish

irreducibility. For example, there are polynomials that can be properly
factored modulo p for all primes p, with consistent degrees of the factors, yet
they are irreducible over the integers (see exercise 12).

A large family of irreducible polynomials is exhibited in exercise 38,
and exercise 27 proves that almost all polynomials are irreducible over the
integers. But we usually aren’t trying to factor a random polynomial; there is
probably some reason to expect a nontrivial factor or else the calculation
would not have been attempted in the first place. We need a method that
identifies factors when they are there.

In general if we try to find the factors of u(x) by considering its behavior
modulo different primes, the results will not be easy to combine. For
example, if u(x) is actually the product of four quadratic polynomials, we
will have trouble matching up their images with respect to different prime
moduli. Therefore it is desirable to stick to a single prime and to see how
much mileage we can get out of it, once we feel that the factors modulo this
prime have the right degrees.

One idea is to work modulo a very large prime p, big enough so that the
coefficients in any true factorization u(x) = v(x)w(x) over the integers must
actually lie between –p/2 and p/2. Then all possible integer factors can be
read off from the factors that we know how to compute mod p.

Exercise 20 shows how to obtain fairly good bounds on the coefficients
of polynomial factors. For example, if (22) were reducible it would have a
factor v(x) of degree ≤ 4, and the coefficients of v would be at most 34 in
magnitude by the results of that exercise. So all potential factors of u(x) will
be fairly evident if we work modulo any prime p > 68. Indeed, the complete
factorization modulo 71 is

and we see immediately that none of these polynomials could be a factor of
(22) over the integers since the constant terms do not divide 5; furthermore
there is no way to obtain a divisor of (22) by grouping two of these factors,
since none of the conceivable constant terms 12 × 25, 12 × (–7), 12 × (–12)
is congruent to ±1 or ±5 (modulo 71).

Incidentally, it is not trivial to obtain good bounds on the coefficients of
polynomial factors, since a lot of cancellation can occur when polynomials
are multiplied. For example, the innocuous-looking polynomial xn−1 has

irreducible factors whose coefficients exceed exp(n1/lg lg n) for infinitely
many n. [See R. C. Vaughan, Michigan Math. J. 21 (1974), 289–295.] The
factorization of xn − 1 is discussed in exercise 32.

Instead of using a large prime p, which might need to be truly enormous
if u(x) has large degree or large coefficients, we can also make use of small
p, provided that u(x) is squarefree mod p. For in this case, an important
construction known as Hensel’s Lemma can be used to extend a factorization
modulo p in a unique way to a factorization modulo pe for arbitrarily high
exponents e (see exercise 22). If we apply Hensel’s Lemma to (23) with p =
13 and e = 2, we obtain the unique factorization

(modulo 169). Calling these factors v1(x)v3(x)v4(x), we see that v1(x) and
v3(x) are not factors of u(x) over the integers, nor is their product v1(x)v3(x)
when the coefficients have been reduced modulo 169 to the range (

). Thus we have exhausted all possibilities, proving once again
that u(x) is irreducible over the integers—this time using only its
factorization modulo 13.

The example we have been considering is atypical in one important
respect: We have been factoring the monic polynomial u(x) in (22), so we
could assume that all its factors were monic. What should we do if un > 1? In
such a case, the leading coefficients of all but one of the polynomial factors
can be varied almost arbitrarily modulo pe; we certainly don’t want to try all
possibilities. Perhaps the reader has already noticed this problem.
Fortunately there is a simple way out: The factorization u(x) = v(x)w(x)
implies a factorization unu(x) = v1(x)w1(x) where ℓ(v1) = ℓ(w1) = un = ℓ(u).
(“Excuse me, do you mind if I multiply your polynomial by its leading
coefficient before I factor it?”) We can proceed essentially as above, but
using pe > 2B where B now bounds the maximum coefficient for factors of
unu(x) instead of u(x). Another way to solve the leading coefficient problem
is discussed in exercise 40.

Putting these observations all together results in the following procedure:
F1. [Factor modulo a prime power.] Find the unique squarefree

factorization

where pe is sufficiently large as explained above, and where the vj(x)
are monic. (This will be possible for all but a few primes p; see
exercise 23.) Also set d ← 1.

F2. [Try the d-element subfactors.] For every combination of factors v(x) =
vi1(x) . . . vid(x), with i1 = 1 if d = r, form the unique polynomial (x)
≡ ℓ(u)v(x) (modulo pe) whose coefficients all lie in the interval [– pe

. . pe). If (x) divides ℓ(u)u(x), output the factor pp((x)), divide u(x)
by this factor, and remove the corresponding vi(x) from the list of
factors modulo pe; decrease r by the number of factors removed, and
terminate if d > r.

F3. [Loop on d.] Increase d by 1, and return to F2 if d ≤ r.
At the conclusion of this process, the current value of u(x) will be the final
irreducible factor of the originally given polynomial. Notice that if |u0| < |un|,
it is preferable to do all of the work with the reverse polynomial u0xn + ... +
un, whose factors are the reverses of the factors of u(x).

The procedure as stated requires pe > 2B, where B is a bound on the
coefficients of any divisor of unu(x), but we can use a much smaller value of
B if we only guarantee it to be valid for divisors of degree ≤ deg(u). In this
case the divisibility test in step F2 should be applied to w(x) = v1(x) . . .
vr(x)/v(x) instead of v(x), whenever deg(v) > deg(u).

We can decrease B still more if we decide to guarantee only that B
should bound the coefficients of at least one proper divisor of u(x). (For
example, when we’re factoring a nonprime integer N instead of a polynomial,
some of the divisors might be very large, but at least one will be ≤ .) This
idea, due to B. Beauzamy, V. Trevisan, and P. S. Wang [J. Symbolic Comp.
15 (1993), 393–413], is discussed in exercise 21. The divisibility test in step
F2 must then be applied to both v(x) and w(x), but the computations are faster
because pe is often much smaller.

The algorithm above contains an obvious bottleneck: We may have to test
as many as 2r–1 – 1 potential factors v(x). The average value of 2r in a
random situation is about n, or perhaps n1.5 (see exercise 5), but in

nonrandom situations we will want to speed up this part of the routine as
much as we can. One way to rule out spurious factors quickly is to compute
the trailing coefficient (0) first, continuing only if this divides ℓ(u)u(0); the
complications explained in the preceding paragraphs do not have to be
considered unless this divisibility condition is satisfied, since such a test is
valid even when deg(v) > deg(u).

Another important way to speed up the procedure is to reduce r so that it
tends to reflect the true number of factors. The distinct degree factorization
algorithm above can be applied for various small primes pj, thus obtaining
for each prime a set Dj of possible degrees of factors modulo pj; see exercise
26. We can represent Dj as a string of n binary bits. Now we compute the
intersection ∩Dj, namely the bitwise “and” of these strings, and we perform
step F2 only for

Furthermore p is chosen to be that pj having the smallest value of r. This
technique is due to David R. Musser, whose experience suggests trying about
five primes pj [see JACM 25 (1978), 271–282]. Of course we would stop
immediately if the current ∩Dj shows that u(x) is irreducible.

Musser has given a complete discussion of a factorization method
similar to the steps above, in JACM 22 (1975), 291–308. Steps F1–F3
incorporate an improvement suggested in 1978 by G. E. Collins, namely to
look for trial divisors by taking combinations of d factors at a time rather
than combinations of total degree d. This improvement is important because
of the statistical behavior of the modulo-p factors of polynomials that are
irreducible over the rationals (see exercise 37).

A. K. Lenstra, H. W. Lenstra, Jr., and L. Lovász introduced their famous
“LLL algorithm” in order to obtain rigorous worst-case bounds on the amount
of computation needed to factor a polynomial over the integers [Math.
Annalen 261 (1982), 515–534]. Their method requires no random numbers,
and its running time for u(x) of degree n is O (n12 + n9(log ǁuǁ)3) bit
operations, where ǁuǁ is defined in exercise 20. This estimate includes the
time to search for a suitable prime number p and to find all factors modulo p
with Algorithm B. Of course, heuristic methods that use randomization run
noticeably faster in practice.

Greatest common divisors. Similar techniques can be used to calculate
greatest common divisors of polynomials: If gcd(u(x), v(x)) = d(x) over the
integers, and if gcd(u(x), v(x)) = q(x) (modulo p) where q(x) is monic, then
d(x) is a common divisor of u(x) and v(x) modulo p; hence

If p does not divide the leading coefficients of both u and v, it does not
divide the leading coefficient of d; in such a case deg(d) ≤ deg(q). When q(x)
= 1 for such a prime p, we must therefore have deg(d) = 0, and d(x) =
gcd(cont(u), cont(v)). This justifies the remark made in Section 4.6.1 that the
simple computation of gcd(u(x), v(x)) modulo 13 in 4.6.1–(6) is enough to
prove that u(x) and v(x) are relatively prime over the integers; the
comparatively laborious calculations of Algorithm 4.6.1E or Algorithm
4.6.1C are unnecessary. Since two random primitive polynomials are almost
always relatively prime over the integers, and since they are relatively prime
modulo p with probability 1 – 1/p by exercise 4.6.1–5, it is usually a good
idea to do the computations modulo p.

As remarked before, we need good methods also for the nonrandom
polynomials that arise in practice. Therefore we wish to sharpen our
techniques and discover how to find gcd(u(x), v(x)) in general, over the
integers, based entirely on information that we obtain working modulo
primes p. We may assume that u(x) and v(x) are primitive.

Instead of calculating gcd(u(x), v(x)) directly, it will be convenient to
search instead for the polynomial

where the constant c is chosen so that

This condition will always hold for suitable c, since the leading coefficient
of any common divisor of u(x) and v(x) must be a divisor of gcd(ℓ(u), ℓ(v)).
Once (x) has been found satisfying these conditions, we can readily
compute pp ((x)), which is the true greatest common divisor of u(x) and
v(x). Condition (26) is convenient since it avoids the uncertainty of unit
multiples of the gcd; we have used essentially the same idea to control the
leading coefficients in our factorization routine.

If p is a sufficiently large prime, based on the bounds for coefficients in
exercise 20 applied either to ℓ()u(x) or ℓ()v(x), let us compute the unique

polynomial (x) ≡ ℓ()q(x) (modulo p) having all coefficients in [– p . .
p). When pp((x)) divides both u(x) and v(x), it must equal gcd(u(x), v(x))
because of (24). On the other hand if it does not divide both u(x) and v(x) we
must have deg(q) > deg(d). A study of Algorithm 4.6.1E reveals that this will
be the case only if p divides the leading coefficient of one of the nonzero
remainders computed by that algorithm with exact integer arithmetic;
otherwise Euclid’s algorithm modulo p deals with precisely the same
sequence of polynomials as Algorithm 4.6.1E except for nonzero constant
multiples (modulo p). So only a small number of “unlucky” primes can cause
us to miss the gcd, and we will soon find a lucky prime if we keep trying.

If the bound on coefficients is so large that single-precision primes p are
insufficient, we can compute (x) modulo several primes p until it has been
determined via the Chinese remainder algorithm of Section 4.3.2. This
approach, which is due to W. S. Brown and G. E. Collins, has been
described in detail by Brown in JACM 18 (1971), 478–504. Alternatively, as
suggested by J. Moses and D. Y. Y. Yun [Proc. ACM Conf. 28 (1973), 159–
166], we can use Hensel’s method to determine (x) modulo pe for
sufficiently large e. Hensel’s construction appears to be computationally
superior to the Chinese remainder approach; but it is valid directly only
when

since the idea is to apply the techniques of exercise 22 to one of the
factorizations ℓ()u(x) ≡ (x)u1(x) or ℓ()v(x) ≡ (x)v1(x) (modulo p).
Exercises 34 and 35 show that it is possible to arrange things so that (27)
holds whenever necessary. (The notation

used in (27) means that u(x) and v(x) are relatively prime, by analogy with
the notation used for relatively prime integers.)

The gcd algorithms sketched here are significantly faster than those of
Section 4.6.1 except when the polynomial remainder sequence is very short.
Perhaps the best general procedure would be to start with the computation of
gcd(u(x), v(x)) modulo a fairly small prime p, not a divisor of both ℓ(u) and
ℓ(v). If the result q(x) is 1, we’re done; if it has high degree, we use
Algorithm 4.6.1C; otherwise we use one of the methods above, first
computing a bound for the coefficients of (x) based on the coefficients of

u(x) and v(x), and on the (small) degree of q(x). As in the factorization
problem, we should apply this procedure to the reverses of u(x), v(x) and
reverse the result, if the trailing coefficients are simpler than the leading
ones.
Multivariate polynomials. Similar techniques lead to useful algorithms for
factorization or gcd calculations on multivariate polynomials with integer
coefficients. It is convenient to deal with the polynomial u(x1, . . . , xt) by
working modulo the irreducible polynomials x2 – a2, . . . , xt – at, which play
the role of p in the discussion above. Since v(x) mod (x – a) = v(a), the value
of

is the univariate polynomial u(x1, a2, . . . , at). When the integers a2, . . . , at
are chosen so that u(x1, a2, . . . , at) has the same degree in x1 as the original
polynomial u(x1, x2, . . . , xt), an appropriate generalization of Hensel’s
construction will “lift” squarefree factorizations of this univariate
polynomial to factorizations modulo {(x2 – a2)n2 , . . . , (xt – at)nt}, where nj
is the degree of xj in u; at the same time we can also work modulo an
appropriate integer prime p. As many as possible of the aj should be zero, so
that sparseness of the intermediate results is retained. For details, see P. S.
Wang, Math. Comp. 32 (1978), 1215–1231, in addition to the papers by
Musser and by Moses and Yun cited earlier.

Significant computational experience has been accumulating since the
days when the pioneering papers cited above were written. See R. E. Zippel,
Effective Polynomial Computation (Boston: Kluwer, 1993) for a more
recent survey. Moreover, it is now possible to factor polynomials that are
given implicitly by a “black box” computational procedure, even when both
input and output polynomials would fill the universe if they were written out
explicitly [see E. Kaltofen and B. M. Trager, J. Symbolic Comp. 9 (1990),
301–320; Y. N. Lakshman and B. David Saunders, SICOMP 24 (1995), 387–
397].

The asymptotically best algorithms frequently turn out to be worst on all
problems for which they are used.

— D. G. CANTOR and H. ZASSENHAUS (1981)

Exercises

 1. [M24] Let p be prime, and let u(x) be a random polynomial of degree
n, assuming that each of the pn monic polynomials is equally likely. Show
that if n ≥ 2, the probability that u(x) has a linear factor mod p lies between
(1+p−1)/2 and (2+p−2)/3, inclusive. Give a closed form for this probability
when n ≥ p. What is the average number of linear factors?
 2. [M25] (a) Show that any monic polynomial u(x), over a unique
factorization domain, may be expressed uniquely in the form

where w(x) is squarefree (has no factor of positive degree of the form
d(x)2) and both v(x) and w(x) are monic. (b) (E. R. Berlekamp.) How
many monic polynomials of degree n are squarefree modulo p, when p is
prime?

3. [M25] (The Chinese remainder theorem for polynomials.) Let u1(x), . .
. , ur(x) be polynomials over a field S, with uj(x) ⊥ uk(x) for all j ≠ k. For
any given polynomials w1(x), . . . , wr(x) over S, prove that there is a unique
polynomial v(x) over S such that deg(v) < deg(u1) + ... + deg(ur) and v(x) ≡
wj(x) (modulo uj(x)) for 1 ≤ j ≤ r. Does this result hold also when S is the set
of all integers?

4. [HM28] Let anp be the number of monic irreducible polynomials of
degree n, modulo a prime p. Find a formula for the generating function Gp(z)
= ∑n anpzn. [Hint: Prove the following identity connecting power series: f(z)
= ∑j≥1 g(zj)/jt if and only if g(z) = ∑n≥1 μ(n)f(zn)/nt.] What is limp→∞

anp/pn?
5. [HM30] Let Anp be the average number of irreducible factors of a

randomly selected polynomial of degree n, modulo a prime p. Show that
limp→∞ Anp = Hn. What is the limiting average value of 2r, when r is the
number of irreducible factors?

6. [M21] (J. L. Lagrange, 1771.) Prove the congruence (9). [Hint: Factor
xp – x in the field of p elements.]

7. [M22] Prove Eq. (14).

8. [HM20] How can we be sure that the vectors output by Algorithm N are
linearly independent?

9. [20] Explain how to construct a table of reciprocals mod 101 in a
simple way, given that 2 is a primitive root of 101.
 10. [21] Find the complete factorization of the polynomial u(x) in (22),

modulo 2, using Berlekamp’s procedure.
11. [22] Find the complete factorization of the polynomial u(x) in (22),
modulo 5.

 12. [M22] Use Berlekamp’s algorithm to determine the number of factors
of u(x) = x4 + 1, modulo p, for all primes p. [Hint: Consider the cases p =
2, p = 8k + 1, p = 8k + 3, p = 8k + 5, p = 8k + 7 separately; what is the
matrix Q? You need not discover the factors; just determine how many
there are.]
13. [M25] Continuing the previous exercise, give an explicit formula for
the factors of x4 + 1, modulo p, for all odd primes p, in terms of the
quantities , , when such square roots exist modulo p.
14. [M25] (H. Zassenhaus.) Let v(x) be a solution to (8), and let w(x) =
∏(x – s) where the product is over all 0 ≤ s < p such that gcd(u(x), v(x) –
s) ≠ 1. Explain how to compute w(x), given u(x) and v(x). [Hint: Eq. (14)
implies that w(x) is the polynomial of least degree such that u(x) divides
w(v(x)).]

 15. [M27] (Square roots modulo a prime.) Design an algorithm to
calculate the square root of a given integer u modulo a given prime p, that
is, to find an integer v such that v2 ≡ u (modulo p) whenever such a v exists.
Your algorithm should be efficient even for very large primes p. (For p ≠ 2,
a solution to this problem leads to a procedure for solving any given
quadratic equation modulo p, using the quadratic formula in the usual way.)
Hint: Consider what happens when the factorization methods of this
section are applied to the polynomial x2 – u.
16. [M30] (Finite fields.) The purpose of this exercise is to prove basic
properties of the fields introduced by É. Galois in 1830.

a) Given that f(x) is an irreducible polynomial modulo a prime p, of
degree n, prove that the pn polynomials of degree less than n form a
field under arithmetic modulo f(x) and p. [Note: The existence of

irreducible polynomials of each degree is proved in exercise 4;
therefore fields with pn elements exist for all primes p and all n ≥ 1.]

b) Show that any field with pn elements has a “primitive root” element ξ
such that the elements of the field are {0, 1, ξ, ξ2, . . . , ξpn−2}. [Hint:
Exercise 3.2.1.2–16 provides a proof in the special case n = 1.]

c) If f(x) is an irreducible polynomial modulo p, of degree n, prove that
xpm – x is divisible by f(x) if and only if m is a multiple of n. (It
follows that we can test irreducibility rather quickly: A given nth
degree polynomial f(x) is irreducible modulo p if and only if xpn – x is
divisible by f(x) and xpn/q – x ⊥ f(x) for all primes q that divide n.)

17. [M23] Let F be a field with 132 elements. How many elements of F
have order f, for each integer f with 1 ≤ f < 132? (The order of an element
a is the least positive integer m such that am = 1.)

 18. [M25] Let u(x) = unxn + ... + u0, un ≠ 0, be a primitive polynomial
with integer coefficients, and let v(x) be the monic polynomial defined by

(a) Given that v(x) has the complete factorization p1(x) . . . pr(x) over
the integers, where each pj(x) is monic, what is the complete
factorization of u(x) over the integers?
(b) If w(x) = xm + wm−1xm−1 + ... + w0 is a factor of v(x), prove that wk is
a multiple of for 0 ≤ k < m.

19. [M20] (Eisenstein’s criterion.) Perhaps the best-known class of
irreducible polynomials over the integers was introduced by T.
Schönemann in Crelle 32 (1846), 100, then popularized by G. Eisenstein in
Crelle 39 (1850), 166–169: Let p be prime and let u(x) = unxn + ... + u0
have the following properties: (i) un is not divisible by p; (ii) un−1, . . . , u0

are divisible by p; (iii) u0 is not divisible by p2. Show that u(x) is
irreducible over the integers.
20. [HM33] If u(x) = unxn + ... + u0 is any polynomial over the complex
numbers, let ǁuǁ = (|un|2 + ... + |u0|2)1/2.

a) Let u(x) = (x – α)w(x) and v(x) = (x − 1)w(x), where α is any
complex number and is its complex conjugate. Prove that ǁuǁ = ǁvǁ.

b) Let un(x – α1) . . . (x – αn) be the complete factorization of u(x) over
the complex numbers, and write max(1, |αj|).
Prove that M(u) ≤ ǁuǁ.

c) Show that , for 0 ≤ j ≤ n.
d) Combine these results to prove that if u(x) = v(x)w(x) and v(x) =

vmxm+ ... + v0, where u, v, w all have integer coefficients, then the
coefficients of v are bounded by

21. [HM32] Continuing exercise 20, we can also derive useful bounds on
the coefficients of multivariate polynomial factors over the integers. For
convenience we will let boldface letters stand for sequences of t integers;
thus, instead of writing

we will write simply u(x) = ∑j ujxj. Notice the convention for xj; we
also write j! = j1! . . . jt! and Σ j = j1 + ... + jt.
a) Prove the identity

b) The polynomial u(x) = ∑j ujxj is called homogeneous of degree n if
each term has total degree n; thus we have Σ j = n whenever uj ≠ 0.
Consider the weighted sum of coefficients B(u) = ∑j j! |uj|2. Use part
(a) to show that B(u) ≥ B(v)B(w) whenever u(x) = v(x)w(x) is
homogeneous.

c) The Bombieri norm [u] of a polynomial u(x) is defined to be
 when u is homogeneous of degree n. It is also defined for

nonhomogeneous polynomials, by adding a new variable xt+1 and

multiplying each term by a power of xt+1 so that u becomes
homogeneous without increasing its maximum degree. For example, let
u(x) = 4x3 + x – 2; the corresponding homogeneous polynomial is 4x3 +
xy2 – 2y3, and we have

. If u(x, y, z) =
3xy3 – z2 we have, similarly,

. What does part (b)
tell us about the relation between [u], [v], and [w], when u(x) =
v(x)w(x)?

d) Prove that if u(x) is a reducible polynomial of degree n in one
variable, it has a factor whose coefficients are at most n!1/4[u]1/2/(n/4)!
in absolute value. What is the corresponding result for homogeneous
polynomials in t variables?

e) Calculate [u] both explicitly and asymptotically when u(x) = (x2 – 1)n.
f) Prove that [u][v] ≥ [uv].
g) Show that 2−n/2M(u) ≤ [u] ≤ 2n/2M(u), when u(x) is a polynomial of

degree n and M(u) is the quantity defined in exercise 20. (Therefore the
bound in part (d) is roughly the square root of the bound we obtained in
that exercise.)

 22. [M24] (Hensel’s Lemma.) Let u(x), ve(x), we(x), a(x), b(x) be
polynomials with integer coefficients, satisfying the relations

where p is prime, e ≥ 1, ve(x) is monic, deg(a) < deg(we), deg(b) <
deg(ve), and deg(u) = deg(ve) + deg(we). Show how to compute
polynomials ve+1(x) ≡ ve(x) and we+1(x) ≡ we(x) (modulo pe), satisfying
the same conditions with e increased by 1. Furthermore, prove that
ve+1(x) and we+1(x) are unique, modulo pe+1.

Use your method for p = 2 to prove that (22) is irreducible over the
integers, starting with its factorization modulo 2 found in exercise 10.
(Note that Euclid’s extended algorithm, exercise 4.6.1–3, will get the
process started for e = 1.)
23. [HM23] Let u(x) be a squarefree polynomial with integer coefficients.
Prove that there are only finitely many primes p such that u(x) is not

squarefree modulo p.
24. [M20] The text speaks only of factorization over the integers, not over
the field of rational numbers. Explain how to find the complete
factorization of a polynomial with rational coefficients, over the field of
rational numbers.
25. [M25] What is the complete factorization of x5 + x4 + x2 + x + 2 over
the field of rational numbers?
26. [20] Let d1, . . . , dr be the degrees of the irreducible factors of u(x)
modulo p, with proper multiplicity, so that d1 + ... + dr = n = deg(u).
Explain how to compute the set {deg(v) | u(x) ≡ v(x)w(x) (modulo p) for
some v(x), w(x)} by performing O(r) operations on binary bit strings of
length n.
27. [HM30] Prove that a random primitive polynomial over the integers is
“almost always” irreducible, in some appropriate sense.
28. [M25] The distinct-degree factorization procedure is “lucky” when
there is at most one irreducible polynomial of each degree d; then gd(x)
never needs to be broken into factors. What is the probability of such a
lucky circumstance, when factoring a random polynomial of degree n,
modulo p, for fixed n as p → ∞?
29. [M22] Let g(x) be a product of two or more distinct irreducible
polynomials of degree d, modulo an odd prime p. Prove that gcd(g(x), t(x)
(pd−1)/2 – 1) will be a proper factor of g(x) with probability ≥ 1/2 –
1/(2p2d), for any fixed g(x), when t(x) is selected at random from among
the p2d polynomials of degree < 2d modulo p.
30. [M25] Prove that if q(x) is an irreducible polynomial of degree d,
modulo p, and if t(x) is any polynomial, then the value of (t(x)+t(x)p

+t(x)p2 + ... + t(x)pd−1) mod q(x) is an integer (that is, a polynomial of
degree ≤ 0). Use this fact to design a randomized algorithm for factoring a
product gd(x) of degree-d irreducibles, analogous to (21), for the case p =
2.
31. [HM30] Let p be an odd prime and let d ≥ 1. Show that there exists a
number n(p, d) having the following two properties: (i) For all integers t,
exactly n(p, d) irreducible polynomials q(x) of degree d, modulo p, satisfy

(x+t)(pd−1)/2 mod q(x) = 1. (ii) For all integers 0 ≤ t1 < t2 < p, exactly n(p,
d) irreducible polynomials q(x) of degree d, modulo p, satisfy (x + t1)
(pd−1)/2 mod q(x) = (x + t2)(pd−1)/2 mod q(x).

 32. [M30] (Cyclotomic polynomials.) Let Ψn(x) = ∏1≤k≤n, k⊥n(x – ωk),
where ω = e2πi/n; thus, the roots of Ψn(x) are the complex nth roots of unity
that aren’t mth roots for m < n.

a) Prove that Ψn(x) is a polynomial with integer coefficients, and that

(See exercises 4.5.2–10(b) and 4.5.3–28(c).)
b) Prove that Ψn(x) is irreducible over the integers, hence the formula

above is the complete factorization of xn − 1 over the integers. [Hint: If
f(x) is an irreducible factor of Ψn(x) over the integers, and if ζ is a
complex number with f(ζ) = 0, prove that f(ζ p) = 0 for all primes p not
dividing n. It may help to use the fact that xn − 1 is squarefree modulo p
for all such primes.]

c) Discuss the calculation of Ψn(x), and tabulate the values for n ≤ 15.

33. [M18] True or false: If u(x) ≠ 0 and the complete factorization of u(x)
modulo p is p1(x)e1. . . pr(x)er , then u(x)/gcd(u(x), u′(x)) = p1(x) . . . pr(x).

 34. [M25] (Squarefree factorization.) It is clear that any primitive
polynomial of a unique factorization domain can be expressed in the form
u(x) = u1(x)u2(x)2u3(x)3. . . , where the polynomials ui(x) are squarefree
and relatively prime to each other. This representation, in which uj(x) is
the product of all the irreducible polynomials that divide u(x) exactly j
times, is unique except for unit multiples; and it is a useful way to represent
polynomials that participate in multiplication, division, and gcd operations.

Let GCD(u(x), v(x)) be a procedure that returns three answers:

The modular method described in the text following Eq. (25) always
ends with a trial division of u(x)/d(x) and v(x)/d(x), to make sure that no
“unlucky prime” has been used, so the quantities u(x)/d(x) and v(x)/d(x)

are byproducts of the gcd computation; thus we can compute GCD(u(x),
v(x)) essentially as fast as gcd(u(x), v(x)) when we are using a modular
method.

Devise a procedure that obtains the squarefree representation (u1(x),
u2(x), . . .) of a given primitive polynomial u(x) over the integers. Your
algorithm should perform exactly e computations of a GCD, where e is the
largest subscript with ue(x) ≠ 1; furthermore, each GCD calculation should
satisfy (27), so that Hensel’s construction can be used.
35. [M22] (D. Y. Y. Yun.) Design an algorithm that computes the squarefree
representation (w1(x), w2(x), . . .) of w(x) = gcd(u(x), v(x)) over the
integers, given the squarefree representations (u1(x), u2(x), . . .) and (v1(x),
v2(x), . . .) of u(x) and v(x).
36. [M27] Extend the procedure of exercise 34 so that it will obtain the
squarefree representation (u1(x), u2(x), . . .) of a given polynomial u(x)
when the coefficient arithmetic is performed modulo p.
37. [HM24] (George E. Collins.) Let d1, . . . , dr be positive integers
whose sum is n, and let p be prime. What is the probability that the
irreducible factors of a random nth-degree integer polynomial u(x) have
degrees d1, . . . , dr, when it is completely factored modulo p? Show that
this probability is asymptotically the same as the probability that a random
permutation on n elements has cycles of lengths d1, . . . , dr.

38. [HM27] (Perron’s criterion.) Let u(x) = xn + un−1xn−1 + ... + u0 be a
polynomial with integer coefficients such that u0 ≠ 0 and either |un−1| > 1 +
|un−2| + ... + |u0| or (un−1 = 0 and un−2 > 1 + |un−3| + ... + |u0|). Show that u(x)
is irreducible over the integers. [Hint: Prove that almost all of u’s roots
are less than 1 in absolute value.]
39. [HM42] (David G. Cantor.) Show that if the polynomial u(x) is
irreducible over the integers, it has a “succinct” proof of irreducibility, in
the sense that the number of bits in the proof is at most a polynomial in
deg(u) and the length of the coefficients. (Only a bound on the length of
proof is requested here, as in exercise 4.5.4–17, not a bound on the time
needed to find such a proof.) Hint: If v(x) is irreducible and t is any

polynomial over the integers, all factors of v(t(x)) have degree ≥ deg(v).
Perron’s criterion gives a large supply of irreducible polynomials v(x).

 40. [M20] (P. S. Wang.) If un is the leading coefficient of u(x) and B is a
bound on coefficients of some factor of u, the text’s factorization algorithm
requires us to find a factorization modulo pe where pe > 2|un|B. But |un|
might be larger than B, when B is chosen by the method of exercise 21.
Show that if u(x) is reducible, there is a way to recover one of its true
factors from a factorization modulo pe whenever pe ≥ 2B2 , by using the
algorithm of exercise 4.5.3–51.
41. [M47] (Beauzamy, Trevisan, and Wang.) Prove or disprove: There is a
constant c such that, if f (x) is any integer polynomial with all coefficients
≤ B in absolute value, then one of its irreducible factors has coefficients
bounded by cB.

4.6.3. Evaluation of Powers
In this section we shall study the interesting problem of computing xn

efficiently, given x and n, where n is a positive integer. Suppose, for
example, that we need to compute x16; we could simply start with x and
multiply by x fifteen times. But it is possible to obtain the same answer with
only four multiplications, if we repeatedly take the square of each partial
result, successively forming x2, x4, x8, x16.

The same idea applies, in general, to any value of n, in the following
way: Write n in the binary number system (suppressing zeros at the left).
Then replace each “1” by the pair of letters SX, replace each “0” by S, and
cross off the “SX” that now appears at the left. The result is a rule for
computing xn, if “S” is interpreted as the operation of squaring, and if “X” is
interpreted as the operation of multiplying by x. For example, if n = 23, its
binary representation is 10111; so we form the sequence SX S SX SX SX
and remove the leading SX to obtain the rule SSXSXSX. This rule states that
we should “square, square, multiply by x, square, multiply by x, square, and
multiply by x”; in other words, we should successively compute x2, x4, x5,
x10, x11, x22, x23.

This binary method is easily justified by a consideration of the sequence
of exponents in the calculation: If we reinterpret “S” as the operation of

multiplying by 2 and “X” as the operation of adding 1, and if we start with 1
instead of x, the rule will lead to a computation of n because of the
properties of the binary number system. The method is quite ancient; it
appeared before A.D. 400 in Pingala’s Hindu classic Chanda śāstra [see B.
Datta and A. N. Singh, History of Hindu Mathematics 2 (Lahore: Motilal
Banarsi Das, 1935), 76]. There seem to be no other references to this method
outside of India during the next several centuries, but a clear discussion of
how to compute 2n efficiently for arbitrary n was given by al-Uqlīdisī of
Damascus in A.D. 952; see The Arithmetic of al-Uqlīdisī by A. S. Saidan
(Dordrecht: D. Reidel, 1975), 341–342, where the general ideas are
illustrated for n = 51. See also al-Bīrūnī’s Chronology of Ancient Nations,
edited and translated by E. Sachau (London: 1879), 132–136; this eleventh-
century Arabic work had great influence.

The S-and-X binary method for obtaining xn requires no temporary
storage except for x and the current partial result, so it is well suited for
incorporation in the hardware of a binary computer. The method can also be
readily programmed; but it requires that the binary representation of n be
scanned from left to right. Computer programs generally prefer to go the
other way, because the available operations of division by 2 and remainder
mod 2 will deduce the binary representation from right to left. Therefore the
following algorithm, based on a right-to-left scan of the number, is often
more convenient:

Fig. 13. Evaluation of xn, based on a right-to-left scan of the binary
notation for n.

Algorithm A (Right-to-left binary method for exponentiation). This
algorithm evaluates xn, where n is a positive integer. (Here x belongs to any

algebraic system in which an associative multiplication, with identity
element 1, has been defined.)

A1. [Initialize.] Set N ← n, Y ← 1, Z ← x.
A2. [Halve N.] (At this point, xn= Y Z N.) Set t ← N mod 2 and N ← ⌊N/2⌋.

If t = 0, skip to step A5.
A3. [Multiply Y by Z.] Set Y ← Z times Y.
A4. [N = 0?] If N = 0, the algorithm terminates, with Y as the answer.
A5. [Square Z.] Set Z ← Z times Z, and return to step A2.

As an example of Algorithm A, consider the steps in the evaluation of
x23:

A MIX program corresponding to Algorithm A appears in exercise 2.
The great calculator al-Kāshī stated Algorithm A in A.D. 1427 [Istoriko-

Mat. Issledovani 7 (1954), 256–257]. The method is closely related to a
procedure for multiplication that was actually used by Egyptian
mathematicians as early as 2000 B.C.; for if we change step A3 to “Y ← Y
+Z” and step A5 to “Z ← Z +Z”, and if we set Y to zero instead of unity in
step A1, the algorithm terminates with Y = nx. [See A. B. Chace, The Rhind
Mathematical Papyrus (1927); W. W. Struve, Quellen und Studien zur
Geschichte der Mathematik A1 (1930).] This is a practical method for
multiplication by hand, since it involves only the simple operations of
doubling, halving, and adding. It is often called the “Russian peasant method”
of multiplication, since Western visitors to Russia in the nineteenth century
found the method in wide use there.

The number of multiplications required by Algorithm A is

where ν(n) is the number of ones in the binary representation of n. This is
one more multiplication than the left-to-right binary method mentioned at the
beginning of this section would require, due to the fact that the first execution
of step A3 is simply a multiplication by unity.

Because of the bookkeeping time required by this algorithm, the binary
method is usually not of importance for small values of n, say n ≤ 10, unless
the time for a multiplication is comparatively large. If the value of n is
known in advance, the left-to-right binary method is preferable. In some
situations, such as the calculation of xn mod u(x) discussed in Section 4.6.2,
it is much easier to multiply by x than to perform a general multiplication or
to square a value, so binary methods for exponentiation are primarily suited
for quite large n in such cases. If we wish to calculate the exact multiple-
precision value of xn, when x is an integer greater than the computer word
size, binary methods are not much help unless n is so huge that the high-speed
multiplication routines of Section 4.3.3 are involved; and such applications
are rare. Similarly, binary methods are usually inappropriate for raising a
polynomial to a power; see R. J. Fateman, SICOMP 3 (1974), 196–213, for
a discussion of the extensive literature on polynomial exponentiation.

The point of these remarks is that binary methods are nice, but not a
panacea. They are most applicable when the time to multiply xj · xk is
essentially independent of j and k (for example, when we are doing floating
point multiplication, or multiplication mod m); in such cases the running time
is reduced from order n to order log n.
Fewer multiplications. Several authors have published statements (without
proof) that the binary method actually gives the minimum possible number of
multiplications. But that is not true. The smallest counterexample is n = 15,
when the binary method needs six multiplications, yet we can calculate y = x3

in two multiplications and x15 = y5 in three more, achieving the desired result
with only five multiplications. Let us now discuss some other procedures for
evaluating xn, assuming that n is known in advance. Such procedures are of
interest, for example, when an optimizing compiler is generating machine
code.

The factor method is based on a factorization of n. If n = pq, where p is
the smallest prime factor of n and q > 1, we may calculate xn by first
calculating xp and then raising this quantity to the qth power. If n is prime, we

may calculate xn−1 and multiply by x. And, of course, if n = 1, we have xn

with no calculation at all. Repeated application of these rules gives a
procedure for evaluating xn, given any value of n. For example, if we want to
calculate x55, we first evaluate y = x5 = x4x = (x2)2x; then we form y11 = y10y
= (y2)5y. The whole process takes eight multiplications, while the binary
method would have required nine. The factor method is better than the binary
method on the average, but there are cases (n = 33 is the smallest example)
where the binary method excels.

The binary method can be generalized to an m-ary method as follows:
Let n = d0mt + d1mt−1 + ... + dt, where 0 ≤ dj < m for 0 ≤ j ≤ t. The
computation begins by forming x, x2, x3, . . . , xm−1. (Actually, only those
powers xdj such that dj appears in the representation of n are needed, and this
observation often saves some of the work.) Then raise xd0 to the mth power
and multiply by xd1; we have computed y1 = xd0m+d1. Next, raise y1 to the mth

power and multiply by xd2, obtaining y2 = xd0m2+d1m+d2. The process continues
in this way until yt = xn has been computed. Whenever dj = 0, it is of course
unnecessary to multiply by xdj . Notice that this method reduces to the left-to-
right binary method discussed earlier, when m = 2; there is also a less
obvious right-to-left m-ary method that takes more memory but only a few
more steps (see exercise 9). If m is a small prime, the m-ary method will be
particularly efficient for calculating powers of one polynomial modulo
another, when the coefficients are treated modulo m, because of Eq. 4.6.2–
(5).

A systematic method that gives the minimum number of multiplications
for all of the relatively small values of n (in particular, for most n that occur
in practical applications) is indicated in Fig. 14. To calculate xn, find n in
this tree; then the path from the root to n indicates a sequence of exponents
that occur in an efficient evaluation of xn. The rule for generating this “power
tree” appears in exercise 5. Computer tests have shown that the power tree
gives optimum results for all of the n listed in the figure. But for large enough
values of n the power tree method is not always optimum; the smallest
examples are n = 77, 154, 233. The first case for which the power tree is
superior to both the binary method and the factor method is n = 23. The first
case for which the factor method beats the power tree method is n = 19879 =

103 · 193; such cases are quite rare. (For n ≤ 100,000 the power tree method
is better than the factor method 88,803 times; it ties 11,191 times; and it loses
only 6 times.)

Fig. 14. The “power tree.”

Addition chains. The most economical way to compute xn by multiplication
is a mathematical problem with an interesting history. We shall now examine
it in detail, not only because it is classical and interesting in its own right, but
because it is an excellent example of the theoretical questions that arise in the
study of optimum methods of computation.

Although we are concerned with multiplication of powers of x, the
problem can easily be reduced to addition, since the exponents are additive.
This leads us to the following abstract formulation: An addition chain for n
is a sequence of integers

with the property that

for all i = 1, 2, . . . , r. One way of looking at this definition is to consider a
simple computer that has an accumulator and is capable of the three
operations LDA, STA, and ADD; the machine begins with the number 1 in its
accumulator, and it proceeds to compute the number n by adding together
previous results. Notice that a1 must equal 2, and a2 is either 2, 3, or 4.

The shortest length, r, for which there exists an addition chain for n is
denoted by l(n). Thus l(1) = 0, l(2) = 1, l(3) = l(4) = 2, etc. Our goal in the
remainder of this section is to discover as much as we can about this function
l(n). The values of l(n) for small n are displayed in tree form in Fig. 15,
which shows how to calculate xn with the fewest possible multiplications for
all n ≤ 100.

Fig. 15. A tree that minimizes the number of multiplications, for n ≤ 100.

The problem of determining l(n) was apparently first raised by H. Dellac
in 1894, and a partial solution by E. de Jonquières mentioned the factor
method [see L’Intermédiaire des Mathématiciens 1 (1894), 20, 162–164]. In
his solution, de Jonquières listed what he felt were the values of l(p) for all
prime numbers p < 200, but his table entries for p = 107, 149, 163, 179, 199
were one too high.

The factor method tells us immediately that

since we can take the chains 1, a1, . . . , ar = m and 1, b1, . . . , bs = n and
form the chain 1, a1, . . . , ar, arb1, . . . , arbs = mn.

We can also recast the m-ary method into addition-chain terminology.
Consider the case m = 2k, and write n = d0mt + d1mt−1 + ... + dt in the m-ary

number system; the corresponding addition chain takes the form

The length of this chain is m−2+(k+1)t; and it can often be reduced by
deleting certain elements of the first row that do not occur among the
coefficients dj, plus elements among 2d0, 4d0, . . . that already appear in the
first row. Whenever digit dj is zero, the step at the right end of the
corresponding line may, of course, be dropped. Furthermore, we can omit all
the even numbers (except 2) in the first row, if we bring values of the form
dj/2e into the computation e steps earlier. [See E. Wattel and G. A. Jensen,
Math. Centrum Report ZW1968-001 (1968), 18 pp.; E. G. Thurber, Duke
Math. J. 40 (1973), 907–913.]

The simplest case of the m-ary method is the binary method (m = 2),
when the general scheme (4) simplifies to the “S” and “X” rule mentioned at
the beginning of this section: The binary addition chain for 2n is the binary
chain for n followed by 2n; for 2n + 1 it is the binary chain for 2n followed
by 2n + 1. From the binary method we conclude that

Let us now define two auxiliary functions for convenience in our subsequent
discussion:

Thus λ(17) = 4, ν(17) = 2; these functions may be defined by the recurrence
relations

In terms of these functions, the binary addition chain for n requires exactly
λ(n) + ν(n) – 1 steps, and (5) becomes

Special classes of chains. We may assume without any loss of generality that
an addition chain is ascending,

For if any two a’s are equal, one of them may be dropped; and we can also
rearrange the sequence (1) into ascending order and remove terms > n
without destroying the addition chain property (2). From now on we shall
consider only ascending chains, without explicitly mentioning this
assumption.

It is convenient at this point to define a few special terms relating to
addition chains. By definition we have, for 1 ≤ i ≤ r,

for some j and k, 0 ≤ k ≤ j < i. If this relation holds for more than one pair (j,
k), we let j be as large as possible. Let us say that step i of (11) is a
doubling, if j = k = i − 1; then ai has the maximum possible value 2ai−1 that
can follow the ascending chain 1, a1, . . . , ai−1. If j (but not necessarily k)
equals i − 1, let us say that step i is a star step. The importance of star steps
is explained below. Finally let us say that step i is a small step if λ(ai) =
λ(ai−1). Since ai−1 < ai ≤ 2ai−1, the quantity λ(ai) is always equal to either
λ(ai−1) or λ(ai−1) + 1; it follows that, in any chain (11), the length r is equal
to λ(n) plus the number of small steps.

Several elementary relations hold between these types of steps: Step 1 is
always a doubling. A doubling obviously is a star step, but never a small
step. A doubling must be followed by a star step. Furthermore if step i is not
a small step, then step i + 1 is either a small step or a star step, or both;
putting this another way, if step i + 1 is neither small nor star, step i must
have been small.

A star chain is an addition chain that involves only star steps. This
means that each term ai is the sum of ai−1 and a previous ak; the simple
“computer” discussed above after Eq. (2) makes use only of the two
operations STA and ADD (not LDA) in a star chain, since each new term of
the sequence utilizes the preceding result in the accumulator. Most of the
addition chains we have discussed so far are star chains. The minimum
length of a star chain for n is denoted by l*(n); clearly

We are now ready to derive some nontrivial facts about addition chains. First
we can show that there must be fairly many doublings if r is not far from

λ(n).
Theorem A. If the addition chain (11) includes d doublings and f = r – d
nondoublings, then

Proof. By induction on r = d + f, we see that (14) is certainly true when r =
1. When r > 1, there are three cases: If step r is a doubling, then n = ar−1 ≤
2d− 2Ff+3; hence (14) follows. If steps r and r − 1 are both nondoublings, then
ar−1 ≤ 2d−1 Ff+2 and ar−2 ≤ 2d−1 Ff+1; hence n = ar ≤ ar−1 + ar−2 ≤ 2d − 1(Ff+2 +
Ff+1) = 2d−1Ff+3 by the definition of the Fibonacci sequence. Finally, if step r
is a nondoubling but step r − 1 is a doubling, then ar−2 ≤ 2d− 2 Ff+2 and n = ar

≤ ar−1 + ar−2 = 3ar−2. Now 2Ff+3 – 3Ff+2 = Ff+1 – Ff ≥ 0; hence n ≤ 2d− 1 Ff+3
in all cases.

The method of proof we have used shows that inequality (14) is “best
possible” under the stated assumptions; the addition chain

has d doublings and f nondoublings.
Corollary A. If the addition chain (11) includes f nondoublings and s small
steps, then

Proof. Obviously s ≤ f. We have 2λ(n) ≤ n ≤ 2d − 1 Ff+3 ≤ 2dφf = 2λ(n)+s(φ/2)f,
since d + f = λ(n) + s, and since Ff+3 ≤ 2φf when f ≥ 0. Hence 0 ≤ s ln 2 + f
ln(ϕ/2), and (16) follows from the fact that ln 2/ ln(2/ϕ) ≈ 3.2706.
Values of l(n) for special n. It is easy to show by induction that ai ≤ 2i, and
therefore lg n ≤ r in any addition chain (11). Hence

This lower bound, together with the upper bound (10) given by the binary
method, gives us the values

In other words, the binary method is optimum when ν(n) ≤ 2. With some
further calculation we can extend these formulas to the case ν(n) = 3:
Theorem B..

Proof. We can, in fact, prove a stronger result that will be of use to us later in
this section: All addition chains with exactly one small step have one of the
following six types (where all steps indicated by “. . .” represent doublings):

Type 1. 1, . . . , 2A, 2A + 2B, . . . , 2A+C + 2B+C; A > B ≥ 0, C ≥ 0.
Type 2. 1, . . . , 2A, 2A + 2B, 2A+1 + 2B, . . . , 2A+C+1 + 2B+C; A > B ≥ 0, C

≥ 0.
Type 3. 1, . . . , 2A, 2A + 2A−1, 2A+1 + 2A−1, 2A+2, . . . , 2A+C; A > 0, C ≥ 2.
Type 4. 1, . . . , 2A, 2A + 2A−1, 2A+1 + 2A, 2A+2, . . . , 2A+C; A > 0, C ≥ 2.
Type 5. 1, . . . , 2A, 2A + 2A−1, . . . , 2A+C + 2A+C−1, 2A+C+1 + 2A+C−2, . . . ,

2A+C+D+1 + 2A+C+D−2; A > 0, C > 0, D ≥ 0.
Type 6. 1, . . . , 2A, 2A + 2B, 2A + 1, . . . , 2A+C; A > B ≥ 0, C ≥ 1.
A straightforward hand calculation shows that these six types exhaust all

possibilities. By Corollary A, there are at most three nondoublings when
there is one small step; this maximum occurs only in sequences of Type 3.
All of the above are star chains, except Type 6 when B < A − 1.

The theorem now follows from the observation that

and l(2A + 2B + 2C) must be greater than A + 1, since none of the six possible
types have ν(n) > 2.

(E. de Jonquières stated without proof in 1894 that l(n) ≥ λ(n) + 2 when
ν(n) > 2. The first published demonstration of Theorem B was by A. A.
Gioia, M. V. Subbarao, and M. Sugunamma in Duke Math. J. 29 (1962),
481–487.)

The calculation of l(2A + 2B + 2C + 2D), when A > B > C > D, is more
involved. By the binary method it is at most A+3, and by the proof of
Theorem B it is at least A + 2. The value A + 2 is possible, since we know
that the binary method is not optimal when n = 15 or n = 23. The complete
behavior when ν(n) = 4 can be determined, as we shall now see.

Theorem C. If ν(n) ≥ 4 then l(n) ≥ λ(n) + 3, except in the following
circumstances when A > B > C > D and l(2A + 2B + 2C + 2D) equals A + 2:

Case 1. A – B = C – D. (Example: n = 15.)
Case 2. A – B = C – D + 1. (Example: n = 23.)
Case 3. A – B = 3, C – D = 1. (Example: n = 39.)
Case 4. A – B = 5, B – C = C – D = 1. (Example: n = 135.)

Proof. When l(n) = λ(n) + 2, there is an addition chain for n having just two
small steps; such an addition chain starts out as one of the six types in the
proof of Theorem B, followed by a small step, followed by a sequence of
nonsmall steps. Let us say that n is “special” if n = 2A + 2B + 2C + 2D for one
of the four cases listed in the theorem. We can obtain addition chains of the
required form for each special n, as shown in exercise 13; therefore it
remains for us to prove that no chain with exactly two small steps contains
any elements with ν(ai) ≥ 4 except when ai is special.

Let a “counterexample chain” be an addition chain with two small steps
such that ν(ar) ≥ 4, but ar is not special. If counterexample chains exist, let 1
= a0 < a1 < ... < ar = n be a counterexample chain of shortest possible length.
Then step r is not a small step, since none of the six types in the proof of
Theorem B can be followed by a small step with ν(n) ≥ 4 except when n is
special. Furthermore, step r is not a doubling, otherwise a0, . . . , ar−1 would
be a shorter counterexample chain; and step r is a star step, otherwise a0, . . .
, ar−2, ar would be a shorter counterexample chain. Thus

Let c be the number of carries that occur when ar−1 is added to ar–k in the
binary number system by Algorithm 4.3.1A. Using the fundamental relation

we can prove that step r – 1 is not a small step (see exercise 14).
Let m = λ(ar−1). Since neither r nor r − 1 is a small step, c ≥ 2; and c = 2

can hold only when ar−1 ≥ 2m + 2m –1.
Now let us suppose that r − 1 is not a star step. Then r – 2 is a small

step, and a0, . . . , ar−3, ar−1 is a chain with only one small step; hence ν(ar−1)
≤ 2 and ν(ar−2) ≤ 4. The relation (22) can now hold only if ν(ar) = 4, ν(ar−1)

= 2, k = 2, c = 2, ν(ar−2) = 4. From c = 2 we conclude that ar−1 = 2m + 2m− 1;
hence a0, a1, . . . , ar−3 = 2m− 1 + 2m−2 is an addition chain with only one small
step, and it must be of Type 1, so ar belongs to Case 3. Thus r − 1 is a star
step.

Now assume that ar−1 = 2tar−k for some t. If ν(ar−1) ≤ 3, then by (22), c =
2, k = 2, and we see that ar must belong to Case 3. On the other hand, if
ν(ar−1) = 4 then ar−1 is special, and it is easy to see by considering each case
that ar also belongs to one of the four cases. (Case 4 arises, for example,
when ar−1 = 90, ar–k = 45; or ar−1 = 120, ar–k = 15.) Therefore we may
conclude that ar−1 ≠ 2tar−k for any t.

We have proved that ar−1 = ar−2 + ar–q for some q ≥ 2. If k = 2, then q >
2, and a0, a1, . . . , ar−2, 2ar−2, 2ar−2 + ar–q = ar is a counterexample sequence
in which k > 2; therefore we may assume that k > 2.

Let us now suppose that λ(ar–k) = m − 1; the case λ(ar–k) < m − 1 may be
ruled out by similar arguments, as shown in exercise 14. If k = 4, both r – 2
and r – 3 are small steps; hence ar−4 = 2m− 1, and (22) is impossible.
Therefore k = 3; step r – 2 is small, ν(ar−3) = 2, c = 2, ar−1 ≥ 2m + 2m− 1, and
ν(ar−1) = 4. There must be at least two carries when ar−2 is added to ar−1 –
ar−2; hence ν(ar−2) = 4, and ar−2 (being special and ≥ ar−1) has the form
2m−1 +2m−2 +2d+1 +2d for some d. Now ar−1 is either 2m+2m−1 +2d+1 +2d or
2m + 2m−1 + 2d+2 + 2d+1, and in both cases ar−3 must be 2m−1 + 2m−2, so ar
belongs to Case 3.

E. G. Thurber [Pacific J. Math. 49 (1973), 229–242] has extended
Theorem C to show that l(n) ≥ λ(n) + 4 when ν(n) > 8. It seems reasonable to
conjecture that l(n) ≥ λ(n) + lg ν(n) in general, since A. Schönhage has come
very close to proving this (see exercise 28).
*Asymptotic values. Theorem C indicates that it is probably quite difficult
to get exact values of l(n) for large n, when ν(n) > 4; however, we can
determine the approximate behavior in the limit as n → ∞.
Theorem D. [A. Brauer, Bull. Amer. Math. Soc. 45 (1939), 736–739.]

Proof. The addition chain (4) for the 2k-ary method is a star chain if we
delete the second occurrence of any element that appears twice in the chain;
for if ai is the first element among 2d0, 4d0, . . . of the second line that is not
present in the first line, we have ai ≤ 2(m − 1); hence ai = (m − 1) + aj for
some aj in the first line. By totaling up the length of the chain, we have

for all k ≥ 1. The theorem follows if we choose, say, .
If we let k = λλ(n) – 2λλλ(n) in (24) for large n, where λλ(n) denotes λ

(λ(n)), we obtain the stronger asymptotic bound

The second term λ(n)/λλ(n) is essentially the best that can be obtained from
(24). A much deeper analysis of lower bounds can be carried out, to show
that this term λ(n)/λλ(n) is, in fact, essential in (25). In order to see why this
is so, let us consider the following fact:
Theorem E. [Paul Erd s, Acta Arithmetica 6 (1960), 77–81.] Let ∊ be a
positive real number. The number of addition chains (11) such that

is less than αm, for some α < 2, for all suitably large m. (In other words, the
number of addition chains so short that (26) is satisfied is substantially less
than the number of values of n such that λ(n) = m, when m is large.)
Proof. We want to estimate the number of possible addition chains, and for
this purpose our first goal is to get an improvement of Theorem A that
enables us to deal more satisfactorily with nondoublings.
Lemma P. Let be a fixed positive real number. Call step i of
an addition chain a “ministep” if it is not a doubling and if ai < aj(1 + δ)i−j

for some j, where 0 ≤ j < i. If the addition chain contains s small steps and
t ministeps, then

Proof. For each ministep ik, 1 ≤ k ≤ t, we have aik < ajk(1 + δ)ik–jk for some
jk < ik. Let I1, . . . , It be the intervals (j1 . . i1], . . . , (jt . . it], where the
notation (j . . i] stands for the set of all integers k such that j < k ≤ i. It is

possible (see exercise 17) to find nonoverlapping intervals
 such that

Now for all steps i outside of the intervals J1, . . . , Jh we have ai ≤ 2ai−1;
hence if we let

we have 2λ(n) ≤ n ≤ 2r−q(1 + δ)2q = 2λ(n)+s−(1–θ)q ≤ 2λ(n)+s−(1–θ)t.

Returning to the proof of Theorem E, let us choose δ = 2∊/4 – 1, and let us
divide the r steps of each addition chain into three classes:

Counting another way, we have s small steps, where s + m = r. By the
hypotheses, Theorem A, and Lemma P, we obtain the relations

Given s, t, u, v satisfying these conditions, there are

ways to assign the steps to the specified classes. Given such a distribution of
the steps, let us consider how the non-ministeps can be selected: If step i is
one of the “other” steps in (29), ai ≥ (1 + δ)ai−1, so ai = aj + ak, where δai−1

≤ ak ≤ aj ≤ ai–1. Also aj ≤ ai/(1 + δ)i – j ≤ 2ai−1/(1 + δ)i – j, so δ ≤ 2/(1 + δ)i –

j. This gives at most β choices for j, where β is a constant that depends only
on δ. There are also at most β choices for k, so the number of ways to assign
j and k for each of the non-ministeps is at most

Finally, once the “j” and “k” have been selected for each of the
nonministeps, there are fewer than

ways to choose the j and the k for the ministeps: We select t distinct pairs (j1,
k1), . . . , (jt, kt) of indices in the range 0 ≤ kh ≤ jh < r, in fewer than (33)

ways. Then for each ministep i, in turn, we use a pair of indices (jh, kh) such
that

a) jh < i;
b) ajh +akh is as small as possible among the pairs not already used for

smaller ministeps i;
c) ai = ajh

 + akh
 satisfies the definition of ministep.

If no such pair (jh, kh) exists, we get no addition chain; on the other hand, any
addition chain with ministeps in the designated places must be selected in
one of these ways, so (33) is an upper bound on the possibilities.

Thus the total number of possible addition chains satisfying (26) is
bounded by (31) times (32) times (33), summed over all relevant s, t, u, and
v. The proof of Theorem E can now be completed by means of a rather
standard estimation of these functions (exercise 18).
Corollary E. The value of l(n) is asymptotically λ(n) + λ(n)/λλ(n), for
almost all n. More precisely, there is a function f(n) such that f(n) → 0 as n
→ ∞, and

(See Section 3.5 for the definition of this probability “Pr”.)
Proof. The upper bound (25) shows that (34) holds without the absolute
value signs. The lower bound comes from Theorem E, if we let f(n) decrease
to zero slowly enough so that, when f(n) ≤ ∊, the value N is so large that at
most ∊N values n ≤ N have l(n) ≤ λ(n) + (1 – ∊)λ(n)/λλ(n).
Star chains. Optimistic people find it reasonable to suppose that l(n) = l
(n); given an addition chain of minimal length l(n), it appears hard to believe
that we cannot find one of the same length that satisfies the (apparently mild)
star condition. But in 1958 Walter Hansen proved the remarkable theorem
that, for certain large values of n, the value of l(n) is definitely less than l*
(n), and he also proved several related theorems that we shall now
investigate.

Hansen’s theorems begin with an investigation of the detailed structure of
a star chain. Let n = 2e0 + 2e1 + ... + 2et, where e0 > e1 > ... > et ≥ 0, and let 1
= a0 < a1 < ... < ar = n be a star chain for n. If there are d doublings in this
chain, we define the auxiliary sequence

where di is the number of doublings among steps 1, 2, . . . , i. We also define
a sequence of “multisets” S0, S1, . . . , Sr, which keep track of the powers of 2
present in the chain. (A multiset is a mathematical entity that is like a set, but
it is allowed to contain repeated elements; an object may be an element of a
multiset several times, and its multiplicity of occurrences is relevant. See
exercise 19 for familiar examples of multisets.) The multisets Si are defined
by the rules

a) S0 = {0};

b) If ai+1 = 2ai, then Si+1 = Si + 1 = {x + 1 | x ∊ Si};
c) If ai+1 = ai + ak, k < i, then .
(The symbol means that the multisets are combined, adding the

multiplicities.) From this definition it follows that

where the terms in this sum are not necessarily distinct. In particular,

The number of elements in the latter sum is at most 2f, where f = r – d is the
number of nondoublings.

Since n has two different binary representations in (37), we can partition
the multiset Sr into multisets M0, M1, . . . , Mt such that

This can be done by arranging the elements of Sr into nondecreasing order x1

≤ x2 ≤ ... and taking Mt = {x1, x2, . . . , xk}, where 2x1 + ... + 2xk = 2et.
This must be possible, since et is the smallest of the e’s. Similarly, Mt−1 =
{xk+1, xk+2, . . . , xk′}, and so on; the process is easily visualized in binary
notation. An example appears below.

Let Mj contain mj elements (counting multiplicities); then mj ≤ 2f – t,
since Sr has at most 2f elements and it has been partitioned into t + 1
nonempty multisets. By Eq. (38), we can see that

Our examination of the star chain’s structure is completed by forming the
multisets Mij that record the ancestral history of Mj. The multiset Si is
partitioned into t + 1 multisets as follows:

a) Mrj = Mj;

b) If ai+1 = 2ai, then Mij = M(i+1)j – 1 = {x − 1 | x ∊ M(i+1)j};
c) If ai+1 = ai + ak, k < i, then (since Si+1 = Si Sk) we let Mij = M(i+1)j

minus Sk, that is, we remove the elements of Sk from M(i+1)j. If some
element of Sk appears in two or more different multisets M(i+1)j, we
remove it from the set with the largest possible value of j; this rule
uniquely defines Mij for each j, when i is fixed.

From this definition it follows that

As an example of this detailed construction, let us consider the star chain
1, 2, 3, 5, 10, 20, 23, for which t = 3, r = 6, d = 3, f = 3. We obtain the
following array of multisets:

Thus M40 = {2, 2}, etc. From the construction we can see that di is the largest
element of Si; hence

The most important part of this structure comes from Eq. (40); one of its
immediate consequences is
Lemma K. If Mij and Muv both contain a common integer x, then

Although Lemma K may not look extremely powerful, it says (when mj
and mv are reasonably small and when Mij contains an element in common
with Muv) that the number of doublings between steps u and i is
approximately equal to the difference between the exponents ev and ej. This
imposes a certain amount of regularity on the addition chain; and it suggests
that we might be able to prove a result analogous to Theorem B above, that l*
(n) = e0 + t, if the exponents ej are far enough apart. The next theorem shows
how this can in fact be done.
Theorem H. [W. Hansen, Crelle 202 (1959), 129–136.] Let n = 2e0 + 2e1 +
... + 2et, where e0 > e1 > ... > et ≥ 0. If

where m = 2⌊3.271(t−1)⌋ – t, then l*(n) = e0 + t.
Proof. We may assume that t > 2, since the result of the theorem is true
without restriction on the e’s when t ≤ 2. Suppose that we have a star chain 1
= a0 < a1 < ... < ar = n for n with r ≤ e0 + t − 1. Let the integers d, f, d0, . . . ,
dr, and the multisets Mj, Si, Mij reflect the structure of this chain, as defined
above. By Corollary A, we know that f ≤ ⌊3.271(t − 1)⌋; therefore the value
of m is a bona fide upper bound for the number mj of elements in each
multiset Mj.

In the summation

no carries propagate from the term corresponding to Mij to the term
corresponding to Mi(j−1), if we think of this sum as being carried out in the
binary number system, since the e’s are so far apart. (See (40).) In particular,
the sum of all the terms for j ≠ 0 will not carry up to affect the terms for j = 0,
so we must have

In order to prove Theorem H, we would like to show that in some sense
the t extra powers of n must be put in “one at a time,” so we want to find a
way to tell at which step each of these terms essentially enters the addition
chain.

Let j be a number between 1 and t. Since M0j is empty and Mrj = Mj is
nonempty, we can find the first step i for which Mij is not empty.

From the way in which the Mij are defined, we know that step i is a non-
doubling: ai = ai−1+au for some u < i−1. We also know that all the elements
of Mij are elements of Su. We will prove that au must be relatively small
compared to ai.

Let xj be an element of Mij. Then since xj ∊ Su, there is some v for which
xj ∊ Muv. It follows that

that is, at least m + 1 doublings occur between steps u and i. For if di – du ≤
m, Lemma K tells us that |ej – ev| < 2m; hence v = j. But this is impossible,
because Muj is empty by our choice of step i.

All elements of Su are less than or equal to e1 + di – d. For if x ∊ Su ⊆ Si

and x > e1 + di – d, then x ∊ Mu0 and x ∊ Mi0 by (40); so Lemma K implies
that |di – du| < m, contradicting (45). In fact, this argument proves that Mi0 has
no elements in common with Su, so M(i−1)0 = Mi0. From (44) we have ai−1 ≥
2λ(ai), and therefore step i is a small step.

We can now deduce what is probably the key fact in this entire proof: All
elements of Su are in Mu0. For if not, let x be an element of Su with x / ∉
Mu0. Since x ≥ 0, (40) implies that e1 ≥ d – du, hence

By hypothesis (43), this implies du > e1. But du ∊ Su by (41), and it cannot be
in Mi0, hence du ≤ e1 + di – d ≤ e1, a contradiction.

Going back to our element xj in Mij, we have xj ∊ Muv; and we have
proved that v = 0. Therefore, by equation (40) again,

For all j = 1, 2, . . . , t we have determined a number xj satisfying (46),
and a small step i at which the term 2ej may be said to have entered into the
addition chain. If j ≠ j′, the step i at which this occurs cannot be the same for
both j and j′; for (46) would tell us that |xj – xj′ | < m, while elements of Mij
and Mij′ must differ by more than m, since ej and ej′ are so far apart. We are
forced to conclude that the chain contains at least t small steps; but this is a
contradiction.
Theorem F. (W. Hansen).

Proof. An addition chain (which is not a star chain in general) may be
constructed by combining the binary and factor methods. Let x = 2x1 + ... +
2xu and y = 2y1 + ... + 2yv , where x1 > ... > xu ≥ 0 and y1 > ... > yv ≥ 0.

The first steps of the chain form successive powers of 2, until 2A−y1 is
reached; in between these steps, the additional values 2xu−1 + 2xu, 2xu−2 + 2xu−1

+ 2xu , . . . , and x are inserted in the appropriate places. After a chain up to
2A–yi + x(2y1–yi + ... + 2yi–1–yi) has been formed, we continue by adding x and
doubling the resulting sum yi – yi+1 times; this yields

If this construction is done for i = 1, 2, . . . , v, assuming for convenience that
yv+1 = 0, we have an addition chain for 2A + xy as desired.

Theorem F enables us to find values of n for which l(n) < l*(n), since
Theorem H gives an explicit value of l*(n) in certain cases. For example, let
x = 21016 + 1, y = 22032 + 1, and let

According to Theorem F, we have l(n) ≤ 6106. But Theorem H also applies,
with m = 508, and this proves that l*(n) = 6107.

Extensive computer calculations have shown that n = 12509 is the
smallest value with l(n) < l*(n). No star chain for this value of n is as short

as the sequence 1, 2, 4, 8, 16, 17, 32, 64, 128, 256, 512, 1024, 1041, 2082,
4164, 8328, 8345, 12509. The smallest n with ν(n) = 5 and l(n) ≠ l*(n) is
16537 = 214 +9·17 (see exercise 15).

Jan van Leeuwen has generalized Theorem H to show that

for all fixed k ≥ 1, if the exponents e0 > ... > et are far enough apart [Crelle
295 (1977), 202–207].
Some conjectures. Although it was reasonable to guess at first glance that
l(n) = l*(n), we have now seen that this is false. Another plausible
conjecture [first made by A. Goulard, and supposedly “proved” by E. de
Jonquières in L’Interméd. des Math. 2 (1895), 125–126] is that l(2n) =
l(n)+1; a doubling step is so efficient, it seems unlikely that there could be
any shorter chain for 2n than to add a doubling step to the shortest chain for
n. But computer calculations show that this conjecture also fails, since l(191)
= l(382) = 11. (A star chain of length 11 for 382 is not hard to find; for
example, 1, 2, 4, 5, 9, 14, 23, 46, 92, 184, 198, 382. The number 191 is
minimal such that l(n) = 11, and it seems to be nontrivial to prove by hand
that l(191) > 10. The author’s computer-generated proof of this fact, using a
backtrack method that will be sketched in Section 7.2.2, involved a detailed
examination of 102 cases.) The smallest four values of n such that l(2n) =
l(n) are n = 191, 701, 743, 1111; E. G. Thurber proved in Pacific J. Math.
49 (1973), 229–242, that the third of these is a member of an infinite family
of such n, namely 23 · 2k + 7 for all k ≥ 5. Neill Clift found in 2007 that l(n)
= l(2n) = l(4n) = 31 when n = 30958077; and in 2008, astonishingly, he
discovered that l(n) > l(2n) = 34 when n = 375494703. Kevin R. Hebb has
shown that l(n) – l(mn) can get arbitrarily large, for all fixed integers m not a
power of 2 [Notices Amer. Math. Soc. 21 (1974), A–294]. The smallest case
in which l(n) > l(mn) is l ((213 + 1)/3) = 15.

Let c(r) be the smallest value of n such that l(n) = r. The computation of
l(n) seems to be hardest for this sequence of n’s, which begins as follows:

For r ≤ 11, the value of c(r) is approximately equal to c(r − 1) + c(r − 2),
and this fact led to speculation by several people that c(r) grows like the
function φr; but the result of Theorem D (with n = c(r)) implies that r/lg c(r)
→ 1 as r → ∞. The values listed here for r > 18 have been computed by
Achim Flammenkamp, except that c(24) was first computed by Daniel
Bleichenbacher, and c(29) through c(39) by Neill Clift. Flammenkamp notes
that c(r) is fairly well approximated by the formula 2r exp(–θr/lg r) for 10 ≤
r ≤ 39, where θ is near ln 2; this agrees nicely with the upper bound (25).
Several people had conjectured at one time that c(r) would always be a
prime number, in view of the factor method; but c(15), c(18), and c(21) are
all divisible by 11. Perhaps no conjecture about addition chains is safe!

Tabulated values of l(n) show that this function is surprisingly smooth;
for example, l(n) = 13 for all n in the range 1125 ≤ n ≤ 1148. The computer
calculations show that a table of l(n) may be prepared for 2 ≤ n ≤ 1000 by
using the formula

where ln = ∞ if n is prime, otherwise ln = l(p) + l(n/p) if p is the smallest
prime dividing n; and δn = 1 for n in Table 1, δn = 0 otherwise.

Table 1 Values Of n for Special Addition Chains

Let d(r) be the number of solutions n to the equation l(n) = r. The
following table lists the first few values of d(r), according to Flammenkamp
and Clift:

Surely d(r) must be an increasing function of r, but there is no evident way to
prove this seemingly simple assertion, much less to determine the asymptotic
growth of d(r) for large r.

The most famous problem about addition chains that is still outstanding
is the Scholz–Brauer conjecture, which states that

Notice that 2n –1 is the worst case for the binary method, because ν(2n – 1) =
n. E. G. Thurber [Discrete Math. 16 (1976), 279–289] has shown that
several of these values, including the case n = 32, can actually be calculated
by hand. Computer calculations by Neill Clift [Computing 91 (2011), 265–
284] show that l(2n – 1) is in fact exactly equal to n − 1 + l(n) for 1 ≤ n ≤ 64.
Arnold Scholz coined the name “addition chain” (in German) and posed (49)
as a problem in 1937 [Jahresbericht der Deutschen Mathematiker-
Vereinigung, Abteilung II, 47 (1937), 41–42]; Alfred Brauer proved in 1939
that

Hansen’s theorems show that l(n) can be less than l*(n), so more work is
definitely necessary in order to prove or disprove (49). As a step in this

direction, Hansen has defined the concept of an l0-chain, which lies
“between” l-chains and l*-chains. In an l0-chain, some of the elements are
underlined; the condition is that ai = aj + ak, where aj is the largest
underlined element less than ai.

As an example of an l0-chain (certainly not a minimum one), consider

it is easy to verify that the difference between each element and the previous
underlined element is in the chain. We let l0(n) denote the minimum length of
an l0-chain for n. Clearly l(n) ≤ l0(n) ≤ l*(n).

Hansen pointed out that the chain constructed in Theorem F is an l0-chain
(see exercise 22); and he also established the following improvement of Eq.
(50):
Theorem G. l0(2n – 1) ≤ n − 1 + l0(n).
Proof. Let 1 = a0, a1, . . . , ar = n be an l0-chain of minimum length for n, and
let 1 = b0, b1, . . . , bt = n be the subsequence of underlined elements. (We
may assume that n is underlined.) Then we can get an l0-chain for 2n – 1 as
follows:

a) Include the l0(n) + 1 numbers 2ai – 1, for 0 ≤ i ≤ r, underlined if and
only if ai is underlined.

b) Include the numbers 2i(2bj – 1), for 0 ≤ j < t and for 0 < i ≤ bj+1 – bj,
all underlined. (This is a total of b1 – b0 + ... + bt – bt−1 = n − 1
numbers.)

c) Sort the numbers from (a) and (b) into ascending order.
We may easily verify that this gives an l0-chain: The numbers of (b) are

all equal to twice some other element of (a) or (b); furthermore, this element
is the preceding underlined element. If ai = bj + ak, where bj is the largest
underlined element less than ai, then ak = ai – bj ≤ bj+1 – bj, so 2ak (2bj − 1) =
2ai – 2ak appears underlined in the chain, just preceding 2ai – 1. Since 2ai – 1
is equal to (2ai – 2ak) + (2ak – 1), where both of these values appear in the
chain, we have an addition chain with the l0 property.

The chain corresponding to (51), constructed in the proof of Theorem G,
is

Computations by Neill Clift have shown that l(n) < l0(n) when n =
5784689 (see exercise 42). This is the smallest case where Eq. (49) remains
in doubt.
Graphical representation. An addition chain (1) corresponds in a natural
way to a directed graph, where the vertices are labeled ai for 0 ≤ i ≤ r, and
where we draw arcs from aj to ai and from ak to ai as a representation of
each step ai = aj + ak in (2). For example, the addition chain 1, 2, 3, 6, 12,
15, 27, 39, 78, 79 that appears in Fig. 15 corresponds to the directed graph

If ai = aj + ak for more than one pair of indices (j, k), we choose a definite j
and k for purposes of this construction.

In general, all but the first vertex of such a directed graph will be at the
head of exactly two arcs; however, this is not really an important property of
the graph, because it conceals the fact that many different addition chains can
be essentially equivalent. If a vertex has out-degree 1, it is used in only one
later step, hence the later step is essentially a sum of three inputs aj + ak + am
that might be computed either as (aj +ak)+am or as aj +(ak+am) or as ak+(aj
+am). These three choices are immaterial, but the addition-chain conventions
force us to distinguish between them. We can avoid such redundancy by
deleting any vertex whose out-degree is 1 and attaching the arcs from its
predecessors to its successor. For example, the graph above would become

We can also delete any vertex whose out-degree is 0, except of course the
final vertex ar, since such a vertex corresponds to a useless step in the
addition chain.

In this way every addition chain leads to a reduced directed graph that
contains one “source” vertex (labeled 1) and one “sink” vertex (labeled n);
every vertex but the source has in-degree ≥ 2 and every vertex but the sink
has out-degree ≥ 2. Conversely, any such directed graph without oriented
cycles corresponds to at least one addition chain, since we can topologically
sort the vertices and write down d − 1 addition steps for each vertex of in-
degree d > 0. The length of the addition chain, exclusive of useless steps, can
be reconstructed by looking at the reduced graph; it is

since deletion of a vertex of out-degree 1 also deletes one arc.
We say that two addition chains are equivalent if they have the same

reduced directed graph. For example, the addition chain 1, 2, 3, 6, 12, 15,
24, 39, 40, 79 is equivalent to the chain we began with, since it also leads to
(52). This example shows that a non-star chain can be equivalent to a star
chain. An addition chain is equivalent to a star chain if and only if its
reduced directed graph can be topologically sorted in only one way.

An important property of this graph representation has been pointed out
by N. Pippenger: The label of each vertex is exactly equal to the number of
oriented paths from the source to that vertex. Thus, the problem of finding an
optimal addition chain for n is equivalent to minimizing the quantity (53)
over all directed graphs that have one source vertex and one sink vertex and
exactly n oriented paths from the source to the sink.

This characterization has a surprising corollary, because of the symmetry
of the directed graph. If we reverse the directions of all the arcs, the source
and the sink exchange roles, and we obtain another directed graph
corresponding to a set of addition chains for the same n; these addition
chains have the same length (53) as the chain we started with. For example,
if we make the arrows in (52) run from right to left, and if we relabel the
vertices according to the number of paths from the right-hand vertex, we get

One of the star chains corresponding to this reduced directed graph is

we may call this a dual of the original addition chain.

Exercises 39 and 40 discuss important consequences of this graphical
representation and the duality principle.

Exercises

1. [15] What is the value of Z when Algorithm A terminates?
2. [24] Write a MIX program for Algorithm A, to calculate xn mod w

given integers n and x, where w is the word size. Assume that MIX has the
binary operations SRB, JAE, etc., that are described in Section 4.5.2. Write
another program that computes xn mod w in a serial manner (multiplying
repeatedly by x), and compare the running times of these programs.
 3. [22] How is x975 calculated by (a) the binary method? (b) the ternary
method? (c) the quaternary method? (d) the factor method?

4. [M20] Find a number n for which the octal (23-ary) method gives ten
fewer multiplications than the binary method.
 5. [24] Figure 14 shows the first eight levels of the “power tree.” The (k
+ 1)st level of this tree is defined as follows, assuming that the first k levels
have been constructed: Take each node n of the kth level, from left to right
in turn, and attach below it the nodes

(in this order), where 1, a1, a2, . . . , ak−1 is the path from the root of the
tree to n; but discard any node that duplicates a number that has already
appeared in the tree.

Design an efficient algorithm that constructs the first r +1 levels of the
power tree. [Hint: Make use of two sets of variables LINKU[j], LINKR[j]
for 0 ≤ j ≤ 2r; these point upwards and to the right, respectively, if j is a
number in the tree.]
6. [M26] If a slight change is made to the definition of the power tree that

is given in exercise 5, so that the nodes below n are attached in decreasing
order

instead of increasing order, we get a tree whose first five levels are

Show that this tree gives a method of computing xn that requires exactly as
many multiplications as the binary method; therefore it is not as good as the
power tree, although it has been constructed in almost the same way.
7. [M21] Prove that there are infinitely many values of n
a) for which the factor method is better than the binary method;
b) for which the binary method is better than the factor method;
c) for which the power tree method is better than both the binary and

factor methods.
(Here the “better” method is the one that computes xn using fewer
multiplications.)

8. [M21] Prove that the power tree (exercise 5) never gives more
multiplications for the computation of xn than the binary method.
 9. [25] Design an exponentiation procedure that is analogous to Algorithm
A, but based on radix m = 2e. Your method should perform approximately lg
n + ν + m multiplications, where ν is the number of nonzero digits in the m-
ary representation of n.
10. [10] Figure 15 shows a tree that indicates one way to compute xn with
the fewest possible multiplications, for all n ≤ 100. How can this tree be
conveniently represented within a computer, in just 100 memory locations?

 11. [M26] The tree of Fig. 15 depicts addition chains a0, a1, . . . , ar
having l(ai) = i for all i in the chain. Find all addition chains for n that have
this property, when n = 43 and when n = 77. Show that any tree such as
Fig. 15 must include either the path 1, 2, 4, 8, 9, 17, 34, 43, 77 or the path
1, 2, 4, 8, 9, 17, 34, 68, 77.

12. [M10] Is it possible to extend the tree shown in Fig. 15 to an infinite
tree that yields a minimum-multiplication rule for computing xn, for all
positive integers n?
13. [M21] Find a star chain of length A + 2 for each of the four cases listed
in Theorem C. (Consequently Theorem C holds also with l replaced by l*.)
14. [M29] Complete the proof of Theorem C, by demonstrating that (a) step
r − 1 is not a small step; and (b) λ(ar–k) cannot be less than m − 1, where
m = λ(ar−1).
15. [M43] Write a computer program to extend Theorem C, characterizing
all n such that l(n) = λ(n) + 3 and characterizing all n such that l*(n) = λ(n)
+ 3.
16. [HM15] Show that Theorem D is not trivially true just because of the
binary method; if lB(n) denotes the length of the addition chain for n
produced by the binary S-and-X method, the ratio lB(n)/λ(n) does not
approach a limit as n → ∞.
17. [M25] Explain how to find the intervals J1, . . . , Jh that are required in
the proof of Lemma P.
18. [HM24] Let β be a positive constant. Show that there is a constant α <
2 such that

for all large m, where the sum is over all s, t, v satisfying (30).
19. [M23] A “multiset” is like a set, but it may contain identical elements
repeated a finite number of times. If A and B are multisets, we define new
multisets A B, A ∪ B, and A ∩ B in the following way: An element
occurring exactly a times in A and b times in B occurs exactly a + b times
in A B, exactly max(a, b) times in A ∪ B, and exactly min(a, b) times in A
∩ B. (A “set” is a multiset that contains no elements more than once; if A
and B are sets, so are A ∪ B and A ∩ B, and the definitions given in this
exercise agree with the customary definitions of set union and
intersection.)

a) The prime factorization of a positive integer n is a multiset N whose
elements are primes, where ∏p∊N p = n. The fact that every positive

integer can be uniquely factored into primes gives us a one-to-one
correspondence between the positive integers and the finite multisets of
prime numbers; for example, if n = 22 · 33 · 17, the corresponding
multiset is N = {2, 2, 3, 3, 3, 17}. If M and N are the multisets
corresponding respectively to m and n, what multisets correspond to
gcd(m, n), lcm(m, n), and mn?

b) Every monic polynomial f(z) over the complex numbers corresponds
in a natural way to the multiset F of its “roots”; we have ∏ζ∊F(Z − ζ). If
f(z) and g(z) are the polynomials corresponding to the finite multisets F
and G of complex numbers, what polynomials correspond to F G, F
∪ G, and F ∩ G?

c) Find as many interesting identities as you can that hold between
multisets, with respect to the three operations , ∪, ∩.

20. [M20] What are the sequences Si and Mij (0 ≤ i ≤ r, 0 ≤ j ≤ t) arising in
Hansen’s structural decomposition of star chains (a) of Type 3? (b) of Type
5? (The six “types” are defined in the proof of Theorem B.)

 21. [M26] (W. Hansen.) Let q be any positive integer. Find a value of n
such that l(n) ≤ l*(n) – q.
22. [M20] Prove that the addition chain constructed in the proof of
Theorem F is an l0-chain.
23. [M20] Prove Brauer’s inequality (50).

 24. [M22] Generalize the proof of Theorem G to show that l0((Bn – 1)/(B
− 1)) ≤ (n − 1) l0(B) + l0(n), for any integer B > 1; and prove that l(2mn –
1) ≤ l(2m – 1) + mn – m + l0(n).
25. [20] Let y be a fraction, 0 < y < 1, expressed in the binary number
system as y = (.d1 . . . dk)2. Design an algorithm to compute xy using the
operations of multiplication and square-root extraction.

 26. [M25] Design an efficient algorithm that computes the nth Fibonacci
number Fn, modulo m, given large integers n and m.
27. [M23] (A. Flammenkamp.) What is the smallest n for which every
addition chain contains at least eight small steps?

28. [HM33] (A. Schönhage.) The object of this exercise is to give a fairly
short proof that l(n) ≥ λ(n) + lg ν(n) – O(log log(ν(n) + 1)).

a) When x = (xk . . . x0.x–1 . . .)2 and y = (yk . . . y0.y–1 . . .)2 are real
numbers written in binary notation, let us write x ⊆ y if xj ≤ yj for all j.
Give a simple rule for constructing the smallest number z with the
property that x′ ⊆ x and y′ ⊆ y implies x′ + y′ ⊆ z. Denoting this number
by x∇y, prove that ν(x∇y) ≤ ν(x) + ν(y).

b) Given any addition chain (11) with r = l(n), let the sequence d0, d1, . . .
, dr be defined as in (35), and define the sequence A0, A1, . . . , Ar by the
following rules: A0 = 1; if ai = 2ai−1 then Ai = 2Ai−1; otherwise if ai = aj

+ ak for some 0 ≤ k ≤ j < i, then Ai = Ai−1∇(Ai−1/2dj –dk). Prove that this
sequence “covers” the given chain, in the sense that ai ⊆ Ai for 0 ≤ i ≤
r.

c) Let δ be a positive integer (to be selected later). Call the nondoubling
step ai = aj + ak a “baby step” if dj – dk ≥ δ, otherwise call it a “close
step.” Let B0 = 1; Bi = 2Bi−1 if ai = 2ai−1; Bi = Bi−1∇(Bi−1/2dj – dk) if ai =
aj + ak is a baby step; and Bi = ρ(2Bi−1) otherwise, where ρ(x) is the
least number y such that x/2e ⊆ y for 0 ≤ e ≤ δ. Show that Ai ⊆ Bi and
ν(Bi) ≤ (1 + δci)2bi for 0 ≤ i ≤ r, where bi and ci respectively denote
the number of baby steps and close steps ≤ i. [Hint: Show that the 1s in
Bi appear in consecutive blocks of size ≥ 1 + δci.]

d) We now have l(n) = r = br + cr + dr and ν(n) ≤ ν(Br) ≤ (1 + δcr)2br.
Explain how to choose δ in order to obtain the inequality stated at the
beginning of this exercise. [Hint: See (16), and note that n ≤ 2rαbr for
some α < 1 depending on δ.]

29. [M49] (K. B. Stolarsky, 1969.) Is ν(n) ≤ 2l(n)–λ(n) for all positive
integers n? (If so, we have the lower bound l(2n – 1) ≥ n − 1 + ⌈lg n⌉; see
(17) and (49).)
30. [20] An addition-subtraction chain has the rule ai = aj ± ak in place of
(2); the imaginary computer described in the text has a new operation code,
SUB. (This corresponds in practice to evaluating xn using both

multiplications and divisions.) Find an addition-subtraction chain, for
some n, that has fewer than l(n) steps.
31. [M46] (D. H. Lehmer.) Explore the problem of minimizing ∊q + (r – q)
in an addition chain (1), where q is the number of “simple” steps in which
ai = ai−1 + 1, given a small positive “weight” ∊. (This problem comes
closer to reality for many calculations of xn, if multiplication by x is
simpler than a general multiplication; see the applications in Section
4.6.2.)
32. [M30] (A. C. Yao, F. F. Yao, R. L. Graham.) Associate the “cost” ajak
with each step ai = aj + ak of an addition chain (1). Show that the left-to-
right binary method yields a chain of minimum total cost, for all positive
integers n.
33. [15] How many addition chains of length 9 have (52) as their reduced
directed graph?
34. [M23] The binary addition chain for n = 2e0 + ... + 2et, when e0 > ... >
et ≥ 0, is 1, 2, . . . , 2e0–e1, 2e0–e1 + 1, . . . , 2e0–e2 + 2e1–e2, 2e0–e2 + 2e1–e2 +
1, . . . , n. This corresponds to the S-and-X method described at the
beginning of this section, while Algorithm A corresponds to the addition
chain obtained by sorting the two sequences (1, 2, 4, . . . , 2e0) and (2et−1

+2et, 2et−2 +2et−1 +2et, . . . , n) into increasing order. Prove or disprove:
Each of these addition chains is a dual of the other.
35. [M27] How many addition chains without useless steps are equivalent
to each of the addition chains discussed in exercise 34, when e0 > e1 + 1?

 36. [25] (E. G. Straus.) Find a way to compute a general monomial
 in at most 2λ(max(n1, n2, . . . , nm)) + 2m – m − 1

multiplications.
37. [HM30] (A. C. Yao.) Let l(n1, . . . , nm) be the length of the shortest
addition chain that contains m given numbers n1 < ... < nm. Prove that l(n1, .
. . , nm) ≤ λ(nm) + mλ(nm)/λλ(nm) + O(λ(nm)λλλ(nm)/λλ(nm)2), thereby
generalizing (25).
38. [M47] What is the asymptotic value of l(1, 4, 9, . . . , m2) – m, as m →
∞, in the notation of exercise 37?

 39. [M25] (J. Olivos, 1979.) Let l([n1, n2, . . . , nm]) be the minimum
number of multiplications needed to evaluate the monomial

 in the sense of exercise 36, where each ni is a positive
integer. Prove that this problem is equivalent to the problem of exercise 37,
by showing that l([n1, n2, . . . , nm]) = l(n1, n2, . . . , nm) + m − 1. [Hint:
Consider directed graphs like (52) that have more than one source vertex.]

 40. [M21] (J. Olivos.) Generalizing the factor method and Theorem F,
prove that

where l(n1, . . . , nt) is defined in exercise 37.

41. [M40] (P. Downey, B. Leong, R. Sethi.) Let G be a connected graph
with n vertices {1, . . . , n} and m edges, where the edges join uj to vj for 1
≤ j ≤ m. Prove that l(1, 2, . . . , 2An, 2Au1 + 2Av1 + 1, . . . , 2Aum + 2Avm + 1) =
An+m+k for all sufficiently large A, where k is the minimum number of
vertices in a vertex cover for G (namely a set that contains either uj or vj
for 1 ≤ j ≤ m).
42. [22] (Neill Clift, 2005.) Show that neither 1, 2, 4, 8, 16, 32, 64, 65, 97,
128, 256, 353, 706, 1412, 2824, 5648, 11296, 22592, 45184, 90368,
180736, 361472, 361537, 723074, 1446148, 2892296, 5784592, 5784689
nor its dual is an l0-chain.
43. [M50] Is l(2n – 1) ≤ n−1+l(n) for all integers n > 0? Does equality
always hold?

4.6.4. Evaluation of Polynomials
Now that we know efficient ways to evaluate the special polynomial xn, let
us consider the general problem of computing an nth degree polynomial

for given values of x. This problem arises frequently in practice.
In the following discussion we shall concentrate on minimizing the

number of operations required to evaluate polynomials by computer, blithely
assuming that all arithmetic operations are exact. Polynomials are most
commonly evaluated using floating point arithmetic, which is not exact, and
different schemes for the evaluation will, in general, give different answers.
A numerical analysis of the accuracy achieved depends on the coefficients of
the particular polynomial being considered, and is beyond the scope of this
book; the reader should be careful to investigate the accuracy of any
calculations undertaken with floating point arithmetic. In most cases the
methods we shall describe turn out to be reasonably satisfactory from a
numerical standpoint, but many bad examples can also be given. [See Webb
Miller, SICOMP 4 (1975), 97–107, for a survey of the literature on stability
of fast polynomial evaluation, and for a demonstration that certain kinds of
numerical stability cannot be guaranteed for some families of high-speed
algorithms.]

Throughout this section we will act as if the variable x were a single
number. But it is important to keep in mind that most of the methods we will
discuss are valid also when the variables are large objects like
multiprecision numbers, polynomials, or matrices. In such cases efficient
formulas lead to even bigger payoffs, especially when we can reduce the
number of multiplications.

A beginning programmer will often evaluate the polynomial (1) in a
manner that corresponds directly to its conventional textbook form: First unxn

is calculated, then un−1xn−1, . . . , u1x, and finally all of the terms of (1) are
added together. But even if the efficient methods of Section 4.6.3 are used to
evaluate the powers of x in this approach, the resulting calculation is
needlessly slow unless nearly all of the coefficients uk are zero. If the
coefficients are all nonzero, an obvious alternative would be to evaluate (1)

from right to left, computing the values of xk and ukxk + ... + u0 for k = 1, . . .
, n. Such a process involves 2n − 1 multiplications and n additions, and it
might also require further instructions to store and retrieve intermediate
results from memory.
Horner’s rule. One of the first things a novice programmer is usually taught
is an elegant way to rearrange this computation, by evaluating u(x) as
follows:

Start with un, multiply by x, add un−1, multiply by x, . . . , multiply by x, add
u0. This form of the computation is usually called “Horner’s rule”; we have
already seen it used in connection with radix conversion in Section 4.4. The
entire process requires n multiplications and n additions, minus one addition
for each coefficient that is zero. Furthermore, there is no need to store partial
results, since each quantity arising during the calculation is used immediately
after it has been computed.

W. G. Horner gave this rule early in the nineteenth century
[Philosophical Transactions, Royal Society of London 109 (1819), 308–
335] in connection with a procedure for calculating polynomial roots. The
fame of the latter method [see J. L. Coolidge, Mathematics of Great
Amateurs (Oxford, 1949), Chapter 15] accounts for the fact that Horner’s
name has been attached to (2); but actually Isaac Newton had made use of the
same idea more than 150 years earlier. For example, in a well-known work
entitled De Analysi per Æquationes Infinitas, originally written in 1669,
Newton wrote

for the polynomial y4 – 4y3 + 5y2 – 12y + 17, while illustrating what later
came to be known as Newton’s method for rootfinding. This clearly shows
the idea of (2), since he often denoted grouping by using horizontal lines and
colons instead of parentheses. Newton had been using the idea for several
years in unpublished notes. [See The Mathematical Papers of Isaac Newton,
edited by D. T. Whiteside, 1 (1967), 490, 531; 2 (1968), 222.]
Independently, a method equivalent to Horner’s had in fact been used in 13th-
century China by Ch’in Chiu-Shao [see Y. Mikami, The Development of
Mathematics in China and Japan (1913), 73–77].

Several generalizations of Horner’s rule have been suggested. Let us first
consider evaluating u(z) when z is a complex number, while the coefficients
uk are real. In particular, when z = eiθ = cos θ + i sin θ, the polynomial u(z)
is essentially two Fourier series,

Complex addition and multiplication can obviously be reduced to a sequence
of ordinary operations on real numbers:

(See exercise 41. Subtraction is considered here as if it were equivalent to
addition.) Therefore Horner’s rule (2) uses either 4n – 2 multiplications and
3n – 2 additions or 3n − 1 multiplications and 6n – 5 additions to evaluate
u(z) when z = x+iy is complex. Actually 2n−4 of these additions can be
saved, since we are multiplying by the same number z each time. An
alternative procedure for evaluating u(x + iy) is to let

Then it is easy to prove by induction that u(z) = zan + bn. This scheme [BIT 5
(1965), 142; see also G. Goertzel, AMM 65 (1958), 34–35] requires only 2n
+ 2 multiplications and 2n + 1 additions, so it is an improvement over
Horner’s rule when n ≥ 3. In the case of Fourier series, when z = eiθ, we
have s = 1, so the number of multiplications drops to n + 1. The moral of this
story is that a good programmer does not make indiscriminate use of the
built-in complex-arithmetic features of high-level programming languages.

Consider the process of dividing the polynomial u(x) by x – x0, using
Algorithm 4.6.1D to obtain u(x) = (x – x0)q(x) + r(x); here deg(r) < 1, so r(x)
is a constant independent of x, and u(x0) = 0 · q(x0) + r = r. An examination
of this division process reveals that the computation is essentially the same
as Horner’s rule for evaluating u(x0). Similarly, if we divide u(z) by the
polynomial , the resulting

computation turns out to be equivalent to (3); we obtain
, hence u(z0) = anz0 + bn.

In general, if we divide u(x) by f(x) to obtain u(x) = f(x)q(x) + r(x), and
if f(x0) = 0, we have u(x0) = r(x0); this observation leads to further
generalizations of Horner’s rule. For example, we may let
; this yields the “second-order” Horner’s rule

The second-order rule uses n + 1 multiplications and n additions (see
exercise 5); so it is no improvement over Horner’s rule from this standpoint.
But there are at least two circumstances in which (4) is useful: If we want to
evaluate both u(x) and u(–x), this approach yields u(–x) with just one more
addition operation; two values can be obtained almost as cheaply as one.
Moreover, if we have a computer that allows parallel computations, the two
lines of (4) may be evaluated independently, so we save about half the
running time.

When our computer allows parallel computation on k arithmetic units at
once, a “kth-order” Horner’s rule (obtained in a similar manner from

 may be used. Another attractive method for parallel
computation has been suggested by G. Estrin [Proc. Western Joint
Computing Conf. 17 (1960), 33–40]; for n = 7, Estrin’s method is:

Here a3 = u(x). However, an interesting analysis by W. S. Dorn [IBM J. Res.
and Devel. 6 (1962), 239–245] shows that these methods might not actually
be an improvement over the second-order rule, if each arithmetic unit must
access a memory that communicates with only one processor at a time.
Tabulating polynomial values. If we wish to evaluate an nth degree
polynomial at many points in an arithmetic progression (that is, if we want to
calculate u(x0), u(x0 + h), u(x0 + 2h), . . .), the process can be reduced to

addition only, after the first few steps. For if we start with any sequence of
numbers (α0, α1, . . . , αn) and apply the transformation

we find that k applications of (5) yields

where βj denotes the initial value of αj and βj = 0 for j > n. In particular,

is a polynomial of degree n in k. By properly choosing the β’s, as shown in
exercise 7, we can set things up so that this quantity is the desired value
u(x0 + kh), for all k. In other words, each execution of the n additions in (5)
will produce the next value of the given polynomial.

Caution: Rounding errors can accumulate after many repetitions of (5),
and an error in αj produces a corresponding error in the coefficients of x0, . .
. , xj in the polynomial being computed. Therefore the values of the α’s
should be “refreshed” after a large number of iterations.
Derivatives and changes of variable. Sometimes we want to find the
coefficients of u(x+x0), given a constant x0 and the coefficients of u(x). For
example, if u(x) = 3x2 + 2x − 1, then u(x − 2) = 3x2 – 10x + 7. This is
analogous to a radix conversion problem, converting from base x to base x +
2. By Taylor’s theorem, the new coefficients are given by the derivatives of
u(x) at x = x0, namely

so the problem is equivalent to evaluating u(x) and all its derivatives.
If we write u(x) = q(x)(x – x0) + r, then u(x + x0) = q(x + x0)x + r; so r is

the constant coefficient of u(x + x0), and the problem reduces to finding the
coefficients of q(x + x0), where q(x) is a known polynomial of degree n − 1.
Thus the following algorithm is indicated:

H1. Set vj ← uj for 0 ≤ j ≤ n.

H2. For k = 0, 1, . . . , n − 1 (in this order), set vj ← vj + x0vj+1 for j = n −
1, . . . , k + 1, k (in this order).

At the conclusion of step H2 we have u(x + x0) = vnxn + ... + v1x + v0. This
procedure was a principal part of Horner’s root-finding method, and when k
= 0 it is exactly rule (2) for evaluating u(x0).

Horner’s method requires (n2+n)/2 multiplications and (n2+n)/2
additions; but notice that if x0 = 1 we avoid all of the multiplications.
Fortunately we can reduce the general problem to the case x0 = 1 by
introducing comparatively few multiplications and divisions:

S1. Compute and store the values .
S2. Set for 0 ≤ j ≤ n. (Now v(x) = u(x0x).)

S3. Perform step H2 but with x0 = 1. (Now v(x) = u (x0(x+1)) = u(x0x+x0).)
S4. Set for 0 < j ≤ n. (Now v(x) = u(x + x0) as

desired.)
This idea, due to M. Shaw and J. F. Traub [JACM 21 (1974), 161–167], has
the same number of additions and the same numerical stability as Horner’s
method; but it needs only 2n−1 multiplications and n−1 divisions, since vn =
un. About of these multiplications can, in turn, be avoided (see exercise
6).

If we want only the first few or the last few derivatives, Shaw and Traub
have observed that there are further ways to save time. For example, if we
just want to evaluate u(x) and u′(x), we can do the job with 2n − 1 additions
and about multiplications/divisions as follows:

D1. Compute and store the values x2, x3, . . . , xt, x2t, where .

D2. Set vj ← ujxf(j) for 0 ≤ j ≤ n, where f(j) = t − 1 – ((n − 1 – j) mod 2t)
for 0 ≤ j < n, and f(n) = t.

D3. Set vj ← vj + vj+1xg(j) for j = n − 1, . . . , 1, 0; here g(j) = 2t when n − 1
– j is a positive multiple of 2t, otherwise g(j) = 0 and the multiplication
by xg(j) need not be done.

D4. Set vj ← vj + vj+1xg(j) for j = n − 1, . . . , 2, 1. Now v0/xf(0) = u(x) and
v1/xf(1) = u′(x).

Adaptation of coefficients. Let us now return to our original problem of
evaluating a given polynomial u(x) as rapidly as possible, for “random”
values of x. The importance of this problem is due partly to the fact that
standard functions such as sin x, cos x, ex, etc., are usually computed by
subroutines that rely on the evaluation of certain polynomials; such
polynomials are evaluated so often, it is desirable to find the fastest possible
way to do the computation.

Arbitrary polynomials of degree five and higher can be evaluated with
fewer operations than Horner’s rule requires, if we first “adapt” or
“precondition” the coefficients u0, u1, . . . , un. This adaptation process might
involve a lot of work, as explained below; but the preliminary calculation is
not wasted, since it must be done only once while the polynomial will be
evaluated many times. For examples of “adapted” polynomials for standard
functions, see V. Y. Pan, USSR Computational Math. and Math. Physics 2
(1963), 137–146.

The simplest case for which adaptation of coefficients is helpful occurs
for a fourth degree polynomial:

This equation can be rewritten in a form originally suggested by T. S.
Motzkin,

for suitably “adapted” coefficients α0, α1, α2, α3, α4. The computation in this
scheme involves three multiplications, five additions, and (on a one-
accumulator machine like MIX) one instruction to store the partial result y
into temporary storage. By comparison with Horner’s rule, we have traded a
multiplication for an addition and a possible storage command. Even this
comparatively small change is worthwhile if the polynomial is to be
evaluated often. (Of course, if the time for multiplication is comparable to
the time for addition, (9) gives no improvement; we will see that a general
fourth-degree polynomial always requires at least eight arithmetic operations
for its evaluation.)

By equating coefficients in (8) and (9), we obtain formulas for computing
the αj’s in terms of the uk’s:

A similar scheme, which evaluates a fourth-degree polynomial in the same
number of steps as (9), appears in exercise 18; this alternative method will
give greater numerical accuracy than (9) in certain cases, although it yields
poorer accuracy in others.

Polynomials that arise in practice often have a rather small leading
coefficient, so that the division by u4 in (10) leads to instability. In such a
case it is usually preferable to replace x by |u4|1/4x as the first step, reducing
(8) to a polynomial whose leading coefficient is ±1. A similar transformation
applies to polynomials of higher degrees. This idea is due to C. T. Fike
[CACM 10 (1967), 175–178], who has presented several interesting
examples.

Any polynomial of the fifth degree may be evaluated using four
multiplications, six additions, and one storing, by using the rule u(x) = U(x)x
+ u0, where U(x) = u5x4 +u4x3 +u3x2 +u2x+u1 is evaluated as in (9).
Alternatively, we can do the evaluation with four multiplications, five
additions, and three storings, if the calculations take the form

The determination of the α’s this time requires the solution of a cubic
equation (see exercise 19).

On many computers the number of “storing” operations required by (11)
is less than 3; for example, we may be able to compute (x + α0)2 without
storing x+α0. In fact, most computers nowadays have more than one
arithmetic register for floating point calculations, so we can avoid storing
altogether. Because of the wide variety of features available for arithmetic on
different computers, we shall henceforth in this section count only the
arithmetic operations, not the operations of storing and loading an
accumulator. The computation schemes can usually be adapted to any
particular computer in a straightforward manner, so that very few of these
auxiliary operations are necessary; on the other hand, it must be remembered
that overhead costs might well overshadow the fact that we are saving a

multiplication or two, especially if the machine code is being produced by a
compiler that does not optimize.

A polynomial u(x) = u6x6 + ... + u1x + u0 of degree six can always be
evaluated using four multiplications and seven additions, with the scheme

[See D. E. Knuth, CACM 5 (1962), 595–599.] This saves two of the six
multiplications required by Horner’s rule. Here again we must solve a cubic
equation: Since α6 = u6, we may assume that u6 = 1. Under this assumption,
let

Let β6 be a real root of the cubic equation

(This equation always has a real root, since the polynomial on the left
approaches +∞ for large positive y, and it approaches –∞ for large negative
y; it must assume the value zero somewhere in between.) Now if we define

we have finally

We can illustrate this procedure with a contrived example: Suppose that
we want to evaluate x6 + 13x5 + 49x4 + 33x3 – 61x2 – 37x + 3. We obtain α6
= 1, β1 = 6, β2 = 7, β3 = –9, β4 = –1, β5 = –7, and so we meet with the cubic
equation

This equation has β6 = 2 as a root, and we continue to find

The resulting scheme is therefore

By sheer coincidence the quantity x + 3 appears twice here, so we have
found a method that uses three multiplications and six additions.

Another method for handling sixth-degree equations has been suggested
by V. Y. Pan [Problemy Kibernetiki 5 (1961), 17–29]. His method requires
one more addition operation, but it involves only rational operations in the
preliminary steps; no cubic equation needs to be solved. We may proceed as
follows:

To determine the α’s, we divide the polynomial once again by u6 = α6 so that
u(x) becomes monic. It can then be verified that α0 = u5/3 and that

Note that Pan’s method requires that the denominator in (17) does not vanish.
In other words, (16) can be used only when

in fact, this quantity should not be so small that α1 becomes too large. Once
α1 has been determined, the remaining α’s may be determined from the
equations

We have discussed the cases of degree n = 4, 5, 6 in detail because the
smaller values of n arise most frequently in applications. Let us now
consider a general evaluation scheme for nth degree polynomials, a method
that involves at most ⌊n/2⌋ + 2 multiplications and n additions.
Theorem E. Every nth degree polynomial (1) with real coefficients, n ≥ 3,
can be evaluated by the scheme

for suitable real parameters c, αk and βk, where m = ⌈n/2⌉ – 1. In fact, it is
possible to select these parameters so that βm = 0.
Proof. Let us first examine the circumstances under which the α’s and β’s can
be chosen in (20), if c is fixed. Let

We want to show that p(x) has the form p1(x)(x2–αm)+βm for some
polynomial p1(x) and some constants αm, βm. If we divide p(x) by x2 – αm, we
can see that the remainder βm is a constant only if the auxiliary polynomial

formed from every odd-numbered coefficient of p(x), is a multiple of x – αm.
Conversely, if q(x) has x – αm as a factor, then p(x) = p1(x)(x2 – αm) + βm, for
some constant βm that may be determined by division.

Similarly, we want p1(x) to have the form p2(x)(x2 – αm−1) + βm−1, and
this is the same as saying that q(x)/(x – αm) is a multiple of x – αm−1; for if
q1(x) is the polynomial corresponding to p1(x) as q(x) corresponds to p(x),
we have q1(x) = q(x)/(x – αm). Continuing in the same way, we find that the
parameters α1, β1, . . . , αm, βm will exist if and only if

In other words, either q(x) is identically zero (and this can happen only when
n is even), or else q(x) is an mth degree polynomial having all real roots.

Now we have a surprising fact discovered by J. Eve [Numer. Math. 6
(1964), 17–21]: If p(x) has at least n – 1 complex roots whose real parts
are all nonnegative, or all nonpositive, then the corresponding polynomial
q(x) is identically zero or has all real roots. (See exercise 23.) Since u(x) =
0 if and only if p(x + c) = 0, we need merely choose the parameter c large
enough that at least n−1 of the roots of u(x) = 0 have a real part ≥ –c, and
(20) will apply whenever an−1 = un−1 – ncun ≠ 0.

We can also determine c so that these conditions are fulfilled and also
that βm = 0. First the n roots of u(x) = 0 are determined. If a + bi is a root
having the largest or the smallest real part, and if b ≠ 0, let c = –a and αm = –
b2; then x2 – αm is a factor of u(x – c). If the root with smallest or largest real
part is real, but the root with second smallest (or second largest) real part is
nonreal, the same transformation applies. If the two roots with smallest (or
largest) real parts are both real, they can be expressed in the form a−b and
a+b, respectively; let c = –a and αm = b2. Again x2 – αm is a factor of u(x –
c). (Still other values of c are often possible; see exercise 24.) The
coefficient an−1 will be nonzero for at least one of these alternatives, unless
q(x) is identically zero.

Note that this method of proof usually gives at least two values of c, and
we also have the chance to permute α1, . . . , αm−1 in (m − 1)! ways. Some of
these alternatives may give more desirable numerical accuracy than others.

Questions of numerical accuracy do not arise, of course, when we are
working with integers modulo m instead of with real numbers. Scheme (9)
works for n = 4 when m is relatively prime to 2u4, and (16) works for n = 6
when m is relatively prime to 6u6 and to the denominator of (17). Exercise
44 shows that n/2 + O(log n) multiplications and O(n) additions suffice for
any monic nth degree polynomial modulo any m.
*Polynomial chains. Now let us consider questions of optimality. What are
the best possible schemes for evaluating polynomials of various degrees, in
terms of the minimum possible number of arithmetic operations? This
question was first analyzed by A. M. Ostrowski in the case that no
preliminary adaptation of coefficients is allowed [Studies in Mathematics
and Mechanics Presented to R. von Mises (New York: Academic Press,
1954), 40–48], and by T. S. Motzkin in the case of adapted coefficients [see
Bull. Amer. Math. Soc. 61 (1955), 163].

In order to investigate this question, we can extend Section 4.6.3’s
concept of addition chains to the notion of polynomial chains. A polynomial
chain is a sequence of the form

where u(x) is some polynomial in x, and for 1 ≤ i ≤ r

Here “o” denotes any of the three operations “+”, “–”, or “×”, and αj denotes
a so-called parameter. Steps of the first kind are called chain steps, and
steps of the second kind are called parameter steps. We shall assume that a
different parameter αj is used in each parameter step; if there are s parameter
steps, they should involve α1, α2, . . . , αs in this order.

It follows that the polynomial u(x) at the end of the chain has the form

where qn, . . . , q1, q0 are polynomials in α1, α2, . . . , αs with integer
coefficients. We shall interpret the parameters α1, α2, . . . , αs as real
numbers, and we shall therefore restrict ourselves to considering the
evaluation of polynomials with real coefficients. The result set R of a
polynomial chain is defined to be the set of all vectors (qn, . . . , q1, q0) of
real numbers that occur as α1, α2, . . . , αs independently assume all possible
real values.

If for every choice of t + 1 distinct integers j0, . . . , jt ∊ {0, 1, . . . , n}
there is a nonzero multivariate polynomial fj0...jt

 with integer coefficients
such that fj0...jt(qj0

, . . . , qjt
) = 0 for all (qn, . . . , q1, q0) in R, let us say that

the result set R has at most t degrees of freedom, and that the chain (24) has
at most t degrees of freedom. We also say that the chain (24) computes a
given polynomial u(x) = unxn + ... + u1x + u0 if (un, . . . , u1, u0) is in R. It
follows that a polynomial chain with at most n degrees of freedom cannot
compute all nth degree polynomials (see exercise 27).

As an example of a polynomial chain, consider the following chain
corresponding to Theorem E, when n is odd:

There are ⌊n/2⌋ + 2 multiplications and n additions; ⌊n/2⌋ + 1 chain steps
and n + 1 parameter steps. By Theorem E, the result set R includes the set of
all (un, . . . , u1, u0) with un ≠ 0, so (27) computes all polynomials of degree
n. We cannot prove that R has at most n degrees of freedom, since the result
set has n + 1 independent components.

A polynomial chain with s parameter steps has at most s degrees of
freedom. In a sense, this is obvious: We can’t compute a function with t
degrees of freedom using fewer than t arbitrary parameters. But this intuitive
fact is not easy to prove formally; for example, there are continuous functions
(“space-filling curves”) that map the real line onto a plane, and such
functions map a single parameter into two independent parameters. For our
purposes, we need to verify that no polynomial functions with integer
coefficients can have such a property; a proof appears in exercise 28.

Given this fact, we can proceed to prove the results we seek:
Theorem M. (T. S. Motzkin, 1954). A polynomial chain with m > 0
multiplications has at most 2m degrees of freedom.
Proof. Let μ1, μ2, . . . , μm be the λi’s of the chain that are multiplication
operations. Then

where each Sj is a certain sum of μ’s, x’s, and α’s. Write Sj = Tj + βj, where
Tj is a sum of μ’s and x’s while βj is a sum of α’s.

Now u(x) is expressible as a polynomial in x, β1, . . . , β2m+1 with integer
coefficients. Since the β’s are expressible as linear functions of α1, . . . , αs,
the set of values represented by all real values of β1, . . . , β2m+1 contains the

result set of the chain. Therefore there are at most 2m + 1 degrees of
freedom; this can be improved to 2m when m > 0, as shown in exercise 30.

An example of the construction in the proof of Theorem M appears in
exercise 25. A similar result can be proved for additions:
Theorem A. (É. G. Belaga, 1958). A polynomial chain containing q
additions and subtractions has at most q + 1 degrees of freedom.
Proof. [Problemy Kibernetiki 5 (1961), 7–15.] Let κ1, . . . , κq be the λi’s of
the chain that correspond to addition or subtraction operations. Then

where each Tj is a product of κ’s, x’s, and α’s. We may write Tj = Aj Bj,
where Aj is a product of α’s and Bj is a product of κ’s and x’s. The following
transformation may now be made to the chain, successively for i = 1, 2, . . . ,
q: Let βi = A2i/A2i−1, so that κi = A2i−1(±B2i−1 ± βiB2i). Then change κi to
±B2i−1 ± βiB2i, and replace each occurrence of κi in future formulas T2i+1,
T2i+2, . . . , T2q+1 by A2i−1κi. (This replacement may change the values of A2i+1,
A2i+2, . . . , A2q+1.)

After the transformation has been done for all i, let βq+1 = A2q+1; then
u(x) can be expressed as a polynomial in β1, . . . , βq+1, and x, with integer
coefficients. We are almost ready to complete the proof, but we must be
careful because the polynomials obtained as β1, . . . , βq+1 range over all real
values may not include all polynomials representable by the original chain
(see exercise 26); it is possible to have A2i−1 = 0, for some values of the α’s,
and this makes βi undefined.

To complete the proof, let us observe that the result set R of the original
chain can be written R = R1 ∪ R2 ∪ ... ∪ Rq ∪ R′, where Ri is the set of result
vectors possible when A2i−1 = 0, and where R′ is the set of result vectors
possible when all α’s are nonzero. The discussion above proves that R′ has
at most q + 1 degrees of freedom. If A2i−1 = 0, then T2i−1 = 0, so addition step
κi may be dropped to obtain another chain computing the result set Ri; by
induction we see that each Ri has at most q degrees of freedom. Hence by
exercise 29, R has at most q + 1 degrees of freedom.

Theorem C. If a polynomial chain (24) computes all nth degree
polynomials u(x) = unxn + ... + u0, for some n ≥ 2, then it includes at least
⌊n/2⌋ + 1 multiplications and at least n addition-subtractions.
Proof. Let there be m multiplication steps. By Theorem M, the chain has at
most 2m degrees of freedom, so 2m ≥ n + 1. Similarly, by Theorem A there
are ≥ n addition-subtractions.

This theorem states that no single method having fewer than ⌊n/2⌋ + 1
multiplications or fewer than n additions can evaluate all possible nth degree
polynomials. The result of exercise 29 allows us to strengthen this and say
that no finite collection of such polynomial chains will suffice for all
polynomials of a given degree. Some special polynomials can, of course, be
evaluated more efficiently; all we have really proved is that polynomials
whose coefficients are algebraically independent, in the sense that they
satisfy no nontrivial polynomial equation, require ⌊n/2⌋ + 1 multiplications
and n additions. Unfortunately the coefficients we deal with in computers are
always rational numbers, so the theorems above don’t really apply; in fact,
exercise 42 shows that we can always get by with multiplications
(and a possibly huge number of additions). From a practical standpoint, the
bounds of Theorem C apply to “almost all” coefficients, and they seem to
apply to all reasonable schemes for evaluation. Furthermore it is possible to
obtain lower bounds corresponding to those of Theorem C even in the
rational case: By strengthening the proofs above, V. Strassen has shown, for
example, that the polynomial

cannot be evaluated by any polynomial chain of length < n2/lg n unless the
chain has at least multiplications and n – 4 additions [SICOMP 3
(1974), 128–149]. The coefficients of (30) are very large; but it is also
possible to find polynomials whose coefficients are just 0s and 1s, such that
every polynomial chain computing them involves at least chain
multiplications, for all sufficiently large n, even when the parameters αj are
allowed to be arbitrary complex numbers. [See R. J. Lipton, SICOMP 7
(1978), 61–69; C.-P. Schnorr, Lecture Notes in Comp. Sci. 53 (1977), 135–
147.] Jean-Paul van de Wiele has shown that the evaluation of certain 0–1

polynomials requires a total of at least cn/log n arithmetic operations, for
some c > 0 [FOCS 19 (1978), 159–165].

A gap still remains between the lower bounds of Theorem C and the
actual operation counts known to be achievable, except in the trivial case n =
2. Theorem E gives ⌊n/2⌋ + 2 multiplications, not ⌊n/2⌋ + 1, although it does
achieve the minimum number of additions. Our special methods for n = 4 and
n = 6 have the minimum number of multiplications, but one extra addition.
When n is odd, it is not difficult to prove that the lower bounds of Theorem C
cannot be achieved simultaneously for both multiplications and additions; see
exercise 33. For n = 3, 5, and 7, it is possible to show that at least ⌊n/2⌋ + 2
multiplications are necessary. Exercises 35 and 36 show that the lower
bounds of Theorem C cannot both be achieved when n = 4 or n = 6; thus the
methods we have discussed are best possible, for n < 8. When n is even,
Motzkin proved that ⌊n/2⌋ + 1 multiplications are sufficient, but his
construction involves an indeterminate number of additions (see exercise
39). An optimal scheme for n = 8 was found by V. Y. Pan, who showed that n
+ 1 additions are necessary and sufficient for this case when there are ⌊n/2⌋
+ 1 multiplications; he also showed that ⌊n/2⌋ + 1 multiplications and n + 2
additions will suffice for all even n ≥ 10. Pan’s paper [STOC 10 (1978),
162–172] also establishes the exact minimum number of multiplications and
additions needed when calculations are done entirely with complex numbers
instead of reals, for all degrees n. Exercise 40 discusses the interesting
situation that arises for odd values of n ≥ 9.

It is clear that the results we have obtained about chains for polynomials
in a single variable can be extended without difficulty to multivariate
polynomials. For example, if we want to find an optimum scheme for
polynomial evaluation without adaptation of coefficients, we can regard u(x)
as a polynomial in the n + 2 variables x, un, . . . , u1, u0; exercise 38 shows
that n multiplications and n additions are necessary in this case. Indeed, A.
Borodin [Theory of Machines and Computations, edited by Z. Kohavi and
A. Paz (New York: Academic Press, 1971), 45–58] has proved that Horner’s
rule (2) is essentially the only way to compute u(x) in 2n operations without
preconditioning.

With minor variations, the methods above can be extended to chains
involving division, that is, to rational functions as well as polynomials.

Curiously, the continued-fraction analog of Horner’s rule now turns out to be
optimal from an operation-count standpoint, if multiplication and division
speeds are equal, even when preconditioning is allowed (see exercise 37).

Sometimes division is helpful during the evaluation of polynomials, even
though polynomials are defined only in terms of multiplication and addition;
we have seen examples of this in the Shaw–Traub algorithms for polynomial
derivatives. Another example is the polynomial

since this polynomial can be written (xn+1 – 1)/(x − 1), we can evaluate it
with l(n + 1) multiplications (see Section 4.6.3), two subtractions, and one
division, while techniques that avoid division seem to require about three
times as many operations (see exercise 43).
Special multivariate polynomials. The determinant of an n × n matrix may
be considered to be a polynomial in n2 variables xij, 1 ≤ i, j ≤ n. If x11 ≠ 0,
we have

The determinant of an n × n matrix may therefore be evaluated by evaluating
the determinant of an (n − 1) × (n − 1) matrix and performing an additional (n
− 1)2 + 1 multiplications, (n − 1)2 additions, and n − 1 divisions. Since a 2 ×
2 determinant can be evaluated with two multiplications and one addition,
we see that the determinant of almost all matrices (namely those for which no
division by zero is needed) can be computed with at most (2n3 – 3n2 + 7n –
6)/6 multiplications, (2n3 – 3n2 + n)/6 additions, and (n2 – n – 2)/2
divisions.

When zero occurs, the determinant is even easier to compute. For
example, if x11 = 0 but x21 ≠ 0, we have

Here the reduction to an (n − 1) × (n − 1) determinant saves n − 1 of the
multiplications and n−1 of the additions used in (31), in compensation for the
additional bookkeeping required to recognize this case. Thus any determinant
can be evaluated with roughly arithmetic operations (including
division); this is remarkable, since it is a polynomial with n! terms and n
variables in each term.

If we want to evaluate the determinant of a matrix with integer elements,
the procedure of (31) and (32) appears to be unattractive since it requires
rational arithmetic. However, we can use the method to evaluate the
determinant mod p, for any prime p, since division mod p is possible
(exercise 4.5.2–16). If this is done for sufficiently many primes, the exact
value of the determinant can be found as explained in Section 4.3.2, since
Hadamard’s inequality 4.6.1–(25) gives an upper bound on the magnitude.

The coefficients of the characteristic polynomial det(xI –X) of an n×n
matrix X can also be computed in O(n3) steps; see J. H. Wilkinson, The
Algebraic Eigenvalue Problem (Oxford: Clarendon Press, 1965), 353–355,
410–411. Exercise 70 discusses an interesting division-free method that
involves O(n4) steps.

The permanent of a matrix is a polynomial that is very similar to the
determinant; the only difference is that all of its nonzero coefficients are +1.
Thus we have

summed over all permutations j1 j2 . . . jn of {1, 2, . . . , n}. It would seem
that this function should be even easier to compute than its more
complicated-looking cousin, but no way to evaluate the permanent as
efficiently as the determinant is known. Exercises 9 and 10 show that
substantially fewer than n! operations will suffice, for large n, but the
execution time of all known methods still grows exponentially with the size
of the matrix. In fact, Leslie G. Valiant has shown that it is as difficult to
compute the permanent of a given 0–1 matrix as it is to count the number of
accepting computations of a nondeterministic polynomial-time Turing
machine, if we ignore polynomial factors in the running time of the
calculation. Therefore a polynomial-time evaluation algorithm for

permanents would imply that scores of other well known problems that have
resisted efficient solution would be solvable in polynomial time. On the
other hand, Valiant proved that the permanent of an n × n integer matrix can
be evaluated modulo 2k in O(n4k−3) steps for all k ≥ 2. [See Theoretical
Comp. Sci. 8 (1979), 189–201.]

Another fundamental operation involving matrices is, of course, matrix
multiplication: If X = (xij) is an m × n matrix, Y = (yjk) is an n × s matrix,
and Z = (zik) is an m × s matrix, then the formula Z = XY means that

This equation may be regarded as the computation of ms simultaneous
polynomials in mn + ns variables; each polynomial is the “inner product” of
two n-place vectors. A straightforward calculation would involve mns
multiplications and ms(n − 1) additions; but S. Winograd discovered in 1967
that there is a way to trade about half of the multiplications for additions:

This scheme uses ⌈n/2⌉ms + ⌊n/2⌋(m + s) multiplications and (n + 2)ms +
(⌊n/2⌋ – 1)(ms + m + s) additions or subtractions; the total number of
operations has increased slightly, but the number of multiplications has
roughly been halved. [See IEEE Trans. C-17 (1968), 693–694.] Winograd’s
surprising construction led many people to look more closely at the problem
of matrix multiplication, and it touched off widespread speculation that n3/2
multiplications might be necessary to multiply n × n matrices, because of the
somewhat similar lower bound that was known to hold for polynomials in
one variable.

An even better scheme for large n was discovered by Volker Strassen in
1968; he found a way to compute the product of 2 × 2 matrices with only
seven multiplications, without relying on the commutativity of multiplication
as in (35). Since 2n × 2n matrices can be partitioned into four n × n matrices,
his idea can be used recursively to obtain the product of 2k × 2k matrices

with only 7k multiplications instead of (2k)3 = 8k. The number of additions
also grows as order 7k. Strassen’s original 2 × 2 identity [Numer. Math. 13
(1969), 354–356] used 7 multiplications and 18 additions; S. Winograd later
discovered the following more economical formula:

where u = (c – a)(C – D), v = (c + d)(C – A), w = aA + (c + d – a)(A + D –
C). If intermediate results are appropriately saved, this involves 7
multiplications and only 15 additions; by induction on k, we can multiply 2k

× 2k matrices with 7k multiplications and 5(7k – 4k) additions. The total
number of operations needed to multiply n × n matrices has therefore been
reduced from order n3 to O(nlg 7) = O(n2.8074). A similar reduction applies
also to the evaluation of determinants and matrix inverses; see J. R. Bunch
and J. E. Hopcroft, Math. Comp. 28 (1974), 231–236.

Strassen’s exponent lg 7 resisted numerous attempts at improvement until
1978, when Viktor Pan discovered that it could be lowered to log70 143640
≈ 2.795 (see exercise 60). This new breakthrough led to further intensive
analysis of the problem, and the combined efforts of D. Bini, M. Capovani,
D. Coppersmith, G. Lotti, F. Romani, A. Schönhage, V. Pan, and S. Winograd,
produced a dramatic reduction in the asymptotic running time. Exercises 60–
67 discuss some of the interesting techniques by which such upper bounds
have been established; in particular, exercise 66 contains a reasonably
simple proof that O(n2.55) operations suffice. The best upper bound known as
of 1997 is O(n2.376), due to Coppersmith and Winograd [J. Symbolic Comp.
9 (1990), 251–280]. By contrast, the best current lower bound is 2n2 – 1 (see
exercise 12).

These theoretical results are quite striking, but from a practical
standpoint they are of little use because n must be very large before we
overcome the effect of additional bookkeeping costs. Richard Brent
[Stanford Computer Science report CS157 (March 1970), see also Numer.
Math. 16 (1970), 145–156] found that a careful implementation of
Winograd’s scheme (35), with appropriate scaling for numerical stability,
became better than the conventional method only when n ≥ 40, and it saved
only about 7 percent of the running time when n = 100. For complex
arithmetic the situation was somewhat different; scheme (35) became

advantageous for n > 20, and saved 18 percent when n = 100. He estimated
that Strassen’s scheme (36) would not begin to excel over (35) until n ≈ 250;
and such enormous matrices rarely occur in practice unless they are very
sparse, when other techniques apply. Furthermore, the known methods of
order nω where ω < 2.7 have such large constants of proportionality that they
require more than 1023 multiplications before they start to beat (36).

By contrast, the methods we shall discuss next are eminently practical
and have found wide use. The discrete Fourier transform f of a complex-
valued function F of n variables, over respective domains of m1, . . . , mn
elements, is defined by the equation

for 0 ≤ s1 < m1, . . . , 0 ≤ sn < mn; the name “transform” is justified because
we can recover the values F(t1, . . . , tn) from the values f(s1, . . . , sn), as
shown in exercise 13. In the important special case that all mj = 2, we have

for 0 ≤ s1, . . . , sn ≤ 1, and this may be regarded as a simultaneous evaluation
of 2n linear polynomials in 2n variables F(t1, . . . , tn). A well-known
technique due to F. Yates [The Design and Analysis of Factorial
Experiments (Harpenden: Imperial Bureau of Soil Sciences, 1937)] can be
used to reduce the number of additions implied in (38) from 2n(2n – 1) to
n2n. Yates’s method can be understood by considering the case n = 3: Let
Xt1t2t3 = F(t1, t2, t3).

To get from the “Given” to the “First step” requires four additions and four
subtractions; and the interesting feature of Yates’s method is that exactly the
same transformation that takes us from “Given” to “First step” will take us
from “First step” to “Second step” and from “Second step” to “Third step.”
In each case we do four additions, then four subtractions; and after three
steps we magically have the desired Fourier transform f(s1, s2, s3) in the
place originally occupied by F(s1, s2, s3).

This special case is often called the Hadamard transform or the Walsh
transform of 2n data elements, since the corresponding pattern of signs was
studied by J. Hadamard [Bull. Sci. Math. (2) 17 (1893), 240–246] and by J.
L. Walsh [Amer. J. Math. 45 (1923), 5–24]. Notice that the number of sign
changes from left to right in the “Third step” assumes the respective values

this is a permutation of the numbers {0, 1, 2, 3, 4, 5, 6, 7}. Walsh observed
that there will be exactly 0, 1, . . . , 2n – 1 sign changes in the general case, if
we permute the transformed elements appropriately, so the coefficients
provide discrete approximations to sine waves with various frequencies.
(See Section 7.2.1.1 for further discussion of the Hadamard–Walsh
coefficients.)

Yates’s method can be generalized to the evaluation of any discrete
Fourier transform, and, in fact, to the evaluation of any set of sums that can be
written in the general form

for 0 ≤ sj < mj, given the functions gj(sj, . . . , sn, tj). We proceed as follows.

For Yates’s method as shown above, gj(sj, . . . , sn, tj) = (–1)sj tj; f0(t1, t2, t3)
represents the “Given”; f1(s3, t1, t2) represents the “First step”; and so on.
Whenever a desired set of sums can be put into the form of (39), for
reasonably simple functions gj(sj, . . . , sn, tj), the scheme (40) will reduce
the amount of computation from order N2 to order N log N or thereabouts,
where N = m1 . . . mn is the number of data points. Furthermore this scheme is
ideally suited to parallel computation. The important special case of one-
dimensional Fourier transforms is discussed in exercises 14 and 53; we have
considered the one-dimensional case also in Section 4.3.3C.

Let us consider one more special case of polynomial evaluation.
Lagrange’s interpolation polynomial of order n, which we shall write as

is the only polynomial of degree ≤ n in x that takes on the respective values
y0, y1, . . . , yn at the n + 1 distinct points x = x0, x1, . . . , xn. (For it is evident
from (41) that u[n](xk) = yk for 0 ≤ k ≤ n. If f(x) is any such polynomial of
degree ≤ n, then g(x) = f(x) – u[n](x) is of degree ≤ n, and g(x) is zero for x =
x0, x1, . . . , xn; therefore g(x) must be a multiple of the polynomial (x – x0)(x
– x1) . . . (x – xn). The degree of the latter polynomial is greater than n, so
g(x) = 0.) If we assume that the values of a function in some table are well

approximated by a polynomial, formula (41) may therefore be used to
“interpolate” for values of the function at points x not appearing in the table.
Lagrange presented (41) to his class at the Paris École Normale in 1795 [see
his Œuvres 7 (Paris: 1877), 286]; but Edward Waring of Cambridge
University actually deserves the credit, because he had already presented the
same formula quite clearly and explicitly in Philosophical Transactions 69
(1779), 59–67.

There seem to be quite a few additions, subtractions, multiplications, and
divisions in Waring and Lagrange’s formula; in fact, there are exactly n
additions, 2n2 + 2n subtractions, 2n2 + n − 1 multiplications, and n + 1
divisions. But fortunately (as we might be conditioned to suspect by now),
improvement is possible.

The basic idea for simplifying (41) is to exploit the fact that

thus u[n](x) – u[n−1](x) is a polynomial of degree n or less, and a multiple of
(x – x0) . . . (x – xn−1). We conclude that u[n](x) = αn(x – x0) . . . (x – xn−1) +
u[n−1](x), where αn is a constant. This leads us to Newton’s interpolation
formula

where the α’s are some coefficients that we want to determine from the given
numbers x0, x1, . . . , xn, y0, y1, . . . , yn. Notice that this formula holds for all
n; the coefficient αk does not depend on xk+1, . . . , xn, or on yk+1, . . . , yn.
Once the α’s are known, Newton’s interpolation formula is convenient for
calculation, since we may generalize Horner’s rule once again and write

This requires n multiplications and 2n additions. Alternatively, we may
evaluate each of the individual terms of (42) from right to left; with 2n−1
multiplications and 2n additions we thereby calculate all of the values u[0]
(x), u[1](x), . . . , u[n](x), and this indicates whether or not an interpolation
process is converging.

The coefficients αk in Newton’s formula may be found by computing the
divided differences in the following tableau (shown for n = 3):

It is possible to prove that α0 = y0, , , etc., and to show
that the divided differences have important relations to the derivatives of the
function being interpolated; see exercise 15. Therefore the following
calculation (corresponding to (44)) may be used to obtain the α’s:

Start with (α0, α1, . . . , αn) ← (y0, y1, . . . , yn);
then, for k = 1, 2, . . . , n (in this order),

set αj ← (αj – αj–1)/(xj – xj–k) for j = n, n − 1, . . . , k (in this order).

This process requires divisions and n2 + n subtractions, so
about three-fourths of the work implied in (41) has been saved.

For example, suppose that we want to estimate 1.5! from the values of 0!,
1!, 2!, and 3!, using a cubic polynomial. The divided differences are

so u[0] (x) = u[1] (x) = 1, ,
. Setting x = 1.5 in u[3](x)

gives –.125 + .375 + 1 = 1.25; presumably the “correct” value is
. (But there are of course many other sequences

that begin with the numbers 1, 1, 2, and 6.)
If we want to interpolate several polynomials that have the same

interpolation points x0, x1, . . . , xn but varying values y0, y1, . . . , yn, it is
desirable to rewrite (41) in a form suggested by W. J. Taylor [J. Research
Nat. Bur. Standards 35 (1945), 151–155]:

when x ∉ {x0, x1, . . . , xn}, where

This form is also recommended for its numerical stability [see P. Henrici,
Essentials of Numerical Analysis (New York: Wiley, 1982), 237–243]. The
denominator of (45) is the partial fraction expansion of 1/(x – x0)(x – x1) . . .
(x – xn).

An important and somewhat surprising application of polynomial
interpolation was discovered by Adi Shamir [CACM 22 (1979), 612–613],
who observed that polynomials mod p can be used to “share a secret.” This
means that we can design a system of secret keys or passwords such that the
knowledge of any n + 1 of the keys enables efficient calculation of a magic
number N that unlocks a door (say), but the knowledge of any n of the keys
gives no information whatsoever about N. Shamir’s amazingly simple
solution to this problem is to choose a random polynomial u(x) = unxn+ ... +
u1x+u0, where 0 ≤ ui < p and p is a large prime number. Each part of the
secret is an integer x in the range 0 < x < p, together with the value of u(x)
mod p; and the supersecret number N is the constant term u0. Given n + 1
values u(xi), we can deduce N by interpolation. But if only n values of u(xi)
are given, there is a unique polynomial u(x) having a given constant term but
the same values at x1, . . . , xn; thus the n values do not make one particular N
more likely than any other.

It is instructive to note that evaluation of the interpolation polynomial is
just a special case of the Chinese remainder algorithm of Section 4.3.2 and
exercise 4.6.2–3, since we know the values of u[n](x) modulo the relatively
prime polynomials x – x0, . . . , x – xn. (As we have seen in Section 4.6.2 and
in the discussion following (3), f(x) mod (x – x0) = f(x0).) Under this
interpretation, Newton’s formula (42) is precisely the “mixed-radix
representation” of Eq. 4.3.2–(25); and 4.3.2–(24) yields another way to
compute α0, . . . , αn using the same number of operations as (44).

By applying fast Fourier transforms, it is possible to reduce the running
time for interpolation to O(n (log n)2), and a similar reduction can also be
made for related algorithms such as the solution to the Chinese remainder
problem and the evaluation of an nth degree polynomial at n different points.

[See E. Horowitz, Inf. Proc. Letters 1 (1972), 157–163; A. Borodin and R.
Moenck, J. Comp. Syst. Sci. 8 (1974), 336–385; A. Borodin, Complexity of
Sequential and Parallel Numerical Algorithms, edited by J. F. Traub (New
York: Academic Press, 1973), 149–180; D. Bini and V. Pan, Polynomial and
Matrix Computations 1 (Boston: Birkhäuser, 1994), Chapter 1.] However,
these observations are primarily of theoretical interest, since the known
algorithms have a rather large overhead factor that makes them unattractive
unless n is quite large.

A remarkable extension of the method of divided differences, which
applies to quotients of polynomials as well as to polynomials, was
introduced by T. N. Thiele in 1909. Thiele’s method of “reciprocal
differences” is discussed in L. M. Milne-Thompson’s Calculus of Finite
Differences (London: MacMillan, 1933), Chapter 5; see also R. W. Floyd,
CACM 3 (1960), 508.
*Bilinear forms. Several of the problems we have considered in this section
are special cases of the general problem of evaluating a set of bilinear forms

where the tijk are specific coefficients belonging to some given field. The
three-dimensional array (tijk) is called an m × n × s tensor, and we can
display it by writing down s matrices of size m × n, one for each value of k.
For example, the problem of multiplying complex numbers, namely the
problem of evaluating

is the problem of computing the bilinear form specified by the 2 × 2 × 2
tensor

Matrix multiplication as defined in (34) is the problem of evaluating a set of
bilinear forms corresponding to a particular mn × ns × ms tensor. Fourier
transforms (37) can also be cast in this mold, although they are linear instead
of bilinear, if we let the x’s be constant rather than variable.

The evaluation of bilinear forms is most easily studied if we restrict
ourselves to what might be called normal evaluation schemes, in which all
chain multiplications take place between a linear combination of the x’s and
a linear combination of the y’s. Thus, we form r products

and obtain the z’s as linear combinations of these products,

Here all the a’s, b’s, and c’s belong to a given field of coefficients. By
comparing (50) to (47), we see that a normal evaluation scheme is correct
for the tensor (tijk) if and only if

for 1 ≤ i ≤ m, 1 ≤ j ≤ n, and 1 ≤ k ≤ s.
A nonzero tensor (tijk) is said to be of rank one if there are three vectors

(a1, . . . , am), (b1, . . . , bn), (c1, . . . , cs) such that tijk = aibj ck for all i, j, k.
We can extend this definition to all tensors by saying that the rank of (tijk) is
the minimum number r such that (tijk) is expressible as the sum of r rank-
one tensors in the given field. Comparing this definition with Eq. (51) shows
that the rank of a tensor is the minimum number of chain multiplications in a
normal evaluation of the corresponding bilinear forms. Incidentally, when s =
1 the tensor (tijk) is just an ordinary matrix, and the rank of (tij1) as a tensor is
the same as its rank as a matrix (see exercise 49). The concept of tensor rank
was introduced by F. L. Hitchcock in J. Math. and Physics 6 (1927), 164–
189; its application to the complexity of polynomial evaluation was pointed
out in an important paper by V. Strassen, Crelle 264 (1973), 184–202.

Winograd’s scheme (35) for matrix multiplication is “abnormal” because
it mixes x’s and y’s before multiplying them. The Strassen–Winograd scheme
(36), on the other hand, does not rely on the commutativity of multiplication,
so it is normal. In fact, (36) corresponds to the following way to represent
the 4 × 4 × 4 tensor for 2 × 2 matrix multiplication as a sum of seven rank-
one tensors:

(Here stands for –1.)
The fact that (51) is symmetric in i, j, k and invariant under a variety of

transformations makes the study of tensor rank mathematically tractable, and
it also leads to some surprising consequences about bilinear forms. We can
permute the indices i, j, k to obtain “transposed” bilinear forms, and the
transposed tensor clearly has the same rank; but the corresponding bilinear
forms are conceptually quite different. For example, a normal scheme for
evaluating an (m×n) times (n×s) matrix product implies the existence of a
normal scheme to evaluate an (n×s) times (s×m) matrix product, using the
same number of chain multiplications. In matrix terms these two problems
hardly seem to be related at all—they involve different numbers of dot
products, on vectors of different sizes—but in tensor terms they are
equivalent. [See V. Y. Pan, Uspekhi Mat. Nauk 27, 5 (September–October
1972), 249–250; J. E. Hopcroft and J. Musinski, SICOMP 2 (1973), 159–
173.]

When the tensor (tijk) can be represented as a sum (51) of r rank-one
tensors, let A, B, C be the matrices (ail), (bjl), (ckl) of respective sizes m × r,
n × r, s × r; we shall say that (A, B, C) is a realization of the tensor (tijk). For
example, the realization of 2 × 2 matrix multiplication in (52) can be
specified by the matrices

An m × n × s tensor (tijk) can also be represented as a matrix by grouping
its subscripts together. We shall write (t(ij)k) for the mn × s matrix whose
rows are indexed by the pair of subscripts 〈i, j〉 and whose columns are
indexed by k. Similarly, (tk(ij)) stands for the s × mn matrix that contains tijk

in row k and column 〈i, j〉; (t(ik)j) is an ms × n matrix, and so on. The
indices of an array need not be integers, and we are using ordered pairs as
indices here. We can use this notation to derive the following simple but
useful lower bound on the rank of a tensor.
Lemma T. Let (A, B, C) be a realization of an m × n × s tensor (tijk). Then
rank(A) ≥ rank(ti(jk)), rank(B) ≥ rank(tj(ik)), and rank(C) ≥ rank(tk(ij));
consequently

Proof. It suffices by symmetry to show that r ≥ rank(A) ≥ rank(ti(jk)). Since A
is an m × r matrix, it is obvious that A cannot have rank greater than r.
Furthermore, according to (51), the matrix (ti(jk)) is equal to AQ, where Q is
the r × ns matrix defined by Ql〈j,k〉 = bjlckl. If x is any row vector such that
xA = 0 then xAQ = 0, hence all linear dependencies in A occur also in AQ. It
follows that rank(AQ) ≤ rank(A).

As an example of the use of Lemma T, let us consider the problem of
polynomial multiplication. Suppose we want to multiply a general
polynomial of degree 2 by a general polynomial of degree 3, obtaining the
coefficients of the product:

This is the problem of evaluating six bilinear forms corresponding to the
3×4×6 tensor

For brevity, we may write (54) as x(u)y(u) = z(u), letting x(u) denote the
polynomial x0 + x1u + x2u2, etc. (We have come full circle from the way we
began this section, since Eq. (1) refers to u(x), not x(u); the notation has
changed because the coefficients of the polynomials are now the variables of
interest to us.)

If each of the six matrices in (55) is regarded as a vector of length 12
indexed by 〈i, j〉, it is clear that the vectors are linearly independent, since
they are nonzero in different positions; hence the rank of (55) is at least 6 by
Lemma T. Conversely, it is possible to obtain the coefficients z0, z1, . . . , z5
by making only six chain multiplications, for example by computing

this gives the values of z(0), z(1), . . . , z(5), and the formulas developed
above for interpolation will yield the coefficients of z(u). The evaluation of
x(j) and y(j) can be carried out entirely in terms of additions and/or
parameter multiplications, and the interpolation formula merely takes linear
combinations of these values. Thus, all of the chain multiplications are
shown in (56), and the rank of (55) is 6. (We used essentially this same
technique when multiplying high-precision numbers in Algorithm 4.3.3T.)

The realization (A, B, C) of (55) sketched in the paragraph above turns
out to be

Thus, the scheme does indeed achieve the minimum number of chain
multiplications, but it is completely impractical because it involves so many
additions and parameter multiplications. We shall now study a practical
approach to the generation of more efficient schemes, introduced by S.
Winograd.

In the first place, to evaluate the coefficients of x(u)y(u) when deg(x) =
m and deg(y) = n, we can use the identity

when p(u) is any monic polynomial of degree m+n. The polynomial p(u)
should be chosen so that the coefficients of x(u)y(u) mod p(u) are easy to

evaluate.
In the second place, to evaluate the coefficients of x(u)y(u) mod p(u),

when the polynomial p(u) can be factored into q(u)r(u) where gcd(q(u),
r(u)) = 1, we can use the identity

where a(u)r(u)+b(u)q(u) = 1; this is essentially the Chinese remainder
theorem applied to polynomials.

In the third place, we can always evaluate the coefficients of the
polynomial x(u)y(u) mod p(u) by using the trivial identity

Repeated application of (58), (59), and (60) tends to produce efficient
schemes, as we shall see.

For our example problem (54), let us choose p(u) = u5–u and apply (58);
the reason for this choice of p(u) will appear as we proceed. Writing p(u) =
u(u4–1), rule (59) reduces to

Here we have used the fact that x(u)y(u) mod u = x0y0; in general it is a good
idea to choose p(u) in such a way that p(0) = 0, so that this simplification can
be used. If we could now determine the coefficients w0, w1, w2, w3 of the
polynomial x(u)y(u) mod (u4 – 1) = w0 + w1u + w2u2 + w3u3, our problem
would be solved, since

and the combination of (58) and (61) would reduce to

(This formula can, of course, be verified directly.)
The problem remaining to be solved is to compute x(u)y(u) mod (u4 – 1);

and this subproblem is interesting in itself. Let us momentarily allow x(u) to
be of degree 3 instead of degree 2. Then the coefficients of x(u)y(u) mod (u4

– 1) are respectively

and the corresponding tensor is

In general when deg(x) = deg(y) = n−1, the coefficients of x(u)y(u) mod
(un−1) are called the cyclic convolution of (x0, x1, . . . , xn−1) and (y0, y1, . . .
, yn−1). The kth coefficient wk is the bilinear form ∑xiyj summed over all i
and j with i + j ≡ k (modulo n).

The cyclic convolution of degree 4 can be obtained by applying rule
(59). The first step is to find the factors of u4 – 1, namely (u − 1)(u + 1)(u2 +
1). We could write this as (u2 – 1)(u2 + 1), then apply rule (59), then use (59)
again on the part modulo (u2–1) = (u−1)(u+1); but it is easier to generalize
the Chinese remainder rule (59) directly to the case of several relatively
prime factors. For example, we have

where a1(u)q2(u)q3(u) + a2(u)q1(u)q3(u) + a3(u)q1(u)q2(u) = 1. (This
equation can also be understood in another way, by noting that the partial
fraction expansion of 1/q1(u)q2(u)q3(u) is a1(u)/q1(u) + a2(u)/q2(u) +
a3(u)/q3(u).) From (64) we obtain

The remaining problem is to evaluate x(u)y(u) mod (u2 + 1), and it is time to
invoke rule (60). First we reduce x(u) and y(u) mod (u2 + 1), obtaining X(u)
= (x0 – x2) + (x1 – x3)u, Y (u) = (y0 – y2) + (y1 – y3)u. Then (60) tells us to
evaluate X(u)Y (u) = Z0 + Z1u + Z2u2, and to reduce this in turn modulo (u2 +
1), obtaining (Z0 – Z2) + Z1u. The job of computing X(u)Y (u) is simple; we
can use rule (58) with p(u) = u(u + 1) and we get

(We have thereby rediscovered the trick of Eq. 4.3.3–(2) in a more
systematic way.) Putting everything together yields the following realization
(A, B, C) of degree-4 cyclic convolution:

Here stands for –1 and stands for –2.
The tensor for cyclic convolution of degree n satisfies

treating the subscripts modulo n, since tijk = 1 if and only if i + j ≡ k (modulo
n). Thus if (ail), (bjl), (ckl) is a realization of the cyclic convolution, so is
(ckl), (b–j,l), (ail); in particular, we can realize (63) by transforming (66) into

Now all of the complicated scalars appear in the A matrix. This is important
in practice, since we often want to compute the convolution for many values
of y0, y1, y2, y3 but for a fixed choice of x0, x1, x2, x3. In such a situation, the
arithmetic on x’s can be done once and for all, and we need not count it. Thus
(68) leads to the following scheme for evaluating the cyclic convolution w0,
w1, w2, w3 when x0, x1, x2, x3 are known in advance:

There are 5 multiplications and 15 additions, while the definition of cyclic
convolution involves 16 multiplications and 12 additions. We will prove
later that 5 multiplications are necessary.

Going back to our original multiplication problem (54), using (62), we
have derived the realization

This scheme uses one more than the minimum number of chain
multiplications, but it requires far fewer parameter multiplications than (57).
Of course, it must be admitted that the scheme is still rather complicated: If
our goal is simply to compute the coefficients z0, z1, . . . , z5 of the product of
two given polynomials (x0 + x1u + x2u2)(y0 + y1u + y2u2 + y3u3), as a one-
shot problem, our best bet may well be to use the obvious method that does
12 multiplications and 6 additions—unless (say) the x’s and y’s are matrices.
Another reasonably attractive scheme, which requires 8 multiplications and
18 additions, appears in exercise 58(b). Notice that if the x’s are fixed as the
y’s vary, (70) does the evaluation with 7 multiplications and 17 additions.
Even though this scheme isn’t especially useful as it stands, our derivation
has illustrated important techniques that are useful in a variety of other
situations. For example, Winograd has used this approach to compute Fourier
transforms using significantly fewer multiplications than the fast Fourier
transform algorithm needs (see exercise 53).

Let us conclude this section by determining the exact rank of the n × n ×
n tensor that corresponds to the multiplication of two polynomials modulo a
third,

Here p(u) stands for any given monic polynomial of degree n; in particular,
p(u) might be un − 1, so one of the results of our investigation will be to
deduce the rank of the tensor corresponding to cyclic convolution of degree
n. It will be convenient to write p(u) in the form

so that un ≡ p0 + p1u + · · · + pn − 1 un − 1 (modulo p(u)).

The tensor element tijk is the coefficient of uk in ui+j mod p(u); and this is
the element in row i, column k of the matrix Pj, where

is called the companion matrix of p(u). (The indices i, j, k in our discussion
will run from 0 to n − 1 instead of from 1 to n.) It is convenient to transpose
the tensor, for if Tijk = tikj the individual layers of (Tijk) for k = 0, 1, 2, . . . , n
− 1 are simply given by the matrices

The first rows of the matrices in (74) are respectively the unit vectors (1,
0, 0, . . . , 0), (0, 1, 0, . . . , 0), (0, 0, 1, . . . , 0), . . . , (0, 0, 0, . . . , 1), hence a
linear combination will be the zero matrix if and only if the
coefficients vk are all zero. Furthermore, most of these linear combinations
are actually non-singular matrices, for we have

where v(u) = v0 + v1u + ... + vn−1un−1 and w(u) = w0 + w1u + ... + wn−1un−1.
Thus, is a singular matrix if and only if the polynomial v(u) is
a multiple of some factor of p(u). We are now ready to prove the desired
result.
Theorem W (S. Winograd, 1975). Let p(u) be a monic polynomial of
degree n whose complete factorization over a given infinite field is

Then the rank of the tensor (74) corresponding to the bilinear forms (71) is
2n–q over this field.

Proof. The bilinear forms can be evaluated with only 2n−q chain
multiplications by using rules (58), (59), (60) in an appropriate fashion, so
we must prove only that the rank r is ≥ 2n – q. The discussion above
establishes the fact that rank(T(ij)k) = n; hence by Lemma T, any n × r
realization (A, B, C) of (Tijk) has rank(C) = n. Our strategy will be to use
Lemma T again, by finding a vector (v0, v1, . . . , vn−1) that has the following
two properties:

i) The vector (v0, v1, . . . , vn−1)C has at most q + r – n nonzero
coefficients.

ii) The matrix is nonsingular.

This and Lemma T will prove that q + r – n ≥ n, since the identity

shows how to realize the n × n × 1 tensor v(P) of rank n with q + r – n chain
multiplications.

We may assume for convenience that the first n columns of C are linearly
independent. Let D be the n × n matrix such that the first n columns of DC are
equal to the identity matrix. Our goal will be achieved if there is a linear
combination (v0, v1, . . . , vn−1) of at most q rows of D, such that v(P) is
nonsingular; such a vector will satisfy conditions (i) and (ii).

Since the rows of D are linearly independent, no irreducible factor pλ(u)
can divide the polynomials corresponding to every row. Given a vector

let covered(w) be the set of all λ such that w(u) is not a multiple of pλ(u).
From two vectors v and w we can find a linear combination v + αw such that

for some α in the field. The reason is that if λ is covered by v or w but not
both, then λ is covered by v + αw for all nonzero α; if λ is covered by both v
and w but λ is not covered by v + αw, then λ is covered by v + βw for all β ≠
α. By trying q + 1 different values of α, at least one must yield (76). In this
way we can systematically construct a linear combination of at most q rows
of D, covering all λ for 1 ≤ λ ≤ q.

One of the most important corollaries of Theorem W is that the rank of a
tensor can depend on the field from which we draw the elements of the
realization (A, B, C). For example, consider the tensor corresponding to
cyclic convolution of degree 5; this is equivalent to multiplication of
polynomials mod p(u) = u5 –1. Over the field of rational numbers, the
complete factorization of p(u) is (u − 1) × (u4 + u3 + u2 + u + 1) by exercise
4.6.2–32, so the tensor rank is 10 – 2 = 8. On the other hand, the complete
factorization over the real numbers, in terms of the number

, is (u − 1)(u2 + φu + 1)(u2 – φ−1u + 1); thus, the rank is
only 7, if we allow arbitrary real numbers to appear in A, B, C. Over the
complex numbers the rank is 5. This phenomenon does not occur in two-
dimensional tensors (matrices), where the rank can be determined by
evaluating determinants of submatrices and testing for 0. The rank of a matrix
does not change when the field containing its elements is embedded in a
larger field, but the rank of a tensor can decrease when the field gets larger.

In the paper that introduced Theorem W [Math. Systems Theory 10
(1977), 169–180], Winograd went on to show that all realizations of (71) in
2n – q chain multiplications correspond to the use of (59), when q is greater
than 1. Furthermore he has shown that the only way to evaluate the
coefficients of x(u)y(u) in deg(x) + deg(y) + 1 chain multiplications is to use
interpolation or to use (58) with a polynomial that splits into distinct linear
factors in the field. Finally he has proved that the only way to evaluate
x(u)y(u) mod p(u) in 2n − 1 chain multiplications when q = 1 is essentially
to use (60). These results hold for all polynomial chains, not only “normal”
ones. He has extended the results to multivariate polynomials in SICOMP 9
(1980), 225–229.

The tensor rank of an arbitrary m × n × 2 tensor in a suitably large field
has been determined by Joseph Ja’Ja’, SICOMP 8 (1979), 443–462; JACM
27 (1980), 822–830. See also his interesting discussion of commutative
bilinear forms in SICOMP 9 (1980), 713–728. However, the problem of
computing the tensor rank of an arbitrary n × n × n tensor over any finite field
is NP-complete [J. Håstad, Journal of Algorithms 11 (1990), 644–654].
For further reading. In this section we have barely scratched the surface of
a very large subject in which many beautiful theories are emerging.
Considerably more comprehensive treatments can be found in the books

Computational Complexity of Algebraic and Numeric Problems by A.
Borodin and I. Munro (New York: American Elsevier, 1975); Polynomial
and Matrix Computations 1 by D. Bini and V. Pan (Boston: Birkhäuser,
1994); Algebraic Complexity Theory by P. Bürgisser, M. Clausen, and M.
Amin Shokrollahi (Heidelberg: Springer, 1997).

Exercises

1. [15] What is a good way to evaluate an “odd” polynomial

 2. [M20] Instead of computing u(x + x0) by steps H1 and H2 as in the text,
discuss the application of Horner’s rule (2) when polynomial multiplication
and addition are used instead of arithmetic in the domain of coefficients.

3. [20] Give a method analogous to Horner’s rule, for evaluating a
polynomial in two variables ∑i+j≤n uijxiyj. (This polynomial has (n + 1)(n +
2)/2 coefficients, and its “total degree” is n.) Count the number of additions
and multiplications you use.

4. [M20] The text shows that scheme (3) is superior to Horner’s rule when
we are evaluating a polynomial with real coefficients at a complex point z.
Compare (3) to Horner’s rule when both the coefficients and the variable z
are complex numbers; how many (real) multiplications and addition-
subtractions are required by each method?

5. [M15] Count the number of multiplications and additions required by
the second-order rule (4).

6. [22] (L. de Jong and J. van Leeuwen.) Show how to improve on steps
S1, . . . , S4 of the Shaw–Traub algorithm by computing only about
powers of x0.

7. [M25] How can β0, . . . , βn be calculated so that (6) has the value u(x0
+ kh) for all integers k?

8. [M20] The factorial power xk is defined to be
. Explain how to evaluate unxn + ... +

u1x1 + u0 with at most n multiplications and 2n − 1 additions, starting with x
and the n + 3 constants un, . . . , u0, 1, n − 1.

9. [M25] (H. J. Ryser.) Show that if X = (xij) is an n × n matrix, then

summed over all 2n choices of ∊1, . . . , ∊n equal to 0 or 1 independently.
Count the number of addition and multiplication operations required to
evaluate per(X) by this formula.

10. [M21] The permanent of an n × n matrix X = (xij) may be calculated as
follows: Start with the n quantities x11, x12, . . . , x1n. For 1 ≤ k < n, assume
that the quantities AkS have been computed, for all k-element subsets S
of {1, 2, . . . , n}, where AkS = ∑x1j1 . . . xkjk

 summed over all k!
permutations j1 . . . jk of the elements of S; then form all of the sums

We have per(X) = An{1,...,n}. How many additions and multiplications
does this method require? How much temporary storage is needed?

11. [M46] Is there any way to evaluate the permanent of a general n × n
matrix using fewer than 2n arithmetic operations?
12. [M50] What is the minimum number of multiplications required to form
the product of two n × n matrices? What is the smallest exponent ω such
that O(nω+∊) multiplications are sufficient for all ∊ > 0? (Find good upper
and lower bounds for small n as well as large n.)
13. [M23] Find the inverse of the general discrete Fourier transform (37),
by expressing F(t1, . . . , tn) in terms of the values of f(s1, . . . , sn). [Hint:
See Eq. 1.2.9–(13).]

 14. [HM28] (Fast Fourier transforms.) Show that the scheme (40) can be
used to evaluate the one-dimensional discrete Fourier transform

using arithmetic on complex numbers. Estimate the number of arithmetic
operations performed.

 15. [HM28] The nth divided difference f(x0, x1, . . . , xn) of a function f(x)
at n + 1 distinct points x0, x1, . . . , xn is defined by the formula

for n > 0. Thus
 is a

symmetric function of its n + 1 arguments. (a) Prove that f(x0, . . . , xn) =
f(n)(θ)/n!, for some θ between min(x0, . . . , xn) and max(x0, . . . , xn), if
the nth derivative f(n)(x) exists and is continuous. [Hint: Prove the
identity

This formula also defines f(x0, x1, . . . , xn) in a useful manner when the xj
are not distinct.] (b) If yj = f(xj), show that αj = f(x0, . . . , xj) in Newton’s
interpolation polynomial (42).

16. [M22] How can we readily compute the coefficients of u[n](x) = unxn +
... + u0, if we are given the values of x0, x1, . . . , xn−1, α0, α1, . . . , αn in
Newton’s interpolation polynomial (42)?
17. [M20] Show that the interpolation formula (45) reduces to a very
simple expression involving binomial coefficients when xk = x0 + kh for 0
≤ k ≤ n. [Hint: See exercise 1.2.6–48.]
18. [M20] If the fourth-degree scheme (9) were changed to

what formulas for computing the αj’s in terms of the uk’s would take the
place of (10)?

 19. [M24] Explain how to determine the adapted coefficients α0, α1, . . . ,
α5 in (11) from the coefficients u5, . . . , u1, u0 of u(x), and find the α’s for
the particular polynomial u(x) = x5 + 5x4 – 10x3 – 50x2 + 13x + 60.

 20. [21] Write a MIX program that evaluates a fifth-degree polynomial
according to scheme (11); try to make the program as efficient as possible,
by making slight modifications to (11). Use MIX’s floating point arithmetic
operators FADD and FMUL, which are described in Section 4.2.1.

21. [20] Find two additional ways to evaluate the polynomial x6 + 13x5 +
49x4 + 33x3 – 61x2 – 37x + 3 by scheme (12), using the two roots of (15)
that were not considered in the text.
22. [18] What is the scheme for evaluating x6 – 3x5 + x4 – 2x3 + x2 – 3x −
1, using Pan’s method (16)?
23. [HM30] (J. Eve.) Let f(z) = anzn + an−1zn−1 + ... + a0 be a polynomial
of degree n with real coefficients, having at least n − 1 roots with a
nonnegative real part. Let

Assume that h(z) is not identically zero.
a) Show that g(z) has at least n – 2 imaginary roots (that is, roots whose

real part is zero), and h(z) has at least n – 3 imaginary roots. [Hint:
Consider the number of times the path f(z) circles the origin as z goes
around the path shown in Fig. 16, for a sufficiently large radius R.]

b) Prove that the squares of the roots of g(z) = 0 and h(z) = 0 are all real.

Fig. 16. Proof of Eve’s theorem.

 24. [M24] Find values of c and αk, βk satisfying the conditions of Theorem
E, for the polynomial u(x) = (x + 7)(x2 + 6x + 10)(x2 + 4x + 5)(x + 1).
Choose these values so that β2 = 0. Give two different solutions.

25. [M20] When the construction in the proof of Theorem M is applied to
the (inefficient) polynomial chain

how can β1, β2, . . . , β9 be expressed in terms of α1, . . . , α8?

 26. [M21] (a) Give the polynomial chain corresponding to Horner’s rule
for evaluating polynomials of degree n = 3. (b) Using the construction that
appears in the text’s proof of Theorem A, express κ1, κ2, κ3, and the result
polynomial u(x) in terms of β1, β2, β3, β4, and x. (c) Show that the result set
obtained in (b), as β1, β2, β3, and β4 independently assume all real values,
omits certain vectors in the result set of (a).
27. [M22] Let R be a set that includes all (n+1)-tuples (qn, . . . , q1, q0) of
real numbers such that qn ≠ 0; prove that R does not have at most n degrees
of freedom.
28. [HM20] Show that if f0(α1, . . . , αs), . . . , fs(α1, . . . , αs) are
multivariate polynomials with integer coefficients, then there is a nonzero
polynomial g(x0, . . . , xs) with integer coefficients such that g(f0(α1, . . . ,
αs), . . . , fs(α1, . . . , αs)) = 0 for all real α1, . . . , αs. (Hence any polynomial
chain with s parameters has at most s degrees of freedom.) [Hint: Use the
theorems about “algebraic dependence” that are found, for example, in B.
L. van der Waerden’s Modern Algebra, translated by Fred Blum (New
York: Ungar, 1949), Section 64.]

 29. [M20] Let R1, R2, . . . , Rm all be sets of (n + 1)-tuples of real numbers
having at most t degrees of freedom. Show that the union R1 ∪ R2 ∪ ... ∪ Rm
also has at most t degrees of freedom.

 30. [M28] Prove that a polynomial chain with mc chain multiplications and
mp parameter multiplications has at most 2mc + mp + δ0mc degrees of
freedom. [Hint: Generalize Theorem M, showing that the first chain
multiplication and each parameter multiplication can essentially introduce
only one new parameter into the result set.]
31. [M23] Prove that a polynomial chain capable of computing all monic
polynomials of degree n has at least ⌊n/2⌋ multiplications and at least n
addition-subtractions.

32. [M24] Find a polynomial chain of minimum possible length that can
compute all polynomials of the form u4x4 + u2x2 + u0; and prove that its
length is minimal.

 33. [M25] Let n ≥ 3 be odd. Prove that a polynomial chain with ⌊n/2⌋ + 1
multiplication steps cannot compute all polynomials of degree n unless it
has at least n + 2 addition-subtraction steps. [Hint: See exercise 30.]
34. [M26] Let λ0, λ1, . . . , λr be a polynomial chain in which all of the
addition and subtraction steps are parameter steps, and in which there is at
least one parameter multiplication. Assume that this scheme has m
multiplications and k = r –m addition-subtractions, and that the polynomial
computed by the chain has maximum degree n. Prove that all polynomials
computable by this chain, for which the coefficient of xn is not zero, can be
computed by another chain that has at most m multiplications and at most k
additions, and no subtractions; furthermore the last step of the new chain
should be the only parameter multiplication.

 35. [M25] Show that any polynomial chain that computes a general fourth-
degree polynomial using three multiplications must have at least five
addition-subtractions. [Hint: Assume that there are only four addition-
subtractions, and show that exercise 34 applies; therefore the scheme must
have a particular form that is incapable of representing all fourth-degree
polynomials.]
36. [M27] Continuing the previous exercise, show that any polynomial
chain that computes a general sixth-degree polynomial using only four
multiplications must have at least seven addition-subtractions.
37. [M21] (T. S. Motzkin.) Show that “almost all” rational functions of the
form

with coefficients in a field S, can be evaluated using the scheme

for suitable αj, βj in S. (This continued fraction scheme has n divisions
and 2n additions; by “almost all” rational functions we mean all except
those whose coefficients satisfy some nontrivial polynomial equation.)
Determine the α’s and β’s for the rational function (x2 + 10x + 29)/(x2 +
8x + 19).

 38. [HM32] (V. Y. Pan, 1962.) The purpose of this exercise is to prove that
Horner’s rule is really optimal if no preliminary adaptation of coefficients
is made; we need n multiplications and n additions to compute unxn + ... +
u1x + u0, if the variables un, . . . , u1, u0, x, and arbitrary constants are
given. Consider chains that are as before except that un, . . . , u1, u0, x are
each considered to be variables; we may say, for example, that λ–j−1 = uj,
λ0 = x. In order to show that Horner’s rule is best, it is convenient to prove
a somewhat more general theorem: Let A = (aij), 0 ≤ i ≤ m, 0 ≤ j ≤ n, be an
(m + 1) × (n + 1) matrix of real numbers, of rank n + 1; and let B = (b0, . . .
, bm) be a vector of real numbers. Prove that any polynomial chain that
computes

involves at least n chain multiplications. (Note that this does not mean
only that we are considering some fixed chain in which the parameters αj
are assigned values depending on A and B; it means that both the chain
and the values of the α’s may depend on the given matrix A and vector B.
No matter how A, B, and the values of αj are chosen, it is impossible to
compute P (x; u0, . . . , un) without doing n “chain-step” multiplications.)
The assumption that A has rank n + 1 implies that m ≥ n. [Hint: Show
that from any such scheme we can derive another that has fewer chain
multiplications and that has n decreased by one.]

39. [M29] (T. S. Motzkin, 1954.) Show that schemes of the form

where the αk, βk are real and the γk, δk are integers, can be used to
evaluate all monic polynomials of degree 2m over the real numbers. (We
may have to choose αk, βk, γk, and δk differently for different
polynomials.) Try to let δk = 0 whenever possible.

40. [M41] Can the lower bound in the number of multiplications in
Theorem C be raised from ⌊n/2⌋ + 1 to ⌈n/2⌉ + 1? (See exercise 33.)
41. [22] Show that the real and imaginary parts of (a + bi)(c + di) can be
obtained by doing 3 multiplications and 5 additions of real numbers, where

two of the additions involve a and b only.
42. [36] (M. Paterson and L. Stockmeyer.) (a) Prove that a polynomial
chain with m ≥ 2 chain multiplications has at most m2 + 1 degrees of
freedom. (b) Show that for all n ≥ 2 there exist polynomials of degree n,
all of whose coefficients are 0 or 1, that cannot be evaluated by any
polynomial chain with fewer than ⌊ ⌋ multiplications, if we require all
parameters αj to be integers. (c) Show that any polynomial of degree n
with integer coefficients can be evaluated by an all-integer algorithm that
performs at most 2⌊ ⌋ multiplications, if we don’t care how many
additions we do.
43. [22] Explain how to evaluate xn + ... + x + 1 with 2l(n + 1) – 2
multiplications and l(n + 1) additions (no divisions or subtractions), where
l(n) is the function studied in Section 4.6.3.

 44. [M25] Show that any monic polynomial u(x) = xn + un−1xn−1 + ... + u0
can be evaluated with multiplications and
additions, using parameters α1, α2, . . . that are polynomials in un−1, un−2, . .
. with integer coefficients. [Hint: Consider first the case n = 2l.]

 45. [HM22] Let (tijk) be an m×n×s tensor, and let F, G, H be nonsingular
matrices of respective sizes m × m, n × n, s × s. If

for all i, j, k, prove that the tensor (Tijk) has the same rank as (tijk).
[Hint: Consider what happens when F−1, G−1, H−1 are applied in the
same way to (Tijk).]

46. [M28] Prove that all pairs (z1, z2) of bilinear forms in (x1, x2) and (y1,
y2) can be evaluated with at most three chain multiplications. In other
words, show that every 2 × 2 × 2 tensor has rank ≤ 3.
47. [M25] Prove that for all m, n, and s there exists an m × n × s tensor
whose rank is at least ⌈mns/(m + n + s)⌉. Conversely, show that every m ×
n × s tensor has rank at most mns/max(m, n, s).
48. [M21] If (tijk) and are tensors of sizes m×n×s and m′×n′×s′,
respectively, their direct sum is the (m + m′) × (n
+ n′) × (s + s′) tensor defined by ; if i ≤ m, j ≤ n, k ≤ s;

 if i > m, j > n, k > s; and otherwise. Their
direct product is the mm′ × nn′ × ss′ tensor
defined by . Derive the upper bounds
and .

 49. [HM25] Show that the rank of an m × n × 1 tensor (tijk) is the same as
its rank as an m × n matrix (tij1), according to the traditional definition of
matrix rank as the maximum number of linearly independent rows.
50. [HM20] (S. Winograd.) Let (tijk) be the mn × n × m tensor
corresponding to multiplication of an m × n matrix by an n × 1 column
vector. Prove that the rank of (tijk) is mn.

 51. [M24] (S. Winograd.) Devise an algorithm for cyclic convolution of
degree 2 that uses 2 multiplications and 4 additions, not counting
operations on the xi. Similarly, devise an algorithm for degree 3, using 4
multiplications and 11 additions. (See (69), which solves the analogous
problem for degree 4.)
52. [M25] (S. Winograd.) Let n = n′n″ where n′ ⊥ n″. Given normal
schemes for cyclic convolutions of degrees n′ and n″, using respectively
(m′, m″) chain multiplications, (p′, p″) parameter multiplications, and (a′,
a″) additions, show how to construct a normal scheme for cyclic
convolution of degree n using m′m″ chain multiplications, p′n″ + m′p″
parameter multiplications, and a′n″ + m′a″ additions.
53. [HM40] (S. Winograd.) Let ω be a complex mth root of unity, and
consider the one-dimensional discrete Fourier transform

a) When m = pe is a power of an odd prime, show that efficient normal
schemes for computing cyclic convolutions of degrees (p − 1)pk, for 0
≤ k < e, will lead to efficient algorithms for computing the Fourier
transform on m complex numbers. Give a similar construction for the
case p = 2.

b) When m = m′m″ and m′ ⊥ m″, show that Fourier transformation
algorithms for m′ and m″ can be combined to yield a Fourier
transformation algorithm for m elements.

54. [M23] Theorem W refers to an infinite field. How many elements must
a finite field have in order for the proof of Theorem W to be valid?
55. [HM22] Determine the rank of tensor (74) when P is an arbitrary n ×
n matrix.
56. [M32] (V. Strassen.) Show that any polynomial chain that evaluates a
set of quadratic forms for 1 ≤ k ≤ s must use at least
 rank(τijk + τjik) chain multiplications altogether. [Hint: Show that the

minimum number of chain multiplications is the minimum rank of (tijk)
taken over all tensors (tijk) such that tijk + tjik = τijk + τjik for all i, j, k.]
Conclude that if a polynomial chain evaluates a set of bilinear forms (47)
corresponding to a tensor (tijk), whether normal or abnormal, it must use at
least rank(tijk) chain multiplications.
57. [M20] Show that fast Fourier transforms can be used to compute the
coefficients of the product x(u)y(u) of two given polynomials of degree n,
using O(n log n) operations of (exact) addition and multiplication of
complex numbers. [Hint: Consider the product of Fourier transforms of the
coefficients.]
58. [HM28] (a) Show that any realization (A, B, C) of the polynomial
multiplication tensor (55) must have the following property: Any nonzero
linear combination of the three rows of A must be a vector with at least
four nonzero elements; and any nonzero linear combination of the four
rows of B must have at least three nonzero elements. (b) Find a realization
(A, B, C) of (55) that uses only 0, +1, and –1 as elements, where r = 8. Try
to use as many 0s as possible.

 59. [M40] (H. J. Nussbaumer, 1980.) The text defines the cyclic
convolution of two sequences (x0, x1, . . . , xn−1) and (y0, y1, . . . , yn−1) to
be the sequence (z0, z1, . . . , zn−1) where zk = x0yk + ... + xky0 + xk+1yn−1 +
... + xn−1yk+1. Let us define the negacyclic convolution similarly, but with

Construct efficient algorithms for cyclic and negacyclic convolution over
the integers when n is a power of 2. Your algorithms should deal entirely
with integers, and they should perform at most O(n log n) multiplications
and at most O(n log n log log n) additions or subtractions or divisions of

even numbers by 2. [Hint: A cyclic convolution of order 2n can be
reduced to cyclic and negacyclic convolutions of order n, using (59).]

60. [M27] (V. Y. Pan.) The problem of (m × n) times (n × s) matrix
multiplication corresponds to an mn × ns × sm tensor (t〈i,j′〉〈j,k ′〉〈k ,i′〉)
where t〈i,j′〉〈j,k ′〉〈k ,i′〉 = 1 if and only if i′ = i and j′ = j and k′ = k. The
rank of this tensor T(m, n, s) is the smallest number r such that numbers
aij′l, bjk ′l, cki′l exist satisfying

Let M(n) be the rank of T(n, n, n). The purpose of this exercise is to
exploit the symmetry of such a trilinear representation, obtaining efficient
realizations of matrix multiplication over the integers when m = n = s =
2ν. For convenience we divide the indices {1, . . . , n} into two subsets
O = {1, 3, . . . , n − 1} and E = {2, 4, . . . , n} of ν elements each, and we
set up a one-to-one correspondence between O and E by the rule = i +1
if i ∊ O; if i ∊ E. Thus we have for all indices i.
a) The identity

implies that

where S = E×E×E ∪ E×E×O ∪ E×O×E ∪ O×E×E is the set of all
triples of indices containing at most one odd index; Σ1 is the sum of all
terms of the form for (i, j, k) ∊ S; and Σ2, Σ3
similarly are sums of the terms ,
. Clearly S has terms. Show that each of Σ1, Σ2, Σ3 can be
realized as the sum of 3ν2 trilinear terms; furthermore, if the 3ν triples
of the forms and and are removed from S, we can
modify Σ1, Σ2, and Σ3 in such a way that the identity is still valid,
without adding any new trilinear terms. Thus

 when n is even.

b) Apply the method of (a) to show that two independent matrix
multiplication problems of the respective sizes m × n × s and s × m × n
can be performed with mns + mn + ns + sm noncommutative
multiplications.

61. [M26] Let (tijk) be a tensor over an arbitrary field. We define
rankd(tijk) as the minimum value of r such that there is a realization of the
form

where ail(u), bjl(u), ckl(u) are polynomials in u over the field. Thus rank0
is the ordinary rank of a tensor. Prove that
a) rankd+1(tijk) ≤ rankd(tijk);
b) ;
c) , in the sense of

exercise 48;
d) ;
e) , where r = rankd(tijk)

and rT denotes the direct sum T ⊕ ... ⊕ T of r copies of T.
62. [M24] The border rank of (tijk), denoted by rank(tijk), is mind≥0
rankd(tijk), where rankd is defined in exercise 61. Prove that the tensor

 has rank 3 but border rank 2, over every field.
63. [HM30] Let T(m, n, s) be the tensor for matrix multiplication as in
exercise 60, and let M(N) be the rank of T(N, N, N).

a) Show that T(m, n, s) ⊗ T(M, N, S) = T(mM, nN, sS).
b) Show that rankd(T (mN, nN, sN)) ≤ rankd(M(N)T (m, n, s)) (see

exercise 61(e)).
c) If T(m, n, s) has rank ≤ r, show that M(N) = O(Nω(m,n,s,r)) as N → ∞,

where ω(m, n, s, r) = 3 log r/ log mns.
d) If T(m, n, s) has border rank ≤ r, show that M(N) = O(Nω(m,n,s,r)(log

N)2).

64. [M30] (A. Schönhage.) Show that rank2(T (3, 3, 3)) ≤ 21, so M(N) =
O(N2.78).

 65. [M27] (A. Schönhage.) Show that rank2(T (m, 1, n) ⊕ T(1, (m − 1)
(n−1), 1)) = mn + 1. Hint: Consider the trilinear form

when .
66. [HM33] We can now use the result of exercise 65 to sharpen the
asymptotic bounds of exercise 63.

a) Prove that the limit ω = limn→∞ log M(n)/log n exists.

b) Prove that (mns)ω/3 ≤ rank(T (m, n, s)).
c) Let t be the tensor T(m, n, s) ⊕ T(M, N, S). Prove that (mns)ω/3 +

(MNS)ω/3 ≤ rank(t). Hint: Consider direct products of t with itself.
d) Therefore 16ω/3 + 9ω/3 ≤ 17, and we have ω < 2.55.

67. [HM40] (D. Coppersmith and S. Winograd.) By generalizing exercises
65 and 66 we can obtain even better upper bounds on ω.

a) Say that the tensor (tijk) is nondegenerate if rank(ti(jk)) = m, rank(tj(ki))
= n, and rank(tk(ij)) = s, in the notation of Lemma T. Prove that the
tensor T(m, n, s) for mn × ns matrix multiplication is nondegenerate.

b) Show that the direct sum of nondegenerate tensors is nondegenerate.
c) An m × n × s tensor t with realization (A, B, C) of length r is called

improvable if it is nondegenerate and there are nonzero elements d1, . .
. , dr such that for 1 ≤ i ≤ m and 1 ≤ j ≤ n. Prove
that in such a case t ⊕ T(1, q, 1) has border rank ≤ r, where q = r – m –
n. Hint: There are q × r matrices V and W such that

 and for
all relevant i and j.

d) Explain why the result of exercise 65 is a special of (c).
e) Prove that rank(T (m, n, s)) ≤ r implies

f) Therefore ω is strictly less than log M(n)/log n for all n > 1.
g) Generalize (c) to the case where (A, B, C) realizes t only in the weaker

sense of exercise 61.
h) From (d) we have rank(T (3, 1, 3) ⊕ T(1, 4, 1)) ≤ 10; thus by exercise

61(d) we also have rank(T (9, 1, 9) ⊕ 2T (3, 4, 3) ⊕ T(1, 16, 1)) ≤
100. Prove that if we simply delete the rows of A and B that correspond
to the 16 + 16 variables of T(1, 16, 1), we obtain a realization of T(9,
1, 9) ⊕ 2T (3, 4, 3) that is improvable. Therefore we have in fact
rank(T (9, 1, 9) ⊕ 2T (3, 4, 3) ⊕ T(1, 34, 1)) ≤ 100.

i) Generalizing exercise 66(c), show that

j) Therefore ω < 2.5.
68. [M45] Is there a way to evaluate the polynomial

with fewer than n − 1 multiplications and 2n – 4 additions? (There are
 terms.)

69. [HM27] (V. Strassen, 1973.) Show that the determinant (31) of an n × n
matrix can be evaluated by doing O(n5) multiplications and O(n5)
additions or subtractions, and no divisions. [Hint: Consider det(I + Y)
where Y = X – I.]

 70. [HM25] The characteristic polynomial fx(λ) of a matrix X is defined
to be det (λI – X). Prove that if , where X, u, v, and Y are
respectively of sizes n × n, 1 × (n − 1), (n − 1) × 1, and (n − 1) × (n − 1),
we have

Show that this relation allows us to compute the coefficients of fx with
about multiplications, addition-subtractions, and no divisions. Hint:
Use the identity

which holds for any matrices A, B, C, and D of respective sizes l × l, l ×
m, m × l, and m × m when D is nonsingular.

 71. [HM30] A quolynomial chain is like a polynomial chain except that it
allows division as well as addition, subtraction, and multiplication. Prove
that if f(x1, . . . , xn) can be computed by a quolynomial chain that has m
chain multiplications and d divisions, then f(x1, . . . , xn) and all n of its
partial derivatives ∂f(x1, . . . , xn)/∂xk for 1 ≤ k ≤ n can be computed by a
single quolynomial chain that has at most 3m+d chain multiplications and
2d divisions. (Consequently, for example, any efficient method for
calculating the determinant of a matrix leads to an efficient method for
calculating all of its cofactors, hence an efficient method for computing the
inverse matrix.)
72. [M48] Is it possible to determine the rank of any given tensor (tijk)
over, say, the field of rational numbers, in a finite number of steps?
73. [HM25] (J. Morgenstern, 1973.) Prove that any polynomial chain for
the discrete Fourier transform (37) has at least
addition-subtractions, if there are no chain multiplications and if every
parameter multiplication is by a complex-valued constant with |αj| ≤ 1.
Hint: Consider the matrices of the linear transformations computed by the
first k steps. How big can their determinants be?
74. [HM35] (A. Nozaki, 1978.) Most of the theory of polynomial
evaluation is concerned with bounds on chain multiplications, but
multiplication by noninteger constants can also be essential. The purpose
of this exercise is to develop an appropriate theory of constants. Let us say
that vectors v1, . . . , vs of real numbers are Z-dependent if there are
integers (k1, . . . , ks) such that gcd(k1, . . . , ks) = 1 and k1v1 + ... + ksvs is an
all-integer vector. If no such (k1, . . . , ks) exist, the vectors v1, . . . , vs are
Z-independent.

a) Prove that if the columns of an r × s matrix V are Z-independent, so are
the columns of V U, when U is any s × s unimodular matrix (a matrix of
integers whose determinant is ±1).

b) Let V be an r × s matrix with Z-independent columns. Prove that a
polynomial chain to evaluate the elements of V x from inputs x1, . . . ,
xs, where x = (x1, . . . , xs)T , needs at least s multiplications.

c) Let V be an r × t matrix having s columns that are Z-independent.
Prove that a polynomial chain to evaluate the elements of V x from
inputs x1, . . . , xt, where x = (x1, . . . , xt)T , needs at least s
multiplications.

d) Show how to compute the pair of values {x/2 + y, x + y/3} from x and
y using only one multiplication, although two multiplications are
needed to compute the pair {x/2 + y, x + y/2}.

*4.7. Manipulation of Power Series
If we are given two power series

whose coefficients belong to a field, we can form their sum, their product,
and sometimes their quotient, to obtain new power series. A polynomial is
obviously a special case of a power series, in which there are only finitely
many terms.

Of course, only a finite number of terms can be represented and stored
within a computer, so it makes sense to ask whether power series arithmetic
is even possible on computers; and if it is possible, what makes it different
from polynomial arithmetic? The answer is that we work with only the first N
coefficients of the power series, where N is a parameter that may in principle
be arbitrarily large; instead of ordinary polynomial arithmetic, we are
essentially doing polynomial arithmetic modulo zN, and this often leads to a
somewhat different point of view. Furthermore, special operations like
“reversion” can be performed on power series but not on polynomials, since
polynomials are not closed under those operations.

Manipulation of power series has many applications to numerical
analysis, but perhaps its greatest use is the determination of asymptotic
expansions (as we have seen in Section 1.2.11.3), or the calculation of
quantities defined by certain generating functions. The latter applications
make it desirable to calculate the coefficients exactly, instead of with floating
point arithmetic. All of the algorithms in this section, with obvious

exceptions, can be done using rational operations only, so the techniques of
Section 4.5.1 can be used to obtain exact results when desired.

The calculation of W(z) = U(z) ± V(z) is, of course, trivial, since we
have Wn = [zn] W(z) = Un ± Vn for n = 0, 1, 2, It is also easy to
calculate the coefficients of W(z) = U(z)V (z), using the familiar convolution
rule

The quotient W(z) = U(z)/V (z), when V0 ≠ 0, can be obtained by
interchanging U and W in (2); we obtain the rule

This recurrence relation for the W’s makes it easy to determine W0, W1, W2, .
. . successively, without inputting Un and Vn until after Wn−1 has been
computed. A power series manipulation algorithm with that property is
traditionally called online; with an online algorithm, we can determine N
coefficients W0, W1, . . . , WN−1 of the result without knowing N in advance,
so we could in principle run the algorithm indefinitely and compute the entire
power series. We can also run an online algorithm until any desired condition
is met. (The opposite of “online” is “offline.”)

If the coefficients Uk and Vk are integers but the Wk are not, the
recurrence relation (3) involves computation with fractions. This can be
avoided by the all-integer approach described in exercise 2.

Let us now consider the operation of computing W(z) = V(z)α, where α is
an “arbitrary” power. For example, we could calculate the square root of
V(z) by taking , or we could find V(z)−10 or even V(z)π. If Vm is the
first nonzero coefficient of V(z), we have

This will be a power series if and only if αm is a nonnegative integer. If α
itself is not an integer, there’s more than one possibility for here.

From (4) we can see that the problem of computing general powers can
be reduced to the case that V0 = 1; then the problem is to compute the
coefficients of

Clearly W0 = 1α = 1.
The obvious way to find the coefficients of (5) is to use the binomial

theorem, Eq. 1.2.9–(19), or (if α is a positive integer) to try repeated
squaring as in Section 4.6.3. But Leonhard Euler discovered a much simpler
and more efficient way to obtain power series powers [Introductio in
Analysin Infinitorum 1 (1748), §76]: If W(z) = V(z)α, we have by
differentiation

therefore

If we now equate the coefficients of zn−1 in (7), we find that

and this gives us a useful computational rule valid for all n ≥ 1:

Equation (9) leads to a simple online algorithm by which we can
successively determine W1, W2, . . . , using approximately 2n multiplications
to compute the nth coefficient. Notice the special case α = –1, in which (9)
becomes the special case U(z) = V0 = 1 of (3).

A similar technique can be used to form f(V(z)) when f is any function
that satisfies a simple differential equation. (For example, see exercise 4.) A
comparatively straightforward “power series method” is often used to obtain

the solution of differential equations; this technique is explained in nearly all
textbooks about differential equations.

Fig. 17. Power series reversion by Algorithm L.

Reversion of series. The transformation of power series that is perhaps of
greatest interest is called “reversion of series.” This problem is to solve the
equation

for t, obtaining the coefficients of the power series

Several interesting ways to achieve such a reversion are known. We
might say that the “classical” method is one based on Lagrange’s remarkable
inversion formula [Mémoires Acad. Royale des Sciences et Belles-Lettres
de Berlin 24 (1768), 251–326], which states that

For example, we have ; hence the fifth
coefficient, W5, in the reversion of z = t – t2 is equal to /5 = 14. This
checks with the formulas for enumerating binary trees in Section 2.3.4.4.

Relation (12), which has a simple algorithmic proof (see exercise 16),
shows that we can revert the series (10) if we successively compute the
negative powers (1 + V2t + V3t2 + ...)−n for n = 1, 2, 3, A
straightforward application of this idea would lead to an online reversion
algorithm that uses approximately N3/2 multiplications to find N coefficients,
but Eq. (9) makes it possible to work with only the first n coefficients of (1 +

V2t + V3t2 + ...)−n, obtaining an online algorithm that requires only about N3/6
multiplications.
Algorithm L (Lagrangian power series reversion). This online algorithm
inputs the value of Vn in (10) and outputs the value of Wn in (11), for n = 2, 3,
4, . . . , N. (The number N need not be specified in advance; any desired
termination criterion may be substituted.)

L1. [Initialize.] Set n ← 1, U0 ← 1. (The relation

will be maintained throughout this algorithm.)
L2. [Input Vn.] Increase n by 1. If n > N, the algorithm terminates;

otherwise input the next coefficient, Vn.
L3. [Divide.] Set Uk ← Uk – Uk–1V2 – ... – U1Vk – U0Vk+1, for k = 1, 2, . . .

, n – 2 (in this order); then set

(We have thereby divided U(z) by V(z)/z; see (3) and (9).)
L4. [Output Wn.] Output Un−1/n (which is Wn) and return to L2.

When applied to the example z = t – t2, Algorithm L computes

Exercise 8 shows that a slight modification of Algorithm L will solve a
considerably more general problem with only a little more effort.

Let us now consider solving the equation

for t, obtaining the coefficients of the power series

Eq. (10) is the special case U1 = 1, U2 = U3 = ... = 0. If U1 ≠ 0, we may
assume that U1 = 1, if we replace z by (U1z); but we shall consider the
general equation (14), since U1 might equal zero.
Algorithm T (General power series reversion). This online algorithm inputs
the values of Un and Vn in (14) and outputs the value of Wn in (15), for n = 1,
2, 3, . . . , N. An auxiliary matrix Tmn, 1 ≤ m ≤ n ≤ N, is used in the
calculations.

T1. [Initialize.] Set n ← 1. Let the first two inputs (namely, U1 and V1) be
stored in T11 and V1, respectively. (We must have V1 = 1.)

T2. [Output Wn.] Output the value of T1n (which is Wn).
T3. [Input Un, Vn.] Increase n by 1. If n > N, the algorithm terminates;

otherwise store the next two inputs (namely, Un and Vn) in T1n and Vn.

T4. [Multiply.] Set

and T1n ← T1n – VmTmn, for 2 ≤ m ≤ n. (After this step we have

for 1 ≤ m ≤ n. It is easy to verify (16) by induction for m ≥ 2, and when
m = 1, we have Un = T1n + V2T2n + ... + VnTnn by (14) and (16).) Return
to step T2.

Equation (16) explains the mechanism of this algorithm, which is due to
Henry C. Thacher, Jr. [CACM 9 (1966), 10–11]. The running time is
essentially the same as Algorithm L, but considerably more storage space is
required. An example of this algorithm is worked out in exercise 9.

Still another approach to power series reversion has been proposed by
R. P. Brent and H. T. Kung [JACM 25 (1978), 581–595], based on the fact
that standard iterative procedures used to find roots of equations over the
real numbers can also be applied to equations over power series. In
particular, we can consider Newton’s method for computing approximations
to a real number t such that f(t) = 0, given a function f that is well-behaved
near t: If x is a good approximation to t, then φ(x) = x – f(x)/f′(x) will be
even better, for if we write x = t + ∊ we have f(x) = f(t) + ∊f′(t) + O(∊2), f′(x)
= f′(t) + O(∊); consequently φ(x) = t + ∊ – (0 + ∊f′(t) + O(∊2))/(f′(t) + O(∊))

= t + O(∊2). Applying this idea to power series, let f(x) = V(x) – U(z), where
U and V are the power series in Eq. (14). We wish to find the power series t
in z such that f(t) = 0. Let x = W1z + ... + Wn−1zn−1 = t + O(zn) be an
“approximation” to t of order n; then φ(x) = x – f(x)/f′(x) will be an
approximation of order 2n, since the assumptions of Newton’s method hold
for this f and t.

In other words, we can use the following procedure:
Algorithm N (General power series reversion by Newton’s method). This
“semi-online” algorithm inputs the values of Un and Vn in (14) for 2k ≤ n <
2k+1 and then outputs the values of Wn in (15) for 2k ≤ n < 2k+1, thereby
producing its answers in batches of 2k at a time, for k = 0, 1, 2, . . . , K.

N1. [Initialize.] Set N ← 1. (We will have N = 2k.) Input the first
coefficients U1 and V1 (where V1 = 1), and set W1 ← U1.

N2. [Output.] Output Wn for N ≤ n < 2N.

N3. [Input.] Set N ← 2N. If N > 2K, the algorithm terminates; otherwise
input the values Un and Vn for N ≤ n < 2N.

N4. [Newtonian step.] Use an algorithm for power series composition (see
exercise 11) to evaluate the coefficients Qj and Rj (0 ≤ j < N) in the
power series

where V(x) = x + V2x2 + ... and V′(x) = 1 + 2V2x + Then set WN, . . . ,
W2N−1 to the coefficients in the power series

and return to step N2.
The running time for this algorithm to obtain the coefficients up to N = 2K

is T(N), where

Straightforward algorithms for composition and division in step N4 will take
order N3 steps, so Algorithm N will run slower than Algorithm T. However,
Brent and Kung have found a way to do the required composition of power
series with O(N log N)3/2 arithmetic operations, and exercise 6 gives an even
faster algorithm for division; hence (17) shows that power series reversion
can be achieved by doing only O(N log N)3/2 operations as N → ∞. (On the
other hand the constant of proportionality is such that N must be really large
before Algorithms L and T lose out to this “high-speed” method.)

Historical note: J. N. Bramhall and M. A. Chapple published the first
O(N3) method for power series reversion in CACM 4 (1961), 317–318, 503.
It was an offline algorithm essentially equivalent to the method of exercise
16, with running time approximately the same as that of Algorithms L and T.
Iteration of series. If we want to study the behavior of an iterative process
xn ← f(xn−1), we are interested in studying the n-fold composition of a given
function f with itself, namely xn = f(f(. . . f(x0) . . .)). Let us define f[0](x) = x
and f[n](x) = f(f[n−1](x)), so that

for all integers m, n ≥ 0. In many cases the notation f[n](x) makes sense also
when n is a negative integer, namely if f[n] and f[–n] are inverse functions such
that x = f[n](f[–n](x)); if inverse functions are unique, (18) holds for all
integers m and n. Reversion of series is essentially the operation of finding
the inverse power series f[−1](x); for example, Eqs. (10) and (11) essentially
state that z = V(W(z)) and that t = W(V(t)), so W = V[−1].

Suppose we are given two power series V(z) = z + V2z2 + ... and W(z) =
z + W2z2 + ... such that W = V[−1]. Let u be any nonzero constant, and consider
the function

It is easy to see that U(U(z)) = W(u2V(z)), and in general that

for all integers n. Therefore we have a simple expression for the nth iterate
U[n], which can be calculated with roughly the same amount of work for all

n. Furthermore, we can even use (20) to define U[n] for noninteger values of
n; the “half iterate” U[1/2], for example, is a function such that U[1/2](U[1/2](z))
= U(z). (There are two such functions U[1/2], obtained by using and —

 as the value of u1/2 in (20).)
We obtained the simple state of affairs in (20) by starting with V and u,

then defining U. But in practice we generally want to go the other way:
Starting with some given function U, we want to find V and u such that (19)
holds, namely such that

Such a function V is called the Schröder function of U, because it was
introduced by Ernst Schröder in Math. Annalen 3 (1871), 296–322. Let us
now look at the problem of finding the Schröder function V (z) = z + V2z2 + · ·
· of a given power series U(z) = U1z + U2z2 + · · · . Clearly u = U1 if (21) is
to hold.

Expanding (21) with u = U1 and equating coefficients of z leads to a
sequence of equations that begins

and so on. Clearly there is no solution when U1 = 0 (unless trivially U2 = U3
= · · · = 0); otherwise there is a unique solution unless U1 is a root of unity.
We might have expected that something funny would happen when ,
since Eq. (20) tells us that U[n] (z) = z if the Schröder function exists in that
case. For the moment let us assume that U1 is nonzero and not a root of unity;
then the Schröder function does exist, and the next question is how to
compute it without doing too much work.

The following procedure has been suggested by R. P. Brent and J. F.
Traub. Equation (21) leads to subproblems of a similar but more complicated
form, so we set ourselves a more general task whose subtasks have the same
form: Let us try to find V(z) = V0 + V1z + · · · + Vn−1 zn−1 such that

given U(z), W(z), S(z), and n, where n is a power of 2 and U(0) = 0. If n = 1
we simply let V0 = S(0)/(1 − W(0)), with V0 = 1 if S(0) = 0 and W(0) = 1.
Furthermore it is possible to go from n to 2n: First we find R(z) such that

Then we compute

and find such that

It follows that the function satisfies

as desired.
The running time T(n) of this procedure satisfies

where C(n) is the time to compute R(z), (z), and (z). The function C(n) is
dominated by the time to compute V(U(z)) modulo z2n, and C(n) presumably
grows faster than order n1+ϵ; therefore the solution T(n) to (26) will be of
order C(n). For example, if C(n) = cn3 we have ; or if C(n)
is O(n log n)3/2 using “fast” composition, we have T(n) = O(n log n)3/2.

The procedure breaks down when W(0) = 1 and S(0) ≠ 0, so we need to
investigate when this can happen. It is easy to prove by induction on n that
the solution of (22) by the Brent–Traub method entails consideration of
exactly n subproblems, in which the coefficient of V(z) on the right-hand side
takes the respective values W(z)(z/U(z))j + O(zn) for 0 ≤ j < n in some order.
If W(0) = U1 and if U1 is not a root of unity, we therefore have W(0) = 1 only
when j = 1; the procedure will fail in this case only if (22) has no solution
for n = 2.

Consequently the Schröder function for U can be found by solving (22)
for n = 2, 4, 8, 16, . . ., with W(z) = U1 and S(z) = 0, whenever U1 is nonzero
and not a root of unity.

If U1 = 1, there is no Schröder function unless U(z) = z. But Brent and
Traub have found a fast way to compute U[n] (z) even when U1 = 1, by

making use of a function V (z) such that

If two functions U(z) and (z) both satisfy (27), for the same V, it is easy to
check that their composition does too; therefore all iterates of U(z)
are solutions of (27). Suppose we have U(z) = z + Uk zk + Uk+1 zk+1 + · · ·
where k ≥ 2 and Uk ≠ 0. Then it can be shown that there is a unique power
series of the form V(z) = zk + Vk+1 zk+1 + Vk+2 zk+2 + · · · satisfying (27).
Conversely if such a function V(z) is given, and if k ≥ 2 and Uk are given,
then there is a unique power series of the form U(z) = z + Uk zk + Uk+1 zk+1 +
· · · satisfying (27). The desired iterate U[n](z) is the unique power series
P(z) satisfying

such that P(z) = z + nUk zk + · · · . Both V(z) and P(z) can be found by
appropriate algorithms (see exercise 14).

If U1 is a kth root of unity, but not equal to 1, the same method can be
applied to the function U[k] (z) = z + · · ·, and U[k] (z) can be found from
U(z) by doing l(k) composition operations (see Section 4.6.3). We can also
handle the case U1 = 0: If U(z) = Uk zk + Uk+1 zk+1 + · · · where k ≥ 2 and Uk

≠ 0, the idea is to find a solution to the equation V(U(z)) = UkV(z)k; then

Finally, if U(z) = U0 + U1z + · · · where U0 ≠ 0, let α be a “fixed point” such
that U(α) = α, and let

then . Further details can be found in Brent and
Traub’s paper [SICOMP 9 (1980), 54–66]. The V function of (27) had
previously been considered by M. Kuczma, Functional Equations in a
Single Variable (Warsaw: PWN–Polish Scientific, 1968), Lemma 9.4, and
implicitly by E. Jabotinsky a few years earlier (see exercise 23).
Algebraic functions. The coefficients of each power series W(z) that
satisfies a general equation of the form

where each Ai(z) is a polynomial, can be computed efficiently by using
methods due to H. T. Kung and J. F. Traub; see JACM 25 (1978), 245–260.
See also D. V. Chudnovsky and G. V. Chudnovsky, J. Complexity 2 (1986),
271–294; 3 (1987), 1–25.

Exercises

1. [M10] The text explains how to divide U(z) by V(z) when V0 ≠ 0; how
should the division be done when V0 = 0?

2. [20] If the coefficients of U(z) and V(z) are integers and V0 ≠ 0, find a
recurrence relation for the integers , where Wn is defined by (3).
How could you use this for power series division?

3. [M15] Does formula (9) give the right results when α = 0? When α = 1?
 4. [HM23] Show that simple modifications of (9) can be used to calculate
eV(z) when V0 = 0, and ln V(z) when V0 = 1.

5. [M00] What happens when a power series is reverted twice—that is, if
the output of Algorithm L or T is reverted again?
 6. [M21] (H. T. Kung.) Apply Newton’s method to the computation of
W(z) = 1/V (z), when V(0) ≠ 0, by finding the power series root of the
equation f(x) = 0, where f(x) = x−1 – V(z).

7. [M23] Use Lagrange’s inversion formula (12) to find a simple
expression for the coefficient Wn in the reversion of z = t – tm.
 8. [M25] If

,
where and V1 ≠ 0, Lagrange proved that

(Equation (12) is the special case G1 = V1 = 1, G2 = G3 = ... = 0.) Extend
Algorithm L so that it obtains the coefficients W1, W2, . . . in this more
general situation, without substantially increasing its running time.

9. [11] Find the values of Tmn computed by Algorithm T as it determines
the first five coefficients in the reversion of z = t – t2.

10. [M20] Given that y = xα + a1xα+1 + a2xα+2 + ... , α ≠ 0, show how to
compute the coefficients in the expansion x = y1/α + b2y2/α + b3y3/α +

 11. [M25] (Composition of power series.) Let

Design an algorithm that computes the first N coefficients of U(V(z)).
12. [M20] Find a connection between polynomial division and power
series division: Given polynomials u(x) and v(x) of respective degrees m
and n over a field, show how to find the polynomials q(x) and r(x) such
that u(x) = q(x)v(x)+r(x) and deg(r) < n, using only operations on power
series.
13. [M27] (Rational function approximation.) It is occasionally desirable
to find polynomials whose quotient has the same initial terms as a given
power series. For example, if W(z) = 1 + z + 3z2 + 7z3 + ... , there are
essentially four different ways to express W(z) as w1(z)/w2(z) + O(z4)
where w1(z) and w2(z) are polynomials with deg(w1) + deg(w2) < 4:

Rational functions of this kind are commonly called Padé
approximations, since they were studied extensively by H. E. Padé
[Annales Scient. de l’École Normale Supérieure (3) 9 (1892), S1–S93;
(3) 16 (1899), 395–426].

Show that all Padé approximations W(z) = w1(z)/w2(z) + O(zN) with
deg(w1) + deg(w2) < N can be obtained by applying an extended Euclidean
algorithm to the polynomials zN and W0 + W1z + ... + WN−1zN−1; and design
an all-integer algorithm for the case that each Wi is an integer. [Hint: See
exercise 4.6.1–26.]

 14. [HM30] Fill in the details of Brent and Traub’s method for calculating
U[n](z) when U(z) = z + Uk zk + ... , using (27) and (28).

15. [HM20] For what functions U(z) does V(z) have the simple form zk in
(27)? What do you deduce about the iterates of U(z)?
16. [HM21] Let W(z) = G(t) as in exercise 8. The “obvious” way to find
the coefficients W1, W2, W3, . . . is to proceed as follows: Set n ← 1 and
R1(t) ← G(t). Then preserve the relation WnV (t) + Wn+1V (t)2 + ... = Rn(t)
by repeatedly setting Wn ← [t] Rn(t)/V1, Rn+1(t) ← Rn(t)/V (t) – Wn, n ←
n + 1.

Prove Lagrange’s formula of exercise 8 by showing that

 17. [M20] Given the power series V(z) = V1z + V2z2 + V3z3 + ... , we
define the power matrix of V as the infinite array of coefficients

; the nth poweroid of V is then defined to be Vn(x) =
vn0 + vn1x + ... + vnnxn. Prove that poweroids satisfy the general
convolution law

(For example, when V(z) = z we have Vn(x) = xn, and this is the binomial
theorem. When V(z) = ln(1/(1 – z)) we have by Eq. 1.2.9–
(26); hence the poweroid Vn(x) is , and the identity is the
result proved in exercise 1.2.6–33. When V(z) = ez − 1 we have

 and the formula is equivalent to

an identity we haven’t seen before. Several other triangular arrays of
coefficients that arise in combinatorial mathematics and the analysis of
algorithms also turn out to be the power matrices of power series.)

18. [HM22] Continuing exercise 17, prove that poweroids also satisfy

[Hint: Consider the derivative of exV(z).]

19. [M25] Continuing exercise 17, express all the numbers vnk in terms of
the numbers vn = vn1 = n! Vn of the first column, and find a simple
recurrence by which all columns can be computed from the sequence v1, v2,
. . . . Show in particular that if all the vn are integers, then all the vnk are
integers.
20. [HM20] Continuing exercise 17, suppose we have W(z) = U(V (z)) and
U0 = 0. Prove that the power matrix of W is the product of the power
matrices of V and U: wnk = ∑j vnjujk.

 21. [HM27] Continuing the previous exercises, suppose V1 ≠ 0 and let
W(z) = –V[−1](–z). The purpose of this exercise is to show that the power
matrices of V and W are “dual” to each other; for example, when V(z) =
ln(1/(1 – z)) we have V[−1](z) = 1 – e−z, W(z) = ez − 1, and the
corresponding power matrices are the well-known Stirling triangles

, .
a) Prove that the inversion formulas 1.2.6–(47) for Stirling numbers hold

in general:

b) The relation vn(n−k) = nk[zk] (V(z)/z)n−k shows that, for fixed k, the
quantity is a polynomial in n of degree ≤ 2k. We can
therefore define

for arbitrary α when k is a nonnegative integer, as we did for Stirling
numbers in Section 1.2.6. Prove that v(–k)(–n) = wnk. (This generalizes
Eq. 1.2.6–(58).)

 22. [HM27] Given U(z) = U0 +U1z +U2z2 +... with U0 ≠ 0, the αth induced
function U{α}(z) is the power series V(z) defined implicitly by the equation

a) Prove that U{0}(z) = U(z) and U{α}{β}(z) = U{α+β}(z).
b) Let B(z) be the simple binomial series 1 + z. Where have we seen B{2}

(z) before?

c) Prove that . Hint: If W(z) =
z/U(z)α, we have U{α}(z) = (W[−1](z)/z)1/α.

d) Consequently any poweroid Vn(x) satisfies not only the identities of
exercises 17 and 18, but also

[Special cases include Abel’s binomial theorem, Eq. 1.2.6–(16);
Rothe’s identities 1.2.6–(26) and 1.2.6–(30); Torelli’s sum, exercise
1.2.6–34.]

23. [HM35] (E. Jabotinsky.) Continuing in the same vein, suppose that U =
(unk) is the power matrix of U(z) = z + U2z2 + Let un = un1 = n! Un.

a) Explain how to compute a matrix ln U so that the power matrix of U[α]

(z) is exp(α ln U) = I + α ln U + (α ln U)2/2! +
b) Let lnk be the entry in row n and column k of ln U, and let

Prove that for 1 ≤ k ≤ n. [Hint: U[∊](z) = z +
∊L(z) + O(∊2).]

c) Considering U[α](z) as a function of both α and z, prove that

(Consequently L(z) = (lk/k!)V(z), where V(z) is the function in (27) and
(28).)

d) Show that if u2 ≠ 0, the numbers ln can be computed from the
recurrence

How would you use this recurrence when u2 = 0?

e) Prove the identity

where nj = 1 + k1 + ... + kj – j.

24. [HM25] Given the power series U(z) = U1z + U2z2 + ... , where U1 is
not a root of unity, let U = (unk) be the power matrix of U(z).

a) Explain how to compute a matrix ln U so that the power matrix of U[α]

(z) is exp(α ln U) = I + α ln U + (α ln U)2/2! +
b) Show that if W(z) is not identically zero and if U(W(z)) = W(U(z)),

then W(z) = U[α](z) for some complex number α.
25. [M24] If U(z) = z + Ukzk + Uk+1zk+1 + ... and V(z) = z + Vlzl + Vl+1zl+1

+ ... , where k ≥ 2, l ≥ 2, Uk ≠ 0, Vl ≠ 0, and U(V (z)) = V(U(z)), prove that
we must have k = l and V(z) = U[α](z) for α = Vk/Uk.

26. [M22] Show that if U(z) = U0 + U1z + U2z2 + ... and V(z) = V1z + V2z2

+ ... are power series with all coefficients 0 or 1, we can obtain the first N
coefficients of U(V (z)) mod 2 in O(N1+∊) steps, for any ∊ > 0.
27. [M22] (D. Zeilberger.) Find a recurrence analogous to (9) for
computing the coefficients of W(z) = V(z)V (qz) . . . V(qm−1z), given q, m,
and the coefficients of V(z) = 1 + V1z + V2z2 + Assume that q is not a
root of unity.

 28. [HM26] A Dirichlet series is a sum of the form V(z) = V1/1z +V2/2z

+V3/3z +... ; the product U(z)V (z) of two such series is the Dirichlet series
W(z) where

Ordinary power series are special cases of Dirichlet series, since we
have V0 + V1z + V2z2 + V3z3 + ... = V0/1s + V1/2s + V2/4s + V3/8s + ...
when z = 2−s. In fact, Dirichlet series are essentially equivalent to power

series V(z1, z2, . . .) in arbitrarily many variables, where and
pk is the kth prime number.

Find recurrence relations that generalize (9) and the formulas of
exercise 4, assuming that a Dirichlet series V(z) is given and that we want
to calculate (a) W(z) = V(z)α when V1 = 1; (b) W(z) = exp V(z) when V1 =
0; (c) W(z) = ln V(z) when V1 = 1. [Hint: Let t(n) be the total number of
prime factors of n, including multiplicity, and let δ ∑n Vn/nz = ∑n

t(n)Vn/nz. Show that δ is analogous to a derivative; for example, δeV(z) =
eV(z)δV(z).]

It seems impossible that any thing should really alter the
series of things, without the same power which first produced

them.
— EDWARD STILLINGFLEET, Origines Sacræ, 2:3:2 (1662)

This business of series, the most disagreeable thing in
mathematics, is no more than a game for the English;

Stirling’s book, and the one by de Moivre, are proof.
— PIERRE DE MAUPERTUIS, letter to d’Ortous de Mairan (30

Oct 1730)

He was daunted and bewildered by their almost infinite
series.

— G. K. CHESTERTON, The Man Who Was Thursday (1907)

Answers to Exercises

This branch of mathematics is the only one, I believe,
in which good writers frequently get results entirely

erroneous.
. . . It may be doubted if there is a single

extensive treatise on probabilities in existence
which does not contain solutions absolutely indefensible.

— C. S. PEIRCE, in Popular Science Monthly (1878)

Notes on the Exercises
1. An average problem for a mathematically inclined reader.
3. (Solution by Roger Frye, after about 110 hours of computation on a

Connection Machine in 1987.) 958004 + 2175194 + 4145604 = 4224814

and (therefore) 1916004 + 4350384 + 8291204 = 8449624.
4. (One of the readers of the preliminary manuscript for this book

reported that he had found a truly remarkable proof. But unfortunately the
margin of his copy was too small to contain it.)

Section 3.1
1. (a) This will usually fail, since “round” telephone numbers are often

selected by the telephone user when possible. In some communities,
telephone numbers are perhaps assigned randomly. But it would be a
mistake in any case to try to get several successive random numbers from
the same page, since the same telephone number is often listed several
times in a row.

(b) But do you use the left-hand page or the right-hand page? Say, use
the lefthand page number, divide by 2, and take the units digit. The total
number of pages should be a multiple of 20; but even so, this method will
have some bias.

(c) The markings on the faces will slightly bias the die, but for
practical purposes this method is quite satisfactory (and it has been used
by the author in the preparation of several examples in this set of books).

See Math. Comp. 15 (1961), 94–95, for further discussion of icosahedral
dice.

(d) (This is a hard question thrown in purposely as a surprise.) The
number is not quite uniformly random. If the average number of emissions
per minute is m, the probability that the counter registers k is e−mmk/k! (the
Poisson distribution); so the digit 0 is selected with probability e−m∑k≥0

m10k/(10k)!, etc. In particular, the units digit will be even with probability
e−m cosh , and this is never equal to (although the error
is negligibly small when m is large).

It is almost legitimate to take ten readings (m0, . . . , m9) and then to
output j if mj is strictly less than mi for all i ≠ j; try again if the minimum
value appears more than once. (See (h).) However, the parameter m isn’t
really constant in the real world.

(e) Okay, provided that the time since the previous digit selected in
this way is random. However, there is possible bias in borderline cases.

(f, g) No. People usually think of certain digits (like 7) with higher
probability.

(h) Okay; your assignment of numbers to the horses had probability
of assigning a given digit to the winning horse (unless you know, say, the
jockey).
2. The number of such sequences is the multinomial coefficient

1000000!/(100000!)10; the probability is this number divided by 101000000,
the total number of sequences of a million digits. By Stirling’s
approximation we find that the probability is close to

, roughly one chance in 4 × 1025.
3. 3040504030.
4. (a) Step K11 can be entered only from step K10 or step K2, and in

either case we find it impossible for X to be zero by a simple argument. If X
could be zero at that point, the algorithm would not terminate.

(b) If X is initially 3830951656, the computation is like many of the
steps that appear in Table 1 except that we reach step K11 with Y = 3
instead of Y = 5; hence 3830951656 → 5870802097. Similarly,

5870802097 → 1226919902 → 3172562687 → 3319967479 →
6065038420 → 6065038420 →
5. Since only 1010 ten-digit numbers are possible, some value of X must

be repeated during the first 1010 +1 steps; and as soon as a value is
repeated, the sequence continues to repeat its past behavior.

6. (a) Arguing as in the previous exercise, the sequence must eventually
repeat a value; let this repetition occur for the first time at step μ + λ, where
Xμ+λ = Xμ. (This condition defines μ and λ.) We have 0 ≤ μ < m, 0 < λ ≤ m,
μ + λ ≤ m. The values μ = 0, λ = m are attained if and only if f is a cyclic
permutation; and μ = m − 1, λ = 1 occurs, e.g., if X0 = 0, f(x) = x + 1 for x <
m − 1, and f(m − 1) = m − 1.

(b) We have, for r > n, Xr = Xn if and only if r – n is a multiple of λ
and n ≥ μ. Hence X2n = Xn if and only if n is a multiple of λ and n ≥ μ. The
desired results now follow immediately. [Note: Equivalently, the powers
of an element in a finite semigroup include a unique idempotent element:
Take X1 = a, f(x) = ax. See G. Frobenius, Sitzungsberichte preußische
Akademie der Wissenschaften (1895), 82–83.]

(c) Once n has been found, generate Xi and Xn+i for i ≥ 0 until first
finding Xi = Xn+i; then μ = i. If none of the values of Xn+i for 0 < i < μ is
equal to Xn, it follows that λ = n, otherwise λ is the smallest such i.

7. (a) The least n > 0 such that n – (ℓ(n) – 1) is a multiple of λ and ℓ(n) –
1 ≥ μ is n = 2⌈lg max(μ+1, λ)⌉ – 1 + λ. [This may be compared with the least n
> 0 such that X2n = Xn, namely λ(⌈μ/λ⌉ + δμ0).]

(b) Start with X = Y = X0, k = m = 1. (At key places in this algorithm
we will have X = X2m−k−1, Y = Xm−1, and m = ℓ(2m – k).) To generate the
next random number, do the following steps: Set X ← f(X) and k ← k − 1.
If X = Y, stop (the period length λ is equal to m – k). Otherwise if k = 0, set
Y ← X, m ← 2m, k ← m. Output X.

Notes: Brent has also considered a more general method in which the
successive values of Y = Xni satisfy n1 = 0, ni+1 = 1 + ⌊pni⌋ where p is any
number greater than 1. He showed that the best choice of p, approximately
2.4771, saves about 3 percent of the iterations by comparison with p = 2.
(See exercise 4.5.4–4.)

The method in part (b) has a serious deficiency, however, since it might
generate a lot of nonrandom numbers before shutting off. For example, we
might have a particularly bad case such as λ = 1, μ = 2k. A method based
on Floyd’s idea in exercise 6(b), namely one that maintains Y = X2n and X
= Xn for n = 0, 1, 2, . . . , will require a few more function evaluations
than Brent’s method, but it will stop before any number has been output
twice.

On the other hand, if f is unknown (for example, if we are receiving the
values X0, X1, . . . online from an outside source) or if f is difficult to
apply, the following cycle detection algorithm due to R. W. Gosper will
be preferable: Maintain an auxiliary table T0, T1, . . . , Tm, where m = ⌊lg
n⌋ when receiving Xn. Initially T0 ← X0. For n = 1, 2, . . . , compare Xn
with each of T0, . . . , T⌊lg n⌋; if no match is found, set Te(n) ← Xn, where
e(n) = ρ(n + 1) = max{e | 2e divides n + 1}. But if a match Xn = Tk is
found, then λ = n – max{ l | l < n and e(l) = k}. After Xn has been stored in
Te(n), it is subsequently compared with Xn+1, Xn+2, . . . , Xn+2e(n)+1.
Therefore the procedure stops immediately after generating Xμ+λ+j, where
j ≥ 0 is minimum with e(μ + j) ≥ ⌈lg λ⌉ – 1. With this method, no X value
is generated more than twice, and at most max(1, 2⌈lg λ⌉–1) values are
generated more than once. [MIT AI Laboratory Memo 239 (29 February
1972), Hack 132.]

R. Sedgewick, T. G. Szymanski, and A. C. Yao have analyzed a more
complex algorithm based on parameters m ≥ 2 and g ≥ 1: An auxiliary
table of size m contains X0, Xb, . . . , Xqb at the moment that Xn is
computed, where b = 2⌈lg n/m⌉ and q = ⌈n/b⌉ – 1. If n mod gb < b, Xn is
compared to the entries in the table; eventually equality occurs, and we
can reconstruct μ and λ after doing at most (g + 1)2⌈lg(μ+λ)⌉+1 further
evaluations of f. If the evaluation of f costs τ units of time, and if testing
Xn for membership in the table costs σ units, then g can be chosen so that
the total running time is ; this is optimum if σ/τ =
O(m). Moreover, Xn is not computed unless μ+λ > mn/(m+4g +2), so we
can use this method “online” to output elements that are guaranteed to be

distinct, making only 2+O(m−1/2) function evaluations per output.
[SICOMP 11 (1982), 376–390.]
8. (a, b) 00, 00, . . . [62 starting values]; 10, 10, . . . [19]; 60, 60, . . . [15];

50, 50, . . . [1]; 24, 57, 24, 57, . . . [3]. (c) 42 or 69; these both lead to a set
of fifteen distinct values, namely (42 or 69), 76, 77, 92, 46, 11, 12, 14, 19,
36, 29, 84, 05, 02, 00.

9. Since X < bn, we have X2 < b2n, and the middle square is ⌊X2/bn⌋ ≤
X2/bn. If X > 0, then X2/bn < Xbn/bn = X.
10. If X = abn, the next number of the sequence has the same form; it is
equal to (a2 mod bn)bn. If a is a multiple of all the prime factors of b, the
sequence will soon degenerate to zero; if not, the sequence will degenerate
into a cycle of numbers having the same general form as X.

Further facts about the middle-square method have been found by B.
Jansson, Random Number Generators (Stockholm: Almqvist & Wiksell,
1966), Section 3A. Numerologists will be interested to learn that the
number 3792 is self-reproducing in the four-digit middle-square method,
since 37922 = 14379264; furthermore (as Jansson observed), it is “self-
reproducing” in another sense, too, since its prime factorization is 3 · 79 ·
24!

11. The probability that μ = 0 and λ = 1 is the probability that X1 = X0,
namely 1/m. The probability that (μ, λ) = (1, 1) or that (μ, λ) = (0, 2) is the
probability that X1 ≠ X0 and that X2 has a certain value, so it is (1 – 1/m)
(1/m). Similarly, the probability that the sequence has any given μ and λ is
a function only of μ + λ, namely

For the probability that λ = 1, we have

where Q(m) is defined in Section 1.2.11.3, Eq. (2). By Eq. (25) in that
section, the probability is approximately . The
chance of Algorithm K converging as it did is only about one in 80000; the

author was decidedly unlucky. But see exercise 15 for further comments on
the “colossalness.”
12.

(See the previous answer. In general if
 then f(a0, a1, . . .) = a0 +

f(a1, a2, . . .) – f(a1, 2a2, . . .)/m; apply this identity with an = (n + 1)/2.)
Therefore the average value of λ (and, by symmetry of P (μ, λ), also of μ +
1) is approximately . The average value of μ + λ is exactly
Q(m), approximately . [For alternative derivations and
further results, including asymptotic values for the moments, see A.
Rapoport, Bull. Math. Biophysics 10 (1948), 145–157, and B. Harris,
Annals Math. Stat. 31 (1960), 1045–1062; see also I. M. Sobol, Theory of
Probability and Its Applications 9 (1964), 333–338. Sobol discusses the
asymptotic period length for the more general sequence Xn+1 = f(Xn) if n ≢
0 (modulo m), Xn+1 = g(Xn) if n ≡ 0 (modulo m), with both f and g
random.]
13. [Paul Purdom and John Williams, Trans. Amer. Math. Soc. 133 (1968),
547–551.] Let Tmn be the number of functions that have n one-cycles and
no cycles of length greater than one. Then

(This is in exercise 2.3.4.4–25.) Any function is such a
function followed by a permutation of the n elements that were the one-
cycles. Hence ∑n≥1 Tmn n! = mm.

Let Pnk be the number of permutations of n elements in which the
longest cycle is of length k. Then the number of functions with a maximum
cycle of length k is ∑n≥1 Tmn Pnk. To get the average value of k, we
compute ∑k≥1 ∑n≥1 kTmnPnk, which by the result of exercise 1.3.3–23 is

 where c ≈ .62433. Summing, we get
the average value . (This is not substantially

larger than the average value when X0 is selected at random. The average
value of max μ is asymptotic to Q(m) ln 4, and the average value of max(μ
+ λ) is asymptotic to 1.9268Q(m); see Flajolet and Odlyzko, Lecture
Notes in Comp. Sci. 434 (1990), 329–354.)

14. Let cr(m) be the number of functions with exactly r different final
cycles. From the recurrence

, which
comes by counting the number of functions whose image contains at most m
– k elements, we find the solution c1(m) = mm−1 Q(m). (See exercise
1.2.11.3–16.) Another way to obtain the value of c1(m), which is perhaps
more elegant and revealing, is given in exercise 2.3.4.4–17. The value of
cr(m) may be determined as in exercise 13:

The desired average value can now be computed; it is (see exercise 12)

This latter formula was obtained by quite different means by Martin D.
Kruskal, AMM 61 (1954), 392–397. Using the integral representation

,

he proved the asymptotic relation
. For further results and

references, see John Riordan, Annals Math. Stat. 33 (1962), 178–185.
15. The probability that f(x) ≠ x for all x is (m − 1)m/mm, which is
approximately 1/e. The existence of a self-repeating value in an algorithm
like Algorithm K is therefore not “colossal” at all—it occurs with
probability 1 – 1/e ≈ .63212. The only “colossal” thing was that the author
happened to hit such a value when X0 was chosen at random (see exercise
11).

16. The sequence will repeat when a pair of successive elements occurs
for the second time. The maximum period is m2. (See the next exercise.)
17. After selecting X0, . . . , Xk−1 arbitrarily, let Xn+1 = f(Xn, . . . , Xn–k+1),
where 0 ≤ x1, . . . , xk < m implies that 0 ≤ f(x1, . . . , xk) < m. The
maximum period is mk. This is an obvious upper bound, but it is not
obvious that it can be attained; for constructive proofs that it can always be
attained for suitable f, see exercises 3.2.2–17 and 3.2.2–21, and for the
number of ways to attain it see exercise 2.3.4.2–23.
18. Same as exercise 7, but use the k-tuple of elements (Xn, . . . , Xn–k+1) in
place of the single element Xn.

19. Clearly Pr(no final cycle has length 1) = (m − 1)m/mm. R. Pemantle [J.
Algorithms 54 (2005), 72–84] has shown that Pr(λ = 1) = Θ(mk /2), and that
Pr((μ + λ)2 > 2mkx and λ/(μ + λ) ≤ y) rapidly approaches ye−x, when x > 0,
0 < y < 1, and m → ∞. The k-dimensional analogs of exercises 13 and 14
remain unsolved.
20. It suffices to consider the simpler mapping g(X) defined by steps K2–
K13. Working backward from 6065038420, we obtain a total of 597
solutions; the smallest is 0009612809 and the largest is 9995371004.
21. We may work with g(X) as in the previous exercise, but now we want
to run the function forward instead of backward. There is an interesting
tradeoff between time and space. Notice that the mechanism of step K1
tends to make the period length small. So does the existence of X’s with
large in-degree; for example, 512 choices of X = *6******** in step K2
will go to K10 with X ← 0500000000.

Scott Fluhrer has discovered another fixed point of Algorithm K,
namely the value 5008502835(!). He also found the 3-cycle 0225923640
→ 2811514413 → 0590051662 → 0225923640, making a total of seven
cycles in all. Only 128 starting numbers lead to the repeating value
5008502835. Algorithm K is a terrible random number generator.

22. If f were truly random, this would be ideal; but how do we construct
such f? The function defined by Algorithm K would work much better
under this scheme, although it does have decidedly nonrandom properties
(see the previous answer).

23. The function f permutes its cyclic elements; let (x0, . . . , xk−1) be the
“unusual” representation of the inverse of that permutation. Then proceed
to define xk, . . . , xm–1 as in exercise 2.3.4.4–18. [See J. Combinatorial
Theory 8 (1970), 361–375.]

For example, if m = 10 and (f(0), . . . , f(9)) = (3, 1, 4, 1, 5, 9, 2, 6, 5,
4), we have (x0, . . . , x9) = (4, 9, 5, 1, 1, 3, 4, 2, 6, 5); if (x0, . . . , x9) = (3,
1, 4, 1, 5, 9, 2, 6, 5, 4), we have (f(0), . . . , f(9)) = (6, 4, 9, 3, 1, 1, 2, 5, 4,
5).

Section 3.2.1
1. Take X0 even, a even, c odd. Then Xn is odd for n > 0.

2. Let Xr be the first repeated value in the sequence. If Xr were equal to
Xk for some k where 0 < k < r, we could prove that Xr−1 = Xk−1, since Xn
uniquely determines Xn−1 when a is prime to m. Hence k = 0.

3. If d is the greatest common divisor of a and m, the quantity aXn can
take on at most m/d values. The situation can be even worse; for example,
if m = 2e and if a is even, Eq. (6) shows that the sequence is eventually
constant.

4. Induction on k.
5. If a is relatively prime to m, there is a number a′ for which aa′ ≡ 1

(modulo m). Then Xn−1 = (a′Xn – a′c) mod m; and in general, if b = a − 1,

when k ≥ 0, n – k ≥ 0. If a is not relatively prime to m, it is not possible to
determine Xn−1 when Xn is given; multiples of m/gcd(a, m) may be added
to Xn−1 without changing the value of Xn. (See also exercise 3.2.1.3–7.)

Section 3.2.1.1

1. Let c′ be a solution to the congruence ac′ ≡ c (modulo m). (Thus, c′ =
a′c mod m, if a′ is the number in the answer to exercise 3.2.1–5.) Then we
have

Overflow is possible on this addition operation. (From results derived
later in the chapter, it is probably best to save a unit of time, taking c = a
and replacing the ADD instruction by ‘INCA 1’. Then if X0 = 0, overflow
will not occur until the end of the period, so it won’t occur in practice.)
2.

3. Let a′ = aw mod m, and let m′ be such that mm′ ≡ 1 (modulo w). Set y
← lomult(a′, x), z ← himult(a′, x), t ← lomult(m′, y), u ← himult(m, t).
Then we have mt ≡ a′x (modulo w), hence a′x – mt = (z – u)w, hence ax ≡ z
– u (modulo m); it follows that ax mod m = z – u + [z < u]m.

4. Define the operation x mod 2e = y if and only if x ≡ y (modulo 2e) and –
2e − 1 ≤ y < 2e − 1. The congruential sequence 〈Yn〉 defined by

is easy to compute on 370-style machines, since the lower half of the
product of y and z is (yz) mod 232 for all two’s complement numbers y and
z, and since addition ignoring overflow also delivers its result mod 232.
This sequence has all the randomness properties of the standard linear
congruential sequence 〈Xn〉, since Yn ≡ Xn (modulo 232). Indeed, the
two’s complement representation of Yn is identical to the binary
representation of Xn, for all n. [G. Marsaglia and T. A. Bray first pointed
this out in CACM 11 (1968), 757–759.]
5. (a) Subtraction: LDA X; SUB Y; JANN *+2; ADD M. (b)

Addition: LDA X; SUB M; ADD Y; JANN *+2; ADD M. (Note
that if m is more than half the word size, the instruction ‘SUB M’ must
precede the instruction ‘ADD Y’.)

6. The sequences are not essentially different, since adding the constant
(m – c) has the same effect as subtracting the constant c. The operation must
be combined with multiplication, so a subtractive process has little merit

over the additive one (at least in MIX’s case), except when it is necessary
to avoid affecting the overflow toggle.

7. The prime factors of zk − 1 appear in the factorization of zkr − 1. If r is
odd, the prime factors of zk + 1 appear in the factorization of zkr + 1. And
z2k − 1 equals (zk − 1)(zk + 1).

8.

Note: Since addition on an e-bit ones’-complement computer is mod (2e −
1), it is possible to combine the techniques of exercises 4 and 8, producing
(yz) mod (2e − 1) by adding together the two e-bit halves of the product yz,
for all ones’ complement numbers y and z regardless of sign.
9. (a) Both sides equal aq⌊x/q⌋.

(b) Set t ← a(x mod q) – r⌊x/q⌋, where r = m mod a; the constants q
and r can be precomputed. Then ax mod m = t + [t < 0]m, because we can
prove that t > –m: Clearly a(x mod q) ≤ a(q − 1) < m. Also r⌊x/q⌋ ≤ r⌊(m
− 1)/q⌋ = r⌊a + (r − 1)/q⌋ = ra ≤ qa < m if 0 < r ≤ q; and a2 ≤ m implies r
< a ≤ q. [This technique is implicit in a program published by B. A.
Wichmann and I. D. Hill, Applied Stat. 31 (1982), 190.]
10. If r > q and x = m − 1 we have r⌊x/q⌋ ≥ (q+1)(a+1) > m. So the
condition r ≤ q is necessary and sufficient for method 9(b) to be valid; this
means . Let . The intervals are
disjoint for 1 ≤ q ≤ t, and they include exactly 1 or 2 integers, depending
on whether q is a divisor of m. These intervals account for all solutions
with ; they also include the case a = t, if (mod 1) < , and
the case a = t − 1 if m = t2. Thus the total number of “lucky” multipliers is
exactly , where d(m) is the
number of divisors of m.

11. We can assume that ; otherwise we can obtain ax mod m from
(m – a)x mod m. Then we can represent a = a′a″ – a″′, where a′, a″, and
a″′ are all less than ; for example, we can take and a″ =
⌈a/a′⌉. It follows that ax mod m is (a′(a″x mod m) mod m – (a″′x mod m))
mod m, and the inner three operations can all be handled by exercise 9.

When m = 231 – 1 we can take advantage of the fact that m − 1 has 192
divisors to find cases in which m = q′a′ + 1, simplifying the general
method because r′ = 1. It turns out that 86 of these divisors lead to lucky
a″ and a″′, when a = 62089911; the best such case is probably a′ = 3641,
a″ = 17053, a″′ = 62, because 3641 and 62 both divide m − 1. This
decomposition yields the scheme

where “–” denotes subtraction mod m. The mod operations count as one
multiplication and one subtraction, because x mod q = x−q⌊x/q⌋ and the
operation ⌊x/q⌋ has already been done; thus, we have performed seven
multiplications, three divisions, and seven subtractions. But it’s even better
to notice that 62089911 itself has 24 divisors; they lead to five suitable
factorizations with a″′ = 0. For example, when a′ = 883 and a″ = 70317
we need only six multiplications, two divisions, four subtractions:

[Can the worst-case number of multiplications plus divisions be reduced
to at most 11, for all a and m, or is 12 the best upper bound? Another way
to achieve 12 appears in exercise 4.3.3–19.]
12. (a) Let m = 9999998999 = 1010 – 103 – 1. To multiply (x9x8 . . . x0)10

by 10 modulo m, use the fact that 1010x9 ≡ 103x9 + x9: Add (x9000)10 to
(x8x7 . . . x0x9)10. And to avoid circular shifting, imagine that the digits are
arranged on a wheel: Just add the high-order digit x9 to the digit x2 three
positions left, and point to x8 as the new high-order digit. If x9 + x2 ≥ 10, a
carry propagates to the left. And if this carry ripples all the way to the left
of x8, it propagates not only to x9 but also to the x2 position; it may continue

to propagate from both x9 and x2 before finally settling down. (The
numbers might also become slightly larger than m. For example,
0999999900 goes to 9999999000 = m + 1, which goes to 9999999009 = m
+ 10. But a redundant representation isn’t necessarily harmful.)

(b) This is the operation of dividing by 10, so we do the opposite of
(a): Move the high-order digit pointer cyclically left, and subtract the new
high-order digit from the digit three to its left. If the result of subtraction is
negative, “borrow” in the usual fashion (Algorithm 4.3.1S); that is,
decrease the preceding digit by 1. Borrowing may propagate as in (a), but
never past the high-order digit position. This operation keeps the numbers
nonnegative and less than m. (Thus, division by 10 turns out to be easier
than multiplication by 10.)

(c) We can remember the borrow-bit instead of propagating it, because
it can be incorporated into the subtraction on the next step. Thus, if we
define digits xn and borrow-bits bn by the recurrence

we have 999999900n mod 9999998999 = Xn by induction on n, where

provided that the initial conditions are set up to make X0 = 1. Notice that
10Xn+1 = (xnxn–1xn−2xn−3xn−4xn−5xn−6xn+3xn+2xn+10)10–10000bn+4 =
mxn+Xn; it follows that 0 ≤ Xn < m for all n ≥ 0.

(d) If 0 ≤ U < m, the first digit of the decimal representation of U/m is
⌊10U/m⌋, and the subsequent digits are the decimal representation of (10U
mod m)/m; see, for example, Method 2a in Section 4.4. Thus U/m = (.u1u2 .
. .)10 if we set U0 = U and Un = 10Un−1 mod m = 10Un−1 – mun. Informally,
the digits of 1/m are the leading digits of 10n mod m for n = 1, 2, . . . , a
sequence that is eventually periodic; these are the leading digits of 10−n
mod m in reverse order, so we have calculated them in (c).

A rigorous proof is, of course, preferable to handwaving. Let λ be the
least positive integer with 10λ ≡ 1 (modulo m), and define xn = xn mod λ,
bn = bn mod λ, Xn = Xn mod λ for all n < 0. Then the recurrences for xn,

bn, and Xn in (c) are valid for all integers n. If U0 = 1 it follows that Un =
X–n and un = x–n; hence

(e) Let w be the computer’s word size, and use the recurrence

where 0 < l < k and k is large. Then (.xn−1xn−2xn−3 . . .)w = Xn/m, where m
= wk – wl − 1 and Xn+1 = (wk − 1 – wl − 1)Xn mod m. The relation

holds for n ≥ 0; the values of x–1, . . . , x–k, and b0 should be such that 0 ≤
X0 < m.

Such random number generators, and the similar ones in the following
exercise, were introduced by G. Marsaglia and A. Zaman [Annals of
Applied Probability 1 (1991), 462–480], who called the method
subtract-with-borrow. Their starting point was the radix-w representation
of fractions with denominator m. The relation to linear congruential
sequences was noticed by Shu Tezuka, and analyzed in detail by Tezuka,
L’Ecuyer, and Couture [ACM Trans. Modeling and Computer Simulation
3 (1993), 315–331]. The period length is discussed in exercise 3.2.1.2–
22.

13. Multiplication by 10 now requires negating the digit that is added. For
this purpose it is convenient to represent a number with its last three digits
negated; for example, . Then 10 times

 is where x′ = x9 – x2.
Similarly, divided by 10 is
where x″ = x0 – x3. The recurrence

yields 8999999101n mod 9999999001 = Xn where

When the radix is generalized from 10 to w, we find that the inverse
powers of w modulo wk – wl + 1 are generated by

(the same as in exercise 12 but with k and l interchanged).
14. Mild generalization: We can effectively divide by b modulo bk – bl ± 1
for any b less than or equal to the word size w, since the recurrence for xn
is almost as efficient when b < w as it is when b = w.

Strong generalization: The recurrence

is equivalent to Xn = b−1Xn−1 mod |m| in the sense that Xn/|m| = (.xn−1xn−2 . .
.)b, if we define

The initial values x–1 . . . x–k and c0 should be selected so that 0 ≤ X0 < |m|;
we will then have xn = (bXn+1 – Xn)/|m| for n ≥ 0. The values of xj for j < 0
that appear in the formula Xn/|m| = (.xn−1xn−2 . . .)b are properly regarded
as xj mod λ, where bλ ≡ 1 (modulo m); these values may differ from the
numbers x–1, . . . , x–k that were initially supplied. The carry digits cn will
satisfy

if the initial carry c0 is in this range.

The special case m = bk + bl − 1, for which aj = δjl + δjk, is of
particular interest because it can be computed so easily; Marsaglia and
Zaman called this the add-with-carry generator:

Another potentially attractive possibility is to use k = 2 in a generator
with, say, b = 231 and m = 65430b2 + b − 1. This modulus m is prime, and
the period length turns out to be (m − 1)/2. The spectral test of Section
3.3.4 indicates that the spacing between planes is good (large ν values),
although of course the multiplier b−1 is poor

in comparison with other multipliers for this particular modulus m.

Exercise 3.2.1.2–22 contains additional information about subtract-
with-borrow and add-with-carry moduli that lead to extremely long
periods.

Section 3.2.1.2

1. Period length m, by Theorem A. (See exercise 3.)
2. Yes, these conditions imply the conditions in Theorem A, since the only

prime divisor of 2e is 2, and any odd number is relatively prime to 2e. (In
fact, the conditions of the exercise are necessary and sufficient.)

3. By Theorem A, we need a ≡ 1 (modulo 4) and a ≡ 1 (modulo 5). By
Law D of Section 1.2.4, this is equivalent to a ≡ 1 (modulo 20).

4. We know X2e−1 ≡ 0 (modulo 2e − 1) by using Theorem A in the case m =
2e − 1. Also using Theorem A for m = 2e, we know that X2e−1 ≢ 0 (modulo
2e). It follows that X2e−1 = 2e−1. More generally, we can use Eq. 3.2.1–(6) to
prove that the second half of the period is essentially like the first half,
since Xn+2e−1 = (Xn + 2e−1) mod 2e. (The quarters are similar too, see
exercise 21.)

5. We need a ≡ 1 (modulo p) for p = 3, 11, 43, 281, 86171. By Law D of
Section 1.2.4, this is equivalent to a ≡ 1 (modulo 3 · 11 · 43 · 281 ·
86171), so the only solution is the terrible multiplier a = 1.

6. (See the previous exercise.) The congruence a ≡ 1 (modulo 3 · 7 · 11 ·
13 · 37) implies that the solutions are a = 1 + 111111k, for 0 ≤ k ≤ 8.

7. Using the notation of the proof of Lemma Q, μ is the smallest value
such that Xμ+λ = Xμ; so it is the smallest value such that Yμ+λ = Yμ and Zμ+λ =
Zμ. This shows that μ = max(μ1, . . . , μt). The highest achievable μ is
max(e1, . . . , et), but nobody really wants to achieve it.

8. We have a2 ≡ 1 (modulo 8); so a4 ≡ 1 (modulo 16), a8 ≡ 1 (modulo 32),
etc. If a mod 4 = 3, then a − 1 is twice an odd number; so (a2e−1– 1)/(a − 1)
≡ 0 (modulo 2e) if and only if (a2e−1 – 1)/2 ≡ 0 (modulo 2e+1/2), which is
true.

9. Substitute for Xn in terms of Yn and simplify. If X0 mod 4 = 3, the
formulas of the exercise do not apply; but they do apply to the sequence Zn

= (–Xn) mod 2e, which has essentially the same behavior.

10. Only when m = 1, 2, 4, pe, and 2pe, for odd primes p. In all other cases,
the result of Theorem B is an improvement over Euler’s theorem (exercise
1.2.4–28).
11. (a) Either x + 1 or x − 1 (not both) will be a multiple of 4, so x ╤ 1 =
q2f, where q is odd and f is greater than 1. (b) In the given circumstances, f
< e and so e ≥ 3. We have ±x ≡ 1 (modulo 2f) and ±x ≢ 1 (modulo 2f+1) and
f > 1. Hence, by applying Lemma P, we find that (±x)2e – f − 1 ≢ 1 (modulo
2e), while x2e−f = (±x)2e−f ≡ 1 (modulo 2e). So the order is a divisor of 2e−f,
but not a divisor of 2e−f−1. (c) 1 has order 1; 2e − 1 has order 2; the
maximum period when e ≥ 3 is therefore 2e−2, and for e ≥ 4 it is necessary
to have f = 2, that is, x ≡ 4 ± 1 (modulo 8).
12. If k is a proper divisor of p − 1 and if ak ≡ 1 (modulo p), then by
Lemma P we have akpe−1 ≡ 1 (modulo pe). Similarly, if ap−1 ≡ 1 (modulo
p2), we find that a(p−1)pe−2 ≡ 1 (modulo pe). So in these cases a is not
primitive. Conversely, if ap−1 ≢ 1 (modulo p2), Theorem 1.2.4F and
Lemma P tell us that a(p−1)pe−2 ≢ 1 (modulo pe), but a(p−1)pe−1 ≡ 1 (modulo
pe). So the order is a divisor of (p − 1)pe−1 but not of (p − 1)pe−2; it
therefore has the form kpe−1, where k divides p − 1. But if a is primitive
modulo p, the congruence akpe−1 ≡ ak ≡ 1 (modulo p) implies that k = p − 1.
13. Suppose a mod p ≠ 0, and let λ be the order of a modulo p. By
Theorem 1.2.4F, λ is a divisor of p − 1. If λ < p − 1, then (p − 1)/λ has a
prime factor, q.
14. Let 0 < k < p. If ap−1 ≡ 1 (modulo p2), then (a + kp)p−1 ≡ ap−1 + (p −
1)ap−2kp (modulo p2); and this is ≢ 1, since (p − 1)ap−2k is not a multiple
of p. By exercise 12, a + kp is primitive modulo pe.
15. (a) If and , let and

, where

Now and have periods λ1/κ1 and λ2/κ2, and the latter are relatively
prime. Furthermore (λ1/κ1)(λ2/κ2) = λ, so it suffices to consider the case
when λ1 is relatively prime to λ2, that is, when λ = λ1λ2. Now let λ′ be the
order of a1a2. Since (a1a2)λ′ ≡ 1, we have ; hence
λ′λ1 is a multiple of λ2. This implies that λ′ is a multiple of λ2, since λ1 is
relatively prime to λ2. Similarly, λ′ is a multiple of λ1; hence λ′ is a
multiple of λ1λ2. But obviously (a1a2)λ1λ2 ≡ 1, so λ′ = λ1λ2.

(b) If a1 has order λ(m) and if a2 has order λ, by part (a) λ(m) must be
a multiple of λ, otherwise we could find an element of higher order,
namely of order lcm(λ, λ(m)).
16. (a) f(x) = (x – a)(xn−1 + (a + c1)xn−2 + ... + (an−1 + ... + cn−1)) + f(a).
(b) The statement is clear when n = 0. If a is one root, f(x) ≡ (x – a)q(x);
therefore, if a′ is any other root,

and since a′ – a is not a multiple of p, a′ must be a root of q(x). So if f(x)
has more than n distinct roots, q(x) has more than n − 1 distinct roots. [J. L.
Lagrange, Mém. Acad. Roy. Sci. Berlin 24 (1768), 181–250, §10.] (c) λ(p)
≥ p − 1, since f(x) must have degree ≥ p − 1 in order to possess so many
roots. But λ(p) ≤ p − 1 by Theorem 1.2.4F.
17. By Lemma P, 115 ≡ 1 (modulo 25), 115 ≢ 1 (modulo 125), etc.; so the
order of 11 is 5e−1 (modulo 5e), not the maximum value λ(5e) = 4 · 5e−1.
But by Lemma Q the total period length is the least common multiple of the
period modulo 2e (namely 2e−2) and the period modulo 5e (namely 5e−1),
and this is 2e−25e−1 = λ(10e). The period modulo 5e may be 5e−1 or 2 · 5e−1

or 4 · 5e−1, without affecting the length of period modulo 10e, since the
least common multiple is taken. The values that are primitive modulo 5e

are those congruent to 2, 3, 8, 12, 13, 17, 22, 23 modulo 25 (see exercise
12), namely 3, 13, 27, 37, 53, 67, 77, 83, 117, 123, 133, 147, 163, 173,
187, 197.
18. According to Theorem C, a mod 8 must be 3 or 5. Knowing the period
of a modulo 5 and modulo 25 allows us to apply Lemma P to determine
admissible values of a mod 25. Period = 4 · 5e−1: 2, 3, 8, 12, 13, 17, 22,

23; period = 2 · 5e−1: 4, 9, 14, 19; period = 5e−1: 6, 11, 16, 21. Each of
these 16 values yields one value of a, 0 ≤ a < 200, with a mod 8 = 3, and
another value of a with a mod 8 = 5.
19. Several examples appear in lines 17–20 of Table 3.3.4–1.
20. (a) We have AYn + X0 ≡ AYn+k + X0 (modulo m) if and only if Yn ≡ Yn+k

(modulo m′). (b)(i) Obvious. (ii) Theorem A. (iii) (an − 1)/(a − 1) ≡ 0
(modulo 2e) if and only if an ≡ 1 (modulo 2e+1); if a ≢ –1, the order of a
modulo 2e+1 is twice its order modulo 2e. (iv) (an − 1)/(a − 1) ≡ 0 (modulo
pe) if and only if an ≡ 1.
21. Xn+s ≡ Xn + Xs by Eq. 3.2.1–(6); and s is a divisor of m, since s is a
power of p when m is a power of p. Hence a given integer q is a multiple
of m/s if and only if Xqs ≡ 0, if and only if q is a multiple of m/gcd(Xs, m).

22. Algorithm 4.5.4P is able to test numbers of the form m = bk ±bl ±1 for
primality in a reasonable time when, say, b ≈ 232 and l < k ≈ 100; the
calculations should be done in radix b so that the special form of m speeds
up the operation of squaring mod m. (Consider, for example, squaring mod
9999998999 in decimal notation.) Algorithm 4.5.4P should, of course, be
used only when m is known to have no small divisors.

Marsaglia and Zaman [Annals of Applied Probability 1 (1991), 474–
475] showed that m = b43 –b22 +1 is prime with primitive root b when b is
the prime number 232 –5. This required factoring m − 1 = b22(b−1)
(b6+b5+b4+b3+b2+b+1)(b14+b7+1) in order to establish the primitivity of
b; one of the 17 prime factors of m − 1 has 99 decimal digits. As a result,
we can be sure that the sequence xn = (xn−22 – xn−43 – cn) mod b = xn−22 –
xn−43 – cn + bcn+1 has period length m − 1 ≈ 10414 for every nonzero
choice of seed values 0 ≤ x–1, . . . , x–43 < b when c0 = 0.

However, 43 is still a rather small value for k from the standpoint of the
birthday spacings test (see Section 3.3.2J), and 22 is rather near 43/2.
Considerations of “mixing” indicate that we prefer values of k and l for
which the first few partial quotients in the continued fraction of l/k are
small. To avoid potential problems with this generator, it’s a good idea to
discard some of the numbers, as recommended by Lüscher (see Section
3.2.2).

Here are some prime numbers of the form bk ± bl ± 1 that satisfy the
mixing constraint when b = 232 and 50 < k ≤ 100: For subtract-with-
borrow, b57 – b17 – 1, b73 – b17 – 1, b86 – b62 – 1, b88 – b52 – 1, b95 – b61 –
1; b58 – b33 + 1, b62 – b17 + 1, b69 – b24 + 1, b70 – b57 + 1, b87 – b24 + 1.
For add-with-carry, b56 + b22 – 1, b61 + b44 – 1, b74 + b27 – 1, b90 + b65 –
1. (Less desirable from a mixing standpoint are the primes b56 – b5 – 1,
b56 – b32 – 1, b66 – b57 – 1, b76 – b15 – 1, b84 – b26 – 1, b90 – b42 – 1, b93 –
b18 –1; b52 –b8 +1, b60 –b12 +1, b67 –b8 +1, b67 –b63 +1, b83 –b14 +1; b65

+b2 –1, b76 + b11 – 1, b88 + b30 – 1, b92 + b48 – 1.)
To calculate the period of the resulting sequences, we need to know the

factors of m − 1; but this isn’t feasible for such large numbers unless we
are extremely lucky. Suppose we do succeed in finding the prime factors
q1, . . . , qt; then the probability that b(m − 1)/q mod m = 1 is extremely
small, only 1/q, except for the very small primes q. Therefore we can be
quite confident that the period of bn mod m is extremely long even though
we cannot factor m − 1.

Indeed, the period is almost certainly very long even if m is not prime.
Consider, for example, the case k = 10, l = 3, b = 10 (which is much too
small for random number generation but small enough that we can easily
compute the exact results). In this case 〈10n mod m〉 has period length
lcm(219, 11389520) = 2494304880 when m = 9999998999 = 439 ·
22779041; 4999999500 when m = 9999999001; 5000000499 when m =
10000000999; and lcm(1, 16, 2686, 12162) = 130668528 when m =
10000001001 = 3·17·2687·72973. Rare choices of the seed values may
shorten the period when m is not prime. But we can hardly go wrong if we
choose, say, k = 1000, l = 619, and b = 216.

Section 3.2.1.3

1. c = 1 is always relatively prime to B5; and every prime dividing m = B5

is a divisor of B, so it divides b = B2 to at least the second power.
2. Only 3, so the generator is not recommended in spite of its long period.
3. The potency is 18 in both cases (see the next exercise).

4. Since a mod 4 = 1, we must have a mod 8 = 1 or 5, so b mod 8 = 0 or
4. If b is an odd multiple of 4, and if b1 is a multiple of 8, clearly bs ≡ 0
(modulo 2e) implies that (modulo 2e), so b1 cannot have higher
potency than b.

5. The potency is the smallest value of s such that fjs ≥ ej for all j.

6. The modulus must be divisible by 27 or by p4 (for odd prime p) in
order to have a potency as high as 4. The only values are m = 227 + 1 and
109 – 1.

7. a′ = (1 – b + b2 – ...) mod m, where the terms in bs, bs+1, etc., are
dropped (if s is the potency).

8. Since Xn is always odd,

Given Yn and Yn+1, the possibilities for

with 0 ≤ ϵ1 < 1, 0 ≤ ϵ2 < 1, are limited and nonrandom.

Note: If the multiplier suggested in exercise 3 were, say, 233 + 218 + 22

+ 1, instead of 223 + 213 + 22 + 1, we would similarly find Xn+2 − 10Xn+1

+ 25Xn ≡ constant (modulo 235). In general, we do not want a ± δ to be
divisible by high powers of 2 when δ is small, else we get “second-order
impotency.” See Section 3.3.4 for a more detailed discussion.

The generator that appears in this exercise is discussed in an article by
MacLaren and Marsaglia, JACM 12 (1965), 83–89. The deficiencies of
such generators were first demonstrated by M. Greenberger, CACM 8
(1965), 177–179. Yet generators like this were still in widespread use
more than ten years later (see the discussion of RANDU in Section 3.3.4).

Section 3.2.2
1. The method is useful only with great caution. In the first place, aUn is

likely to be so large that the addition of c/m that follows will lose almost
all significance, and the “mod 1” operation will nearly destroy any vestiges
of significance that might remain. We conclude that double-precision
floating point arithmetic is necessary. Even with double precision, one must
be sure that no rounding, etc., occurs to affect the numbers of the sequence
in any way, since that would destroy the theoretical grounds for the good
behavior of the sequence. (But see exercise 23.)

2. Xn+1 equals either Xn−1 + Xn or Xn−1 + Xn − m. If Xn+1 < Xn we must
have Xn+1 = Xn−1 + Xn − m; hence Xn+1 < Xn−1.

3. (a) The underlined numbers are V[j] after step M3.

So the potency has been reduced to 1! (See further comments in the answer
to exercise 15.)

(b) The underlined numbers are V[j] after step B2.

In this case the output is considerably better than the input; it enters a
repeating cycle of length 40 after 46 steps: 236570 05314 72632 40110

37564 76025 12541 73625 03746 (30175 24061 52317 46203 74531
60425 16753 02647). The cycle can be found easily by applying the
method of exercise 3.1–7 to the array above until a column is repeated.
4. The low-order byte of many random sequences (e.g., linear

congruential sequences with m = word size) is much less random than the
high-order byte. See Section 3.2.1.1.

5. The randomizing effect would be quite minimized, because V[j] would
always contain a number in a certain range, essentially j/k ≤ V[j]/m < (j +
1)/k. However, some similar approaches could be used: We could take Yn =
Xn−1, or we could choose j from Xn by extracting some digits from the
middle instead of at the extreme left. None of these suggestions would
produce a lengthening of the period analogous to the behavior of Algorithm
B. (Exercise 27 shows, however, that Algorithm B doesn’t necessarily
increase the period length.)

6. For example, if , then Xn+1 = 2Xn.
7. [W. Mantel, Nieuw Archief voor Wiskunde (2) 1 (1897), 172–184.]

8. We may assume that X0 = 0 and m = pe, as in the proof of Theorem
3.2.1.2A. First suppose that the sequence has period length pe; it follows
that the period of the sequence mod pf has length pf, for 1 ≤ f ≤ e, otherwise
some residues mod pf would never occur. Clearly, c is not a multiple of p,
for otherwise each Xn would be a multiple of p. If p ≤ 3, it is easy to
establish the necessity of conditions (iii) and (iv) by trial and error, so we
may assume that p ≥ 5. If d ≢ 0 (modulo p) then dx2 + ax + c ≡ d(x + a1)2 +
c1 (modulo pe) for some integers a1 and c1 and for all integers x; this
quadratic takes the same value at the points x and −x − 2a1, so it cannot
assume all values modulo pe. Hence d ≡ 0 (modulo p); and if a ≢ 1, we

would have dx2 + ax + c ≡ x (modulo p) for some x, contradicting the fact
that the sequence mod p has period length p.

To show the sufficiency of the conditions, we may assume by Theorem
3.2.1.2A and consideration of some trivial cases that m = pe where e ≥ 2. If p
= 2, we have Xn+2 ≡ Xn + 2 (modulo 4), by trial; and if p = 3, we have Xn+3 ≡
Xn − d + 3c (modulo 9), using (i) and (ii). For p ≥ 5, we can prove that Xn+p

≡ Xn + pc (modulo p2): Let d = pr, a = 1 + ps. Then if Xn ≡ cn + pYn (modulo
p2), we must have Yn+1 ≡ n2 c2 r + ncs + Yn (modulo p); hence

 (modulo p). Thus Yp mod p = 0, and the
desired relation has been proved.

Now we can prove that the sequence 〈Xn〉 of integers defined in the
“hint” satisfies the relation

for some t with t mod p ≠ 0, and for all f ≥ 1. This suffices to prove that
the sequence 〈Xn mod pe〉 has period length pe, for the length of the
period is a divisor of pe but not a divisor of pe−1. The relation above has
already been established for f = 1, and for f > 1 it can be proved by
induction in the following manner: Let

then the quadratic law for generating the sequence, with d = pr, a = 1 + ps,
yields Zn+1 ≡ 2rtnc + st + Zn (modulo p). It follows that Zn+p ≡ Zn (modulo
p); hence

for k = 1, 2, 3, . . .; setting k = p completes the proof.
Notes: If f(x) is a polynomial of degree higher than 2 and Xn+1 = f(Xn),

the analysis is more complicated, although we can use the fact that f(m +
pk) = f(m) + pk f′(m) + p2k f ″(m)/2! + · · · to prove that many polynomial
recurrences give the maximum period. For example, Coveyou has proved
that the period is m = 2e if f(0) is odd, f′(j) ≡ 1, f″(j) ≡ 0, and f(j + 1) ≡
f(j) + 1 (modulo 4) for j = 0, 1, 2, 3. [Studies in Applied Math. 3
(Philadelphia: SIAM, 1969), 70–111.]

9. Let Xn = 4Yn + 2; then the sequence Yn satisfies the quadratic
recurrence mod 2e−2.
10. Case 1: X0 = 0, X1 = 1; hence Xn ≡ Fn. We seek the smallest n for
which Fn ≡ 0 and Fn+1 ≡ 1 (modulo 2e). Since F2n = Fn(Fn−1 + Fn+1),

, we find by induction on e that, for e > 1, F3·2e−1 ≡ 0
and F3·2e−1 + 1 ≡ 2e + 1 (modulo 2e+1). This implies that the period is a
divisor of 3 · 2e−1 but not a divisor of 3 · 2e−2, so it is either 3 · 2e−1 or
2e−1. But F2e−1 is always odd (since only F3n is even).

Case 2: X0 = a, X1 = b. Then Xn ≡ aFn−1 + bFn; we need to find the
smallest positive n with a(Fn+1 − Fn) + bFn ≡ a and aFn + bFn+1 ≡ b. This
implies that (b2 − ab − a2)Fn ≡ 0, (b2 − ab − a2)(Fn+1 − 1) ≡ 0. And b2 −
ab − a2 is odd (that is, prime to m); so the condition is equivalent to Fn ≡
0, Fn+1 ≡ 1.

Methods to determine the period of 〈Fn〉 for any modulus appear in
an article by D. D. Wall, AMM 67 (1960), 525–532. Further facts about
the Fibonacci sequence mod 2e have been derived by B. Jansson [Random
Number Generators (Stockholm: Almqvist & Wiksell, 1966), Section
3C1].

11. (a) We have zλ = 1 + f(z)u(z) + pe v(z) for some u(z) and v(z), where
v(z) ≢ 0 (modulo f(z) and p). By the binomial theorem,

plus further terms congruent to zero (modulo f(z) and pe+2). Since pe > 2,
we have zλp ≡ 1 + pe+1 v(z) (modulo f(z) and pe+2). If pe+1 v(z) ≡ 0 (modulo
f(z) and pe+2), there must exist polynomials a(z) and b(z) such that pe+1

(v(z) + pa(z)) = f(z)b(z). Since f(0) = 1, this implies that b(z) is a multiple
of pe+1 (by Gauss’s Lemma 4.6.1G); hence v(z) ≡ 0 (modulo f(z) and p), a
contradiction.

(b) If zλ − 1 = f(z)u(z) + pe v(z), then

hence An+λ ≡ An (modulo pe) for large n. Conversely, if 〈An〉 has the
latter property then G(z) = u(z) + v(z)/(1 − zλ) + pe H(z), for some
polynomials u(z) and v(z), and some power series H(z), all with integer
coefficients. This implies the identity 1 − zλ = u(z)f(z)(1 − zλ) + v(z)f(z) +
pe H(z)f(z)(1 − zλ); and H(z)f(z)(1 − zλ) is a polynomial since the other
terms of the equation are polynomials.

(c) It suffices to prove that λ(pe) ≠ λ(pe+1) implies that λ(pe+1) =
pλ(pe) ≠ λ(pe+2). Applying (a) and (b), we know that λ(pe+2) ≠ pλ(pe), and
that λ(pe+1) is a divisor of pλ(pe) but not of λ(pe). Hence if λ(pe) = pf q,
where q mod p ≠ 0, then λ(pe+1) must be pf+1 d, where d is a divisor of q.
But now Xn+pf +1 d ≡ Xn (modulo pe); hence pf + 1 d is a multiple of pf q,
hence d = q. [Note: The hypothesis pe > 2 is necessary; for example, let a1

= 4, a2 = −1, k = 2; then 〈An〉 = 1, 4, 15, 56, 209, 780, . . .; λ(2) = 2,
λ(4) = 4, λ(8) = 4.]

(d) g(z) = X0+(X1–a1X0)z+ ... +(Xk−1–a1Xk−2–a2Xk−3–...–ak−1X0)zk − 1.
(e) The derivation in (b) can be generalized to the case G(z) =

g(z)/f(z); then the assumption of period length λ implies that g(z)(1 – zλ) ≡
0 (modulo f(z) and pe); we treated only the special case g(z) = 1 above.
But both sides of this congruence can be multiplied by Hensel’s b(z), and
we obtain 1 – zλ ≡ 0 (modulo f(z) and pe).

Note: A more “elementary” proof of the result in (c) can be given
without using generating functions, using methods analogous to those in the
answer to exercise 8: If Aλ+n = An + peBn, for n = r, r + 1, . . . , r + k − 1
and some integers Bn, then this same relation holds for all n ≥ r if we
define Br+k, Br+k+1, . . . by the given recurrence relation. Since the
resulting sequence of B’s is some linear combination of shifts of the
sequence of A’s, we will have Bλ+n ≡ Bn (modulo pe) for all large enough
values of n. Now λ(pe+1) must be some multiple of λ = λ(pe); for all large
enough n we have An+jλ = An + pe(Bn + Bn+λ + Bn+2λ + ... + Bn+(j−1)λ) ≡ An

+ jpeBn (modulo p2e) for j = 1, 2, 3, No k consecutive B’s are
multiples of p; hence λ(pe+1) = pλ(pe) ≠ λ(pe+2) follows immediately

when e ≥ 2. We still must prove that λ(pe+2) ≠ pλ(pe) when p is odd and e
= 1; here we let Bλ+n = Bn + pCn, and observe that Cn+λ ≡ Cn (modulo p)
when n is large enough. Then (modulo
p3), and the proof is readily completed.

For the history of this problem, see Morgan Ward, Trans. Amer. Math.
Soc. 35 (1933), 600–628; see also D. W. Robinson, AMM 73 (1966),
619–621.

12. The period length mod 2 can be at most 4; and the period length mod
2e+1 is at most twice the maximum length mod 2e, by the considerations of
the previous exercise. So the maximum conceivable period length is 2e+1;
this is achievable, for example, in the trivial case a = 0, b = c = 1.
13, 14. Clearly Zn+λ = Zn, so λ′ is certainly a divisor of λ. Let the least
common multiple of λ′ and λ1 be , and define similarly. We have

, so is a multiple of λ2.
Similarly, is a multiple of λ1. This yields the desired result. (The result
is “best possible” in the sense that sequences for which λ′ = λ0 can be
constructed, as well as sequences for which λ′ = λ.)
15. Algorithm M generates (Xn+k, Yn) in step M1 and outputs Zn = Xn+k–qn

in step M3, for all sufficiently large n. Thus 〈Zn〉 has a period of length
λ′, where λ′ is the least positive integer such that Xn+k−qn

 = Xn+λ′+k−qn+λ′
 for

all large n. Since λ is a multiple of λ1 and λ2, it follows that λ′ is a divisor
of λ. (These observations are due to Alan G. Waterman.)

We also have n + k – qn ≡ n + λ′ + k – qn+λ′ (modulo λ1) for all large n,
by the distinctness of the X’s. The bound on 〈qn〉 implies that qn+λ′ = qn
+ c for all large n, where c ≡ λ′ (modulo λ1) and . But c must be
0 since 〈qn〉 is bounded. Hence λ′ ≡ 0 (modulo λ1), and qn+λ′ = qn for
all large n; it follows that λ′ is a multiple of λ2 and λ1, so λ′ = λ.

Note: The answer to exercise 3.2.1.2–4 implies that when 〈Yn〉 is a
linear congruential sequence of maximum period modulo m = 2e, the
period length λ2 will be at most 2e−2 when k is a power of 2.

16. There are several methods of proof.
(1) Using the theory of finite fields. In the field with 2k elements let ξ

satisfy ξk = a1ξk−1 + ... + ak. Let f(b1ξk−1 + ... + bk) = bk, where each bj is
either zero or one; this is a linear function. If word X in the generation
algorithm is (b1b2 . . . bk)2 before (10) is executed, and if b1ξk−1 + ... +
bkξ0 = ξn, then word X represents ξn+1 after (10) is executed. Hence the
sequence is f(ξn), f(ξn+1), f(ξn+2), . . . ; and f(ξn+k) = f(ξnξk) = f(a1ξn+k−1 +
... + akξn) = a1f(ξn+k−1) + ... + akf(ξn).

(2) Using brute force, or elementary ingenuity. We are given a sequence
Xnj, n ≥ 0, 1 ≤ j ≤ k, satisfying

We must show that this implies Xnk ≡ a1X(n−1)k + ... + akX(n–k)k, for n ≥ k.
Indeed, it implies Xnj ≡ a1X(n−1)j + ... + akX(n–k)j when 1 ≤ j ≤ k ≤ n. This
is clear for j = 1, since Xn1 ≡ a1X(n−1)1 + X(n−1)2 ≡ a1X(n−1)1 + a2X(n−2)1 +
X(n−2)3, etc. For j > 1, we have by induction

This proof does not depend on the fact that operations were done modulo
2, or modulo any prime number.
17. (a) When the sequence terminates, the (k − 1)-tuple (Xn+1, . . . , Xn+k−1)
occurs for the (m + 1)st time. A given (k − 1)-tuple (Xr+1, . . . , Xr+k−1) can
have only m distinct predecessors Xr, so one of these occurrences must be
for r = 0. (b) Since the (k − 1)-tuple (0, . . . , 0) occurs (m + 1) times, each
possible predecessor appears, so the k-tuple (a1, 0, . . . , 0) appears for all
a1, 0 ≤ a1 < m. Let 1 ≤ s < k and suppose we have proved that all k-tuples
(a1, . . . , as, 0, . . . , 0) appear in the sequence when as ≠ 0. By the

construction, this k-tuple would not be in the sequence unless (a1, . . . , as,
0, . . . , 0, y) had appeared earlier for 1 ≤ y < m. Hence the (k − 1)-tuple
(a1, . . . , as, 0, . . . , 0) has appeared m times, and all m possible
predecessors appear; this means that (a, a1, . . . , as, 0, . . . , 0) appears for
0 ≤ a < m. The proof is now complete by induction.

The result also follows from Theorem 2.3.4.2D, using the directed
graph of exercise 2.3.4.2–23. The arcs from (x1, . . . , xj, 0, . . . , 0) to (x2,
. . . , xj, 0, 0, . . . , 0), where xj ≠ 0 and 1 ≤ j ≤ k, form an oriented subtree
related neatly to Dewey decimal notation.

18. By exercise 16, the most significant bit of Un+1 is completely
determined by the first and third bits of Un, so only 32 of the 64 possible
pairs (⌊8Un⌋, ⌊8Un+1⌋) occur. [Notes: If we had used, say, 11-bit numbers
Un = (.X11nX11n+1 . . . X11n+10)2, the sequence would be satisfactory for
many applications. If another constant appears in A having more 1 bits, the
generalized spectral test might give some indication of its suitability. See
exercise 3.3.4–24; we could examine νt in dimensions t = 36, 37, 38,]
20. For k = 64 one can use CONTENTS(A) = (243F6A8885A308D3)16
(the bits of π!).
21. [J. London Math. Soc. 21 (1946), 169–172.] Any sequence of period
length mk –1 with no k consecutive zeros leads to a sequence of period
length mk by inserting a zero in the appropriate place, as in exercise 7;
conversely, we can start with a sequence of period length mk and delete an
appropriate zero from the period, to form a sequence of the other type. Let
us call these “(m, k) sequences” of types A and B. The hypothesis assures
us of the existence of (p, k) sequences of type A, for all primes p and all k
≥ 1; hence we have (p, k) sequences of type B for all such p and k.

To get a (pe, k) sequence of type B, let e = qr, where q is a power of p
and r is not a multiple of p. Start with a (p, qrk) sequence of type A,
namely X0, X1, X2, . . . ; then (using the p-ary number system) the grouped
digits (X0 . . . Xq−1)p, (Xq . . . X2q−1)p, . . . form a (pq, rk) sequence of type
A, since q is relatively prime to pqrk − 1 and the sequence therefore has a
period length of pqrk − 1. This leads to a (pq, rk) sequence 〈Yn〉 of type

B; and (Y0Y1 . . . Yr−1)pq, (YrYr+1 . . . Y2r−1)pq, . . . is a (pqr, k) sequence of
type B by a similar argument, since r is relatively prime to pqk.

To get an (m, k) sequence of type B for arbitrary m, we can combine
(pe, k) sequences for each of the prime power factors of m using the
Chinese remainder theorem; but a simpler method is available. Let
〈Xn〉 be an (r, k) sequence of type B, and let 〈Yn〉 be an (s, k)
sequence of type B, where r and s are relatively prime; then 〈(Xn + Yn)
mod rs〉 is an (rs, k) sequence of type B, by exercise 13.

A simple, uniform construction that yields (2, k) sequences for arbitrary
k has been discovered by A. Lempel [IEEE Trans. C-19 (1970), 1204–
1209].

22. By the Chinese remainder theorem, we can find constants a1, . . . , ak
having desired residues modulo each prime divisor of m. If m = p1p2 . . .
pt, the period length will be . In fact, we can
achieve reasonably long periods for arbitrary m (not necessarily
squarefree), as shown in exercise 11.
23. Subtraction may be faster than addition, see exercise 3.2.1.1–5; the
period length is still 2e − 1(255 – 1), by exercise 30. R. Brent has pointed
out that the calculations can be done exactly on floating point numbers in [0
. . 1); see exercise 3.6–11.
24. Run the sequence backwards. In other words, if Zn = Y–n we have Zn =
(Zn–k+l – Zn–k) mod 2 = (Zn–k+l + Zn–k) mod 2.
25. This idea can save most of the overhead of subroutine calls. For
example, suppose Program A is invoked by calling JMP RANDM, where
we have

The cost per random number is then units of time. But suppose we
generate random numbers by saying ‘DEC6 1; J6Z RNGEN; LDA

Y,6’ instead, with the subroutine

The cost is now only . [A similar implementation, expressed in
the C language, is used in The Stanford GraphBase (New York: ACM
Press, 1994), GB FLIP.] Indeed, many applications find it preferable to
generate an array of random numbers all at once. Moreover, the latter
approach is essentially mandatory when we enhance the randomness with
Lüscher’s method; see the C and FORTRAN routines in Section 3.6.
27. Let Jn = ⌊kXn/m⌋. Lemma. After the (k2 + 7k – 2)/2 consecutive
values

occur in the 〈Jn〉 sequence, Algorithm B will have V [j] < m/k for 0 ≤ j
< k, and also Y < m/k. Proof. Let Sn be the set of positions j such that V [j]
< m/k just before Xn is generated, and let jn be the index such that V [jn] ←
Xn. If jn ∉ Sn and Jn = 0, then Sn+1 = Sn ∪ {jn} and jn+1 > 0; if jn ∊ Sn and
Jn = 0, then Sn+1 = Sn and jn+1 = 0. After k + 2 successive 0s, we must
therefore have 0 ∊ Sn and jn+1 = 0. Then after “1 0k+1” we must have {0,
1} ⊆ Sn and jn+1 = 0; after “2 0k” we must have {0, 1, 2} ⊆ Sn and jn+1 =
0; and so on.

Corollary. Let l = (k2 + 7k – 2)/2. If λ ≥ lkl, either Algorithm B yields
a period of length λ or the sequence 〈Xn〉 is poorly distributed.
Proof. The probability that any given length-l pattern of J’s does not occur
in a random sequence of length λ is less than (1 – k−l)λ/l < exp(–k−lλ/l) ≤
e−1; hence the stated pattern should appear. After it does, the subsequent
behavior of Algorithm B will be the same each time it reaches this part of

the period. (When k > 4, we are requiring λ > 1021, so this result is purely
academic. But smaller bounds may be possible.)

29. The following algorithm performs about k2 operations in the worst
case, but its average running time is much faster, perhaps O(log k) or even
O(1):

X1. Set (a0, a1, . . . , ak) ← (x1, . . . , xk, m−1).
X2. Let i be minimum with ai > 0 and i > 0. Do subroutine Y for j = i +

1, . . . , k, while ak > 0.

X3. If a0 > ak, f(x1, . . . , xk) = a0; otherwise if a0 > 0, f(x1, . . . , xk) = a0
– 1; otherwise f(x1, . . . , xk) = ak.

Y1. Set l ← 0. (The subroutine in steps Y1–Y3 essentially tests the
lexicographic relation (ai, . . . , ai+k−1) ≥ (aj, . . . , aj+k−1), decreasing
ak if necessary to make this inequality true. We assume that ak+1 = a1,
ak+2 = a2, etc.)

Y2. If ai+l > aj+l, exit the subroutine. Otherwise if j + l = k, set ak ←
ai+l. Otherwise if ai+l = aj+l, go on to step Y3. Otherwise if j + l > k,
decrease ak by 1 and exit. Otherwise set ak ← 0 and exit.

Y3. Increase l by 1, and return to step Y2 if l < k.
This problem was first solved by H. Fredricksen when m = 2 [J.

Combinatorial Theory 9 (1970), 1–5; A12 (1972), 153–154]; in that
special case the algorithm is simpler and it can be done with k-bit
registers. See also H. Fredricksen and J. Maiorana, Discrete Math. 23
(1978), 207–210, who essentially discovered Algorithm 7.2.1.1F.

30. (a) By exercise 11, it suffices to show that the period length mod 8 is
4(2k − 1); this will be true if and only if x2(2k – 1) ≢ 1 (modulo 8 and
f(x)), if and only if x2k –1 ≢ 1 (modulo 4 and f(x)). Write f(x) = fe(x2) +
xfo(x2), where . Then f(x)2 + f(–x)2 ≡ 2f(x2)
(modulo 8) if and only if fe(x)2 + xfo(x)2 ≡ f(x) (modulo 4); and the latter
condition holds if and only if fe(x)2 ≡ –xfo(x)2 (modulo 4 and f(x)), because
fe(x)2 +xfo(x)2 = f(x)+O(xk−1). Furthermore, working modulo 2 and f(x),

we have fe(x)2 ≡ fe(x2) ≡ xfo(x2) ≡ x2k fo(x)2, hence fe(x) ≡ x2k−1 fo(x).

Therefore fe(x)2 ≡ x2k fo(x)2 (modulo 4 and f(x)), and the hint follows. A

similar argument proves that x2k ≡ x (modulo 4 and f(x)) if and only if f(x)2

+ f(–x)2 ≡ 2(–1)k f(–x2) (modulo 8).
(b) The condition can hold only when l is odd and k = 2l. But then f(x)

is primitive modulo 2 only when k = 2. [Math. Comp. 63 (1994), 389–
401.]
31. We have Xn ≡ (–1)Yn 3Zn mod 2e for some Yn and Zn, by Theorem
3.2.1.2C; hence Yn = (Yn−24 + Yn−55) mod 2 and Zn = (Zn−24 + Zn−55) mod
2e−2. Since Zk is odd if and only if Xk mod 8 = 3 or 5, the period length is
2e−3(255 – 1) by the previous exercise.
32. We can ignore the ‘mod m’ and put it back afterwards. The generating
function g(z) = ∑n Xnzn is a polynomial multiple of 1/(1 – z24 – z55); hence

 is a polynomial divided by (1 – z24 –
z55)(1 – z24 + z55) = 1 – 2z24 + z48 – z110. The first desired recurrence is
therefore X2n = (2X2(n−12) – X2(n−24) + X2(n−55)) mod m. Similarly,

 where ω = e2πi/3, and we find
X3n = (3X3(n−8) – 3X3(n−16) + X3(n−24) + X3(n−55)) mod m.

33. (a) gn+t(z) ≡ ztgn(z) (modulo m and 1 + z31 – z55), by induction on t. (b)
Since z500 mod (1 + z31 – z55) = 792z2 + z5 + 17z6 + 715z9 + 36z12 + z13 +
364z16 + 210z19 +
105z23+462z26+16z30+1287z33+9z36+18z37+1001z40+120z43+z44+455z47+4
62z50+ 120z54 (see Algorithm 4.6.1D), we have X500 = (792X2 + X5 + ... +
120X54) mod m.

[It is interesting to compare the similar formula X165 = (X0 + 3X7 + X14

+ 3X31 + 4X38 + X45) mod m to the sparser recurrence for 〈X3n〉 in the
previous exercise. Lüscher’s method of generating 165 numbers and using
only the first 55 is clearly superior to the idea of generating 165 and using
only X3, X6, . . . , X165.]

34. Let q0 = 0, q1 = 1, qn+1 = cqn + aqn−1. Then we have
, Xn = (qn+1X0 + aqn)/(qnX0 + aqn−1), and xn mod

f(x) ≡ qnx + aqn−1, for n ≥ 1. Thus if X0 = 0 we have Xn = 0 if and only if
xn mod f(x) is a nonzero constant.
35. Conditions (i) and (ii) imply that f(x) is irreducible. For if f(x) = (x –
r1)(x – r2) and r1r2 ≠ 0 we have xp−1 ≡ 1 if r1 ≠ r2 and xp ≡ r1 if r1 = r2.

Let ξ be a primitive root of a field with p2 elements, and suppose ξ2k =
ckξk + ak. The quadratic polynomials we seek are precisely the
polynomials fk(x) = x2 – ckx – ak where 1 ≤ k < p2 – 1 and k ⊥ p + 1. (See
exercise 4.6.2–16.) Each polynomial occurs for two values of k; hence the
number of solutions is .

36. In this case Xn is always odd, so exists mod 2e. The sequence
〈qn〉 defined in answer 34 is 0, 1, 2, 1, 0, 1, 2, 1, . . . modulo 4. We also
have q2n = qn(qn+1 + aqn−1) and ; hence q2n+1 –
aq2n−1 = (qn+1 – aqn−1)(qn+1 + aqn+1). Since qn+1 + aqn+1 = 2 (modulo 4)
when n is even, we deduce that q2e is an odd multiple of 2e and q2e+1 –
aq2e−1 is an odd multiple of 2e+1, for all e ≥ 0. Therefore

And X2e−2 ≡ (q2e−2+1 + aq2e−2)/(q2e−2 + aq2e−2–1) ≢ 1 (modulo 2e), while
X2e−1 ≡ 1. Conversely, we need a mod 4 = 1 and c mod 4 = 2; otherwise
X2n ≡ 1 (modulo 8). [Eichenauer, Lehn, and Topuzoĝlu, Math. Comp. 51
(1988), 757.759.] The low-order bits of this sequence have a short period,
so inversive generators with prime modulus are preferable.
37. We can assume that b1 = 0. By exercise 34, a typical vector in V is

where sj = qbj, , . This vector belongs to the hyperplane H if
and only if

where and . But this
relation is equivalent to a polynomial congruence of degree ≤ d; so it
cannot hold for d + 1 values of x unless it holds for all x, including the
distinct points x = u2, . . . , x = ud. Hence r2 = ... = rd ≡ 0, and r1 ≡ 0. [See
J. Eichenauer-Herrmann, Math. Comp. 56 (1991), 297–301.]

Notes: If we consider the (p + 1 – d) × (d + 1) matrix M with rows {(1,
v1, . . . , vd) | (v1, . . . , vd) ∊ V}, this exercise is equivalent to the assertion
that any d + 1 rows of M are linearly independent modulo p. It is
interesting to plot the points (Xn, Xn+1) for p ≈ 1000 and 0 ≤ n ≤ p; traces
of circles, rather than straight lines, meet the eye.

Section 3.3.1
1. There are k = 11 categories, so the line ν = 10 should be used.
2. , , , , , , , , , , .
3. , only very slightly higher than that obtained from the good

dice! There are two reasons why we do not detect the weighting: (a) The
new probabilities (see exercise 2) are not really very far from the old ones
in Eq. (1). The sum of the two dice tends to smooth out the probabilities; if
we counted instead each of the 36 possible pairs of values, we would
probably detect the difference quite rapidly (assuming that the two dice are
distinguishable). (b) A far more important reason is that n is too small for a
significant difference to be detected. If the same experiment is done for
large enough n, the faulty dice will be discovered (see exercise 12).

4. for 2 ≤ s ≤ 12 and s ≠ 7; . The value of V is ,
which falls between the 75% and 95% entries in Table 1; so it is
reasonable, in spite of the fact that not too many sevens actually turned up.

5. ; ; these values do not differ significantly
from random behavior (being at about the 94% and 86% levels), but they
are mighty close. (The data values in this exercise come from Appendix A,
Table 1.)

6. The probability that Xj ≤ x is F(x), so we have the binomial
distribution discussed in Section 1.2.10: Fn(x) = s/n with probability

; the mean is F(x); the standard deviation is

. [See Eq. 1.2.10–(19). This suggests that a slightly
better statistic would be to define

see exercise 22. We can calculate the mean and standard deviation of Fn(y)
– Fn(x), for x < y, and obtain the covariance of Fn(x) and Fn(y). Using
these facts, it can be shown that for large values of n the function Fn(x)
behaves as a “Brownian motion,” and techniques from this branch of
probability theory may be used to study it. The situation is exploited in
articles by J. L. Doob and M. D. Donsker, Annals Math. Stat. 20 (1949),
393–403 and 23 (1952), 277–281; their approach is generally regarded as
the most enlightening way to study the KS tests.]
7. Set j = n in Eq. (13) to see that is never negative, and that it can get

as high as . Similarly, set j = 1 to make the same observations about
.

8. The new KS statistic was computed for 20 observations. The
distribution of was used as F(x) when the KS statistic was computed.

9. The idea is erroneous, because all of the observations must be
independent. There is a relation between the statistics and on the
same data, so each test should be judged separately. (A high value of one
tends to give a low value of the other.) Similarly, the entries in Figs. 2 and
5, which show 15 tests for each generator, do not show 15 independent
observations, because the maximum-of-5 test is not independent of the
maximum-of-4 test. The three tests of each horizontal row are independent
(because they were done on different parts of the sequence), but the five
tests in a column are somewhat correlated. The net effect of this is that the
95-percent probability levels, etc., which apply to one test, cannot
legitimately be applied to a whole group of tests on the same data. Moral:
When testing a random number generator, we may expect it to “pass” each
of several tests, like the frequency test, maximum test, and run test; but an
array of data from several different tests should not be considered as a unit
since the tests themselves may not be independent. The and
statistics should be considered as two separate tests; a good source of
random numbers will pass both.

10. Each Ys is doubled, and nps is doubled, so the numerators of (6) are
quadrupled while the denominators only double. Hence the new value of V
is twice as high as the old one.
11. The empirical distribution function stays the same; the values of
and are multiplied by .
12. Let . The value of V is n times

and the latter quantity stays bounded away from zero as n increases (since
Zsn−1/4 is bounded with probability 1). Hence the value of V will increase
to a value that is extremely improbable under the ps assumption.

For the KS test, let F(x) be the assumed distribution, G(x) the actual
distribution, and let h = max |G(x) – F(x)|. Take n large enough so that
|Fn(x) – G(x)| > h/2 occurs with very small probability; then |Fn(x) – F(x)|
will be improbably high under the assumed distribution F(x).

13. (The “max” notation should really be replaced by “sup” since a least
upper bound is meant; however, “max” was used in the text to avoid
confusing too many readers by the less familiar “sup” notation.) For
convenience, let X0 = –∞, Xn+1 = +∞. When Xj ≤ x < Xj+1, we have Fn(x) =
j/n; therefore max(Fn(x) – F(x)) = j/n – F (Xj) and max(F(x) – Fn(x)) =
F(Xj+1) – j/n in this interval. As j varies from 0 to n, all real values of x
are considered; this proves that

These equalities are equivalent to (13), since the extra term under the
maximum signs is nonpositive and it must be redundant by exercise 7.
14. The logarithm of the left-hand side simplifies to

and this quantity simplifies further (upon expanding and
realizing that) to

15. The corresponding Jacobian determinant is easily evaluated by (i)
removing the factor rn−1 from the determinant, (ii) expanding the resulting
determinant by the cofactors of the row containing “cos θ1 – sin θ1 0 . . . 0”
(each of the cofactor determinants may be evaluated by induction), and (iii)
recalling that sin2 θ1 + cos2 θ1 = 1.

16.
.

The latter integral is

When all is put together, the final result is

If we set and write

where , we can solve for y to obtain
, which is consistent with the analysis above. The

solution is therefore .
17. (a) Change of variable, xj ← xj + t.

(b) Induction on n; by definition,
.

(c) The left-hand side is

(d) From (b) and (c) we have

.

The numerator in (24) is Pn⌊t⌋(n).

18. We may assume that F(x) = x for 0 ≤ x ≤ 1, as remarked in the text’s
derivation of (24). If 0 ≤ X1 ≤ ... ≤ Xn ≤ 1, let Zj = 1 – Xn+1–j. We have 0 ≤
Z1 ≤ ... ≤ Zn ≤ 1; and evaluated for X1, . . . , Xn equals evaluated
for Z1, . . . , Zn. This symmetrical relation gives a one-to-one
correspondence between sets of equal volume for which and fall in
a given range.
20. For example, the term O(1/n) is – . A
complete expansion has been obtained by H. A. Lauwerier, Zeitschrift für
Wahrscheinlichkeitstheorie und verwandte Gebiete 2 (1963), 61–68.
23. Let m be any number ≥ n. (a) If ⌊mF (Xi)⌋ = ⌊mF(Xj)⌋ and i > j, then i/n
– F(Xi) > j/n – F(Xj). (b) Start with ak = 1.0, bk = 0.0, and ck = 0 for 0 ≤ k
< m. Then do the following for each observation Xj: Set Y ← F(Xj), k ←
⌊mY⌋, ak ← min(ak, Y), bk ← max(bk, Y), ck ← ck + 1. (Assume that F(Xj)
< 1 so that k < m.) Then set j ← 0, r+ ← r− ← 0, and for k = 0, 1, . . . , m −
1 (in this order) do the following whenever ck > 0: Set r− ← max(r−, ak –
j/n), j ← j + ck, r+ ← max(r+, j/n – bk). Finally set ,

. The time required is O(m + n), and the precise value of n
need not be known in advance. (If the estimate is used for ak
and bk, so that only the values ck are actually computed for each k, we
obtain estimates of and good to within , even when m < n.)
[ACM Trans. Math. Software 3 (1977), 60–64.]
25. (a) Since , we
have C = AAT.

(b) Consider the singular value decomposition A = UDVT, where U
and V are orthogonal of sizes m × m and n × n, and D is m × n with entries
dij = [i = j]σj; the singular values σj are all positive. [See, for example,
Golub and Van Loan, Matrix Computations (1996), §2.5.3.] If C C = C

we have SBS = S, where S = DDT and . Thus
, where we let σn+1 = ... = σm = 0, and

. Consequently if i, j ≤
n, and we deduce that DTBD is the n × n identity matrix. Let Y = (Y1 – μ1, . .
. , Ym – μm)T and X = (X1, . . . , Xn)T; it follows that

.

Section 3.3.2
1. The observations for a chi-square test must be independent. In the

second sequence, successive observations are manifestly dependent, since
the second component of one equals the first component of the next.

2. Form t-tuples (Yjt, . . . , Yjt+t−1), for 0 ≤ j < n, and count how many of
them are equal to each possible value. Apply the chi-square test with k = dt

and with probability 1/dt in each category. The number of observations, n,
should be at least 5dt.

3. The probability that exactly j values are examined, namely the
probability that Uj−1 is the nth element that lies in the range α ≤ Uj−1 < β, is
easily seen to be

by enumeration of the possible places in which the other n − 1 occurrences
can appear and by evaluation of the probability of such a pattern. The
generating function is G(z) = (pz/(1 – (1 – p)z))n, which makes sense since
the given distribution is the n-fold convolution of the same thing for n = 1.
Hence the mean and variance are proportional to n; the number of U’s to
be examined is now easily found to have the characteristics (min n, ave
n/p, max ∞, dev). A more detailed discussion of this
probability distribution when n = 1 may be found in the answer to exercise
3.4.1–17; see also the considerably more general results of exercise
2.3.4.2–26.
4. The probability of a gap of length ≥ r is the probability that r

consecutive U’s lie outside the given range, namely (1 – p)r. The

probability of a gap of length exactly r is the probability for length ≥ r
minus the probability for length ≥ (r + 1).

5. As N goes to infinity, so does n (with probability 1), hence this test is
just the same as the gap test described in the text except for the length of the
very last gap. And the text’s gap test certainly is asymptotic to the chi-
square distribution stated, since the length of each gap is independent of the
length of the others. [Notes: A quite complicated proof of this result by E.
Bofinger and V. J. Bofinger appears in Annals Math. Stat. 32 (1961), 524–
534. Their paper is noteworthy because it discusses several interesting
variations of the gap test; they show, for example, that the quantity

does not approach a chi-square distribution, although others had suggested
this statistic as a “stronger” test because Np is the expected value of n.]
7. 5, 3, 5, 6, 5, 5, 4.
8. See exercise 10, with w = d.
9. (Change d to w in steps C1 and C4.) We have

10. As in exercise 3, we really need consider only the case n = 1. The
generating function for the probability that a coupon set has length r is

by the previous exercise and Eq. 1.2.9–(28). The mean and variance are
readily computed using Theorem 1.2.10A and exercise 3.4.1–17. We find
that

The number of U’s examined, as the search for a coupon set is repeated n
times, therefore has the characteristics (min wn, ave μn, max ∞, dev
).
11. | 1 | 2 | 9 8 5 3 | 6 | 7 0 | 4 |.
12. Algorithm R (Data for run test).

R1. [Initialize.] Set j ← –1, and set COUNT[1] ← COUNT[2] ← ... ←
COUNT[6] ← 0. Also set Un ← Un–1, for convenience in terminating
the algorithm.

R2. [Set r zero.] Set r ← 0.
R3. [Is Uj < Uj+1?] Increase r and j by 1. If Uj < Uj+1, repeat this step.
R4. [Record the length.] If r ≥ 6, increase COUNT[6] by one, otherwise

increase COUNT[r] by one.
R5. [Done?] If j < n − 1, return to step R2.

13. There are ways to have
; subtract

 for those ways in which Ui−1 < Ui, and subtract for those
in which Ui+p−1 < Ui+p; then add in 1 for the case that both Ui−1 < Ui and
Ui+p−1 < Ui+p, since this case has been subtracted out twice. (This is a
special case of the inclusion-exclusion principle, which is explained
further in Section 1.3.3.)
14. A run of length r occurs with probability 1/r! – 1/(r + 1)!, assuming
distinct U’s. Therefore we use pr = 1/r! – 1/(r + 1)! for r < t and pt = 1/t!
for runs of length ≥ t.
15. This is always true of F(X) when F is continuous and X has distribution
F; see the remarks following Eq. 3.3.1–(23).
16. (a) Zjt = max(Zj(t−1), Z(j+1)(t−1)). If the Zj(t−1) are stored in memory, it is
therefore a simple matter to transform this array into the set of Zjt with no
auxiliary storage required. (b) With his “improvement,” each of the V’s
should indeed have the stated distribution, but the observations are no
longer independent. In fact, when Uj is a relatively large value, all of Zjt,
Z(j−1)t, . . . , Z(j–t+1)t will be equal to Uj; so we almost have the effect of

repeating the same data t times (and that would multiply V by t, as in
exercise 3.3.1–10).
17. (b) By Binet’s identity, the difference is ,
and this is certainly nonnegative. (c) Therefore if D2 = N2, we must have

, for all pairs j, k. This means that the matrix

has rank < 2, so its rows are linearly dependent. (A more elementary proof
can be given, using the fact that for 1 ≤ j < n implies
the existence of constants α, β such that for all j, provided
that and are not both zero; the latter case can be avoided by a
suitable renumbering.)
18. (a) The numerator is –(U0 – U1)2, the denominator is (U0 – U1)2. (b)
The numerator in this case is –

; the denominator is
. (c) The denominator always equals ∑0≤j<k<n(Uj –

Uk)2, by exercise 1.2.3–30 or 1.2.3–31.
19. The stated result holds, in fact, whenever the joint distribution of U0, . .
. , Un−1 is symmetrical (unchanged under permutations). Let

, X = U0U1 + ... + Un−2Un−1 + Un−1U0, and
. Also let E f(U0, . . . , Un−1) denote the expected value of

f(U0, . . . , Un−1) subject to the condition D ≠ 0. Since D is a symmetric
function, we have E f(U0, . . . , Un−1) = E f(Up(0), . . . , Up(n−1)) for all
permutations p of {0, . . . , n − 1}. Therefore ,

, and E X/D = n
E(U0U1/D). It follows that

. (Strictly
speaking, E S2/D and might be infinite, so we should be careful to
work only with linear combinations of expected values that are known to
exist.)
20. Let E1111, E211, E22, E31, and E4 denote the respective values
E(U0U1U2U3/D2), , , ,

. Then we have
,
,

,
,

E((U0 – U1)4/D2) = 6E22 – 8E31 + 2E4, and the first result follows.

Let δ = α((ln n)/n)1/3, M = α3/2 + 1/3, and m = ⌈1/δ⌉. If we divide the
range of the distribution into m equiprobable parts, we can show that each
part will contain between nδ(1 – δ) and nδ(1 + δ) points, with probability
≥ 1 – O(n−M), using the tail inequalities 1.2.10–(24) and (25). Hence, if
the distribution is uniform, with at least this
probability. If D is not in that range, we have 0 ≤ (U0 – U1)4/D2 ≤ 1. Since

, we may conclude that
.

Note: Let N be the numerator of (23). When the variables all have the
normal distribution, W. J. Dixon proved that the expected value of
e(wN+zD)/n is

Differentiating with respect to w and integrating with respect to z, he found
the moments ,

, when n > 2k. In particular, the variance
in this case is exactly 1/(n + 1) – 1/(n − 1)2. [Annals of Math. Stat. 15
(1944), 119–144.]
21. The successive values of cr−1 = s − 1 in step P2 are 2, 3, 7, 6, 4, 2, 2,
1, 0; hence f = 886862.
22. 1024 = 6! + 2 · 5! + 2 · 4! + 2 · 3! + 2 · 2! + 0 · 1!, so we want the
successive values of s − 1 in step P2 to be 0, 0, 0, 1, 2, 2, 2, 2, 0; working
backwards, the permutation is (9, 6, 5, 2, 3, 4, 0, 1, 7, 8).
23. Let .
Then we have

more compactly, Q(x) = ∑y P′(y)P (x – y). Hence, using the general
inequality (E X)2 ≤ E X2, we have ∑x(Q(x) – d−t)2 = ∑x(∑y P′(y)(P (x – y)
– d−t))2 ≤ ∑x ∑y P′(y)(P (x – y) – d−t)2 = ∑y P′(y) ∑x(P (x) – d−t)2 = ∑x(P
(x) – d− t) 2. [See G. Marsaglia, Comp. Sci. and Statistics: Symp. on the
Interface 16 (1984), 5–6. The result is of interest only when d t ≤ 2λ, since
each P (x) is a multiple of 1/λ.]
24. Write k : α and α : k for the first k and last k elements of string α. Let
K(α, β) = [α = β]/P (α), and let be the d t × d t matrix with entries αβ =
K(α, β) – K(t − 1 : α, t − 1 : β). Let C be the covariance matrix of the
random variables N(α) for |α| = t, divided by n. These variables are subject
to the constraint for each of dt−1 strings α,
and we also have ∑|α|=t N(α) = n; but all other linear constraints are
derivable from these (see Theorem 2.3.4.2G). Therefore C has rank d t –
dt−1, and by exercise 3.3.1–25 we need only show that C C = C.
It is not difficult to verify that cαβ = P (αβ) ∑|k|<t Tk(α, β), where Tk(α, β)
is a term corresponding to the overlap that might occur when we
superimpose β on α and slide it k positions to the right:

For example, if d = 2, t = 5, α = 01101, and β = 10101, we have cαβ =
P(0)4P (1)6 × (P(01)−1 + P(101)−1 + P(1)−1 – 9). Entry αβ of C C is
therefore P (αβ) times

Given k and l, the product Tk(α, γa)(K(a, b) – 1)Tl(γb, β) expands to eight
terms, each of which usually sums to ±1 when multiplied by P(γab) and
summed over all γab. For example, the sum of P(γab)K(2 : α, γa : 2)K(a,
b)K(3 : γb, β : 3), when α = a1 . . . at, β = b1 . . . bt, γ = c1 . . . ct−1, and t ≥
5, is the sum of P (c4 . . . ct−2), which is 1. If t = 4, the same sum would be
K(a1, b4), but it would cancel with the sum of P (γab)K(2 : α, γa : 2)(–
1)K(3 : γb, β : 3). The net result is therefore 0 unless k ≤ 0 ≤ l; otherwise it

turns out to be K(i : (α : i – k), i : (β : i + l)) – K(i − 1 : (α : i – k), i − 1 :
(β : i + l)), where i = min(t + k, t – l). The sum over k and l telescopes to
cαβ.
25. Empirical tests show, in fact, that when (22) is generalized to arbitrary
t the ratios of corresponding elements of and are very
nearly –t, when t ≥ 5. For example, when t = 6 they all lie between –6.039
and –6.111; when t = 20 they all lie between –20.039 and –20.045. This
phenomenon demands an explanation.
26. (a) The vectors (S1, . . . , Sn) are uniformly distributed points in the (n
− 1)-dimensional polyhedron defined by the inequalities S1 ≥ 0, . . . , Sn ≥
0 in the hyper-plane S1 + ... + Sn = 1. An easy induction proves that

To get the probability, divide this integral by its value in the special case
s1 = ... = sn = 0. [Bruno de Finetti, Giornale Istituto Italiano degli Attuari
27 (1964), 151–173.]

(b) The probability that S(1) ≥ s is the probability that S1 ≥ s, . . . , Sn ≥
s.

(c) The probability that S(k) ≥ s is the probability that at most k − 1 of
the Sj are < s; hence 1 – Fk(s) = G1(s) + ... + Gk−1(s), where Gj(s) is the
probability that exactly j spacings are < s. By symmetry, Gj(s) is times
the probability that S1 < s, . . . , Sj < s, Sj+1 ≥ s, . . . , Sn ≥ s; and the latter is
Pr(S1 < s, . . . , Sj–1 < s, Sj ≥ 0, Sj+1 ≥ s, . . . , Sn ≥ s)–Pr(S1 < s, . . . , Sj–1 <
s, Sj ≥ s, . . . , Sn ≥ s). Repeated application of (a) shows that

; hence

In particular, the largest spacing S(n) has distribution

[Incidentally, the similar quantity xn−1(n − 1)!−1Fn(x−1) turns out to be the
density function for the sum U1 + ... + Un of uniform deviates.]

(d) From the formulas ds and
, we find E S(k) = n−1(Hn–

Hn–k) and, with a bit of algebra,
. Thus the

variance of S(k) is equal to
.

[The distributions Fk(s) were first found by W. A. Whitworth, in
problem 667 of DCC Exercises in Choice and Chance (Cambridge,
1897). Whitworth also discovered an elegant way to compute the
expected value of any polynomial in the functions Gk(s) = Fk(s) – Fk+1(s);
this was published in a booklet entitled The Expectation of Parts
(Cambridge, 1898), and incorporated into the fifth edition of Choice and
Chance (1901). Simplified expressions for the mean and variance and for
a variety of more general spacing statistics were found by Barton and
David, J. Royal Stat. Soc. B18 (1956), 79–94. See R. Pyke, J. Royal Stat.
Soc. B27 (1965), 395–449, for a survey of the ways in which statisticians
have traditionally analyzed spacings as clues to potential biases in data.]

27. Consider the polyhedron in the hyperplane S1 + ... + Sn = 1 defined by
the inequalities S1 ≥ 0, . . . , Sn ≥ 0. This polyhedron consists of n!
congruent subpolyhedra defined by the ordering of the S’s (assuming that
the S’s are distinct), and the operation of sorting is an n!-to-1 folding of the
large polyhedron to the subpolyhedron in which S1 ≤ ... ≤ Sn. The
transformation that takes (S(1), . . . , S(n)) to is a 1-to-1
mapping that expands differential volumes by the factor n!. It takes the
vertices , , ..., (0, ..., 0,1) of the
subpolyhedron into the respective vertices (1, 0, . . . , 0), (0, 1, 0, . . . , 0), .
. . , (0, . . . , 0, 1), linearly stretching and distorting the overall shape in the
process. (The Euclidean distance between vertices
and in the subpolyhedron is |j−1– k−1|1/2; the
transformation produces a regular simplex in which all n vertices are
apart.)

The behavior of iterated spacings is easiest to understand if we
examine the details graphically when n = 3. In this case the polyhedron is
simply an equilateral triangle, whose points are represented with
barycentric coordinates (x, y, z), x + y + z = 1. The accompanying diagram
illustrates the first two levels of a recursive decomposition of this
triangle. Each of the 62 subtriangles has been labeled with a two-digit
code pq, where p represents the applicable permutation when (x, y, z) =
(S1, S2, S3) is sorted into (S(1), S(2), S(3)), and q represents the permutation
in the next stage when , , and are sorted, according to the
following code:

For example, the points of subtriangle 34 have S2 < S3 < S1 and
. We can continue this process to infinitely many levels;

all points of the triangle with irrational barycentric coordinates thereby
acquire a unique representation as an infinite radix-6 expansion. A
tetrahedron can be subdivided similarly into 24, 242, 243, . . .
subtetrahedra, and in general this procedure constructs a radix-n!
expansion for the points of any (n − 1)-dimensional simplex.

When n = 2 the process is especially simple: If x , the
transformation takes spacings (x, 1 – x) = (x, y) into either (2x mod 1, 2y

mod 1) or (2y mod 1, 2x mod 1), depending on whether x < y or x > y.
Repeated tests therefore essentially shift the binary representation left one
bit, possibly complementing the result. After at most e+1 iterations on e-
bit numbers the process must converge to the fixed point (0, 1).
Permutation coding in the case n = 2 corresponds simply to folding and
stretching a line; the first four levels of subdivision have the following
four-bit codes:

This sequence is exactly the Gray binary code studied in Section 7.2.1. In
general, the radix-n! permutation code for an n-simplex has the property
that adjacent regions have identical codes except in one digit position.
Each iteration of the spacing transformation shifts off the leftmost digit of
the representation of each point. Note that equal birthday spacings are
points near the boundary of the first-level decomposition.

This fundamental transformation from (S1, . . . , Sn) to is
implicit in Whitworth’s proof of Proposition LVI in the fifth edition of
Choice and Chance (see the reference in answer 26). It was first studied
explicitly by J. Durbin [Biometrika 48 (1961), 41–55], who was inspired
by a similar construction of P. V. Sukhatme [Annals of Eugenics 8 (1937),
52–56]. The permutation coding for iterated spacings was introduced by
H. E. Daniels [Biometrika 49 (1962), 139–149].

28. (a) The number of partitions of m into n distinct positive parts is
, by exercise 5.1.1–16. These partitions can be permuted

in n! ways to yield n-tuples (y1, . . . , yn) with 0 = y1 < y2 < ... < yn < m;
and each of these n-tuples leads to (n − 1)! n-tuples that have y1 = 0 and 0
< y2, . . . , yn < m. Now add a constant mod m to each yj; this preserves the
spacings. Hence .

(b) Zero spacings correspond to balls in the same urn, and they
contribute s − 1 to the count of equal spacings. Therefore

.
(c) Since , the probability is

29. By the previous answer and exercise 5.1.1–15 we have
. When r = 1, the n! in

our previous derivation becomes n!/2, and the number of solutions to 0 <
s1 < ... < sk ≤ sk+1 < ... < sn with s1 + ... + sn = m is the number of solutions
to 0 ≤ s1 – 1 ≤ ... ≤ sk – k ≤ sk+1 – k ≤ ... ≤ sn – n + 1 with

.
Hence .
A similar argument shows that

We can obtain bnr(z) for general r from the formula

where ck = 1 + bk + bkbk–1 + ... + bk. . . b2b1 = 1 + bkck–1. (The special
case w = 1 is interesting because the left side sums to (1 – z)−n/n! in that
case.)
30. This is a good problem for the saddle point method [N. G. de Bruijn,
Asymptotic Methods in Analysis (North-Holland, 1961), Chapter 5]. We
have , where f(z) = –m ln .
Let ρ = n/m and ; integrating on the path z = e−ρ+itδ gives

. It is convenient to use the
identity

where g = g(z) is any analytic function and is the operator . When the
function jg is evaluated at ez the result is the same as when g(ez) is
differentiated j times with respect to z. This principle leads to the formula

because of another handy identity,

Therefore we obtain an asymptotic expansion of the integrand,

where , etc.; and it turns
out that cj = O(n−3) for j ≥ 3. Factoring out the constant term

leaves us with an integral whose integrand is exponentially small when |t|
≥ nε. We can ignore larger values of t, because partial fraction expansion
shows that the integrand is O((m/n)n/2); none of the other roots of unity
occurs more than n/2 times as a pole of the denominator. Hence we are
allowed to “trade tails” [CMath, §9.4] and integrate over all t. The
formulas [j even] and

 suffice to complete the
evaluation.

With in place of pn(m) the calculation
proceeds in the way but with c1 increased by and with
the additional factor exp . We get

this matches the formula for pn(m) except that α has been changed to –α. (In
fact, if we define and

, the generating function
 satisfies Rn(1/z) = (–

1)nRn(z). This implies a duality formula rn(–m) = (–1)n − 1rn(m), in the
sense that this equation is identically true when we express rn(m) as a
polynomial in m and roots of unity. Therefore we may say that qn(m) =

pn(–m). A general treatment of such duality can be found in G. Pólya,
Math. Zeitschrift 29 (1928), 549–640, §44.) For further information see
G. Szekeres, Quarterly J. Math. Oxford 2 (1951), 85–108; 4 (1953), 96–
111.

The exact value of qn(m) when m = 225 and n = 512 is 7.08069 34695
90264 094 . . . × 101514; our approximation gives the estimate
7.080693501 × 101514.

The probability that the birthday test finds R = 0 spacings is bn00(m)/mn

= n! (n − 1)! m1–nqn(m) = e−α/4 + O(n−1), by exercise 28, because the
contribution from . Inserting the
factor into the integrand for qn(m) has the
effect of multiplying the result by , because

.
Similarly, the extra factor ∑1≤j<k<n(z−j – 1)(z−k – 1) essentially multiplies
by , plus O(n−1); other contributions to the probability that
R = 2 are O(n−1). In this way we find that the probability of r equal
spacings is e−α/4(α/4)r/r! + O(n−1), a Poisson distribution; more
complicated terms arise if we carry the expansion out to O(n−2).

31. The 79 bits consist of 24 sets of three, {Yn, Yn+31, Yn+55}, {Yn+1, Yn+32,
Yn+56}, . . . , {Yn+23, Yn+54, Yn+78}, plus 7 additional bits Yn+24, . . . , Yn+30.
The latter bits are equally likely to be 0 or 1, but in each group of three the
probability is that the bits will be {0, 0, 0} and that they will be {0, 1,
1}. Therefore the probability generating function for the sum of bits is

, a polynomial of degree 55. (Well, not quite;
strictly speaking, it is (255f(z) – 1)/(255 – 1), because the all-0 case is
excluded.) The coefficients of 255f(z) are easily computed by machine, and
we find that the probability of more 1s than 0s is
18509401282464000/(255 – 1) ≈ 0.51374.

Notes: This exercise is based on the discovery by Vattulainen, Ala-
Nissila, and Kankaala [Physical Review Letters 73 (1994), 2513–2516]
that a lagged Fibonacci generator fails a more complicated two-
dimensional random walk test. Notice that the sequence Y2n, Y2n+2, . . .

will fail the test too, because it satisfies the same recurrence. The bias
toward 1s also carries over into the subsequence consisting of the even-
valued elements generated by Xn = (Xn−55 ± Xn−24) mod 2e; we tend to
have more occurrences of (. . . 10)2 than (. . . 00)2 in binary notation.

There’s nothing magic about the number 79 in this test; experiments
show that a significant bias towards a majority of 1s is present also in
random walks of length 101 or 1001 or 10001. But a formal proof seems
to be difficult. After 86 steps the generating function is

; then we get the factors (1 + 2z2 + 5z3 + 5z4

+ 10z5+8z6+z7)/32; then
(1+2z2+7z3+7z4+15z5+25z6+29z7+28z8+13z9+z10)/128, etc. The analysis
becomes more and more complicated as the walks get longer.

Intuitively, the preponderance of 1s that arise in the first 79 steps ought
to persist as long as the subsequent numbers are reasonably balanced
between 0 and 1. The accompanying diagram shows the results of a much
smaller case, the generator Yn = (Yn−2 +Yn−11) mod 2, which is easy to
analyze exhaustively. In this case random walks of length 445 have a 64%
chance of finishing to the right of the starting point; this bias disappears
only when the length of the walk increases to half the period length (after
which, of course, 0s are more likely, although the full period does lack
one 0).

The probability that 1s outnumber 0s in random m-tuples when Yn =
Yn−2 ⊕ Yn−11.

Lüscher’s discarding technique can be used to avoid the bias toward 1s
(see the end of Section 3.2.2). For example, with lags 55 and 24, no
deviation for randomness is observed for random walks of length 1001
when the numbers are generated in batches of 165, if only the first 55
numbers of each batch are used.

32. Not if, say, X and Y each take the values (–n, m) with the respective
probabilities (m/(m+n), n/(m+n)), where m < n < (1 +)m. [Suppose
two competitors differ by X after playing one round of golf. Then they are
of equal strength based on their mean scores, but one might be more likely
to win a one-round tournament while the other will more often win in two
rounds. See T. M. Cover, Amer. Statistician 43 (1989), 277–278, for a
discussion of similar phenomena.]
33. We essentially want . Let m =
k – 2l and n = l; the desired coefficient is , where

 ln z. It is convenient (and

saddle-wise) to integrate along the path z = e∊u where ∊2 = 4/(m + 3n) and
u = –1 + it for –∞ < t < ∞. We have g(e∊u) = –∊u/2+u2/2+c3∊u3 +c4∊2u4

+..., where ck = ∊2 kg(1)/k! = O(1). Also
. Multiplying out the integrand

and using the facts that and
 ... yields the

asymptotic formula
. If m + 3n is even,

the same asymptotic formula holds, provided that we give half of the
coefficient of z(m+3n)/2 to the 1s and half to the 0s. (This coefficient is

34. The number of strings of length n that exclude a given two-letter
substring or pair of substrings is the coefficient of zn in an appropriate
generating function, and it can be written cenτ mn + O(1) where c and τ
have series expansions in powers of ∊ = 1/m:

(Here a, b, c, d denote distinct letters and p(z) = 1 – (m − 1)(z + z2). It
turns out that the effect of excluding {ab, ba} or {aa, ab} is equivalent to
excluding {aa, bb}; excluding {ab, ac} is equivalent to excluding {ab,
cd}.) Let be the coefficient of zn in Case j and let X be the total
number of two-letter combinations that do not appear. Then

 and

35. (a)
,

because .

(b) Let ξk = a1ξk−1 + ... + ak, and define the linear function f as in the
first solution to exercise 3.2.2–16. Then Yn = f(ξn), and it follows that Yn+i

+ Yn+j = f(ξn+i) + f(ξn+j) ≡ f(ξn+i + ξn+j) = f(ξnα) (modulo 2), where α is
nonzero when i ≢ j (modulo N). Hence

.
(c) and

when each Zn is truly random. Thus the mean and variance of Sm are very
close to the correct values when m ≪ N.

(d) . If
any of h, i, or j are equal, the sum on n is 1; hence

Arguing as in (b), we find that the sum on n will be 1 if ξh +ξi +ξj ≠ 0;
otherwise it will be –N. Thus , where B =
∑0≤h<i<j<m[ξh + ξi + ξj = 0] = ∑0<i<j<m[1 + ξi + ξj = 0] (m – j). Finally
observe that 1 + ξi = ξj in the field if and only if f(ξi+l) = f(ξj+l) for 0 < l <
k, assuming that 0 < i < j < N.

(e) The only nonzero term occurs for i = 31 and j = 55; hence B = 79 –
55 = 24. (The next nonzero term occurs when i = 62 and j = 110.) In a truly
random situation, should be zero, so this value is

distinctly nonrandom. Curiously it is negative, although exercise 31
showed that S79 is usually positive. The value of S79 tends to be more
seriously negative when it does dip below zero.

Reference: IEEE Trans. IT-14 (1968), 569–576. Experiments by M.
Matsumoto and Y. Kurita [ACM Trans. Modeling and Comp. Simul. 2
(1992), 179–194; 4 (1994), 254–266] confirm that trinomial-based
generators fail such distribution tests even when the lags are quite large.
See also ACM Trans. Modeling and Comp. Simul. 6 (1996), 99–106,
where they exhibit exponentially long subsequences of low density.

Section 3.3.3
1. .
2. , which converges for all x. (The

representation in Eq. (24) may be considered a “finite” Fourier series, for
the case when x is rational.)

3. The sum is ((2nx)) – ((x)). [See Trans. Amer. Math. Soc. 65 (1949),
401.]

4. dmax = 210 · 5. Note that we have Xn+1 < Xn with probability ,
where

hence every potency-10 generator is respectable from the standpoint of
Theorem P.
5. An intermediate result:

6. (a) Use induction and the formula

(b) Use the fact that −
.

7. Take m = h, n = k, k = 2 in the second formula of exercise 1.2.4–45:

The sums on the left simplify, and by standard manipulations we get

Since σ(1, k, 0) = (k − 1)(k − 2)/k, this reduces to the reciprocity law.
8. See Duke Math. J. 21 (1954), 391–397.
9. Begin with the interesting identity

,
for which a simple geometric proof is possible, assuming that p ⊥ q, q ⊥ r,
and r ⊥ p. [U. Dieter, Abh. Math. Sem. Univ. Hamburg 21 (1957), 109–
125.]
10. Obviously σ(k – h, k, c) = –σ(h, k, –c), by (8). Replace j by k – j in
definition (16), to deduce that σ(h, k, c) = σ(h, k, –c).

11. (a) ; use

(10) to sum on i.

(b) ; now

sum.
12. Since runs through the same values as in some order,
Cauchy’s inequality implies that σ(h, k, c)2 ≤ σ(h, k, 0)2; and σ(1, k, 0) may
be summed directly, see exercise 7.
13.

if hh′ ≡ 1 (modulo k).
14. (238 – 3 · 220 + 5)/(270 – 1) ≈ 2−32. An extremely satisfactory global
value, in spite of the local nonrandomness!
15. Replace c2 where it appears in (19) by ⌊c⌋⌈c⌉.
16. The hinted identity is equivalent to m1 = prmr+1 + pr−1mr+2 for 1 ≤ r ≤ t;
this follows by induction. (See also exercise 4.5.3–32.) Now replace cj by

∑j≤r≤t
brmr+1 and compare coefficients of bibj on both sides of the identity to

be proved.
Note: For all exponents e ≥ 1, a similar argument gives

17. During this algorithm we will have k = mj, h = mj+1, c = cj, p = pj−1, p′
= pj−2, s = (–1)j+1 for j = 1, 2, . . . , t + 1.

D1. [Initialize.] Set A ← 0, B ← h, p ← 1, p′ ← 0, s ← 1.
D2. [Divide.] Set a ← ⌊k/h⌋, b ← ⌊c/h⌋, r ← c mod h. (Now a = aj, b

= bj, and r = cj+1.)
D3. [Accumulate.] Set A ← A + (a – 6b)s, B ← B + 6bp(c + r)s. If r ≠ 0

or c = 0, set A ← A – 3s. If h = 1, set B ← B + ps. (This subtracts
3e(mj+1, cj) and also takes care of the ∑(–1)j +1/mjmj+1 terms.)

D4. [Prepare for next iteration.] Set c ← r, s ← –s; set r ← k – ah, k ←
h, h ← r; set r ← ap + p′, p′ ← p, p ← r. If h > 0, return to D2.

At the conclusion of this algorithm, p will be equal to the original value
k0 of k, so the desired answer will be A+B/p. The final value of p′ will be
h′ if s < 0, otherwise p′ will be k0 – h′. It would be possible to maintain B
in the range 0 ≤ B < k0, by making appropriate adjustments to A, thereby
requiring only single-precision operations (with double-precision
products and dividends) if k0 is a single-precision number.

18. A moment’s thought shows that the formula

is in fact valid for all z ≥ 0, not only when k ≥ z. Writing
 and

carrying out the sums yields

where d = gcd(h, k). [This formula allows us to express the probability
that Xn+1 < Xn < α in terms of generalized Dedekind sums, given α.]
19. The desired probability is

where |∊| ≤ 2.5/m.
[This approach is due to U. Dieter. The discrepancy between the true

probability and the ideal value is bounded by ,
according to Theorem K; conversely, by choosing α, β, α′, β′ appropriately
we will obtain a discrepancy of at least half this bound when there are
large partial quotients, using the fact that Theorem K is “best possible.”
Note that when the discrepancy cannot exceed , so
even the locally nonrandom generator of exercise 14 will look good on
the serial test over the full period; it appears that we should insist on an
extremely small discrepancy.]

20.
;

and
,

.
Let s(x′) = s(s(x″)) = 0 and d = gcd(b, m). The sum now reduces to

where S1 = σ(a, m, c), S2 = σ(a2, m, ac + c), S3 = σ(ab, m, ac), S4 = σ(1, m,
0) = (m − 1)(m − 2)/m, S5 = σ(a, m, c), S6 = σ(b, m, c), S7 = –σ(a′ – 1, m,
a′c), and S8 = –σ(a′(a′ – 1), m, (a′)2c), if a′a ≡ 1 (modulo m); and finally

where c0 = c mod d. The grand total will be near when d is small and
when the fractions a/m, (a2 mod m)/m, (ab mod m)/m, b/m, (a′ – 1)/m, (a′
(a′ – 1) mod m)/m, ((ad) mod m)/m all have small partial quotients. (Note
that a′ – 1 ≡ –b + b2 – ..., as in exercise 3.2.1.3–7.)
21. Notice first that the main integral decomposes nicely:

Therefore .
22. We have s(x) < x in the disjoint intervals

, which have total length

23. We have s(s(x)) < s(x) < x when x is in and ax + θ – k is
in , for 0 < j ≤ k < a; or when x is in and ax + θ – a
is either in for 0 < j ≤ ⌊aθ⌋ or in . The
desired probability is

which is + (1 – 3θ + 3θ2)/6a + O(1/a2) for large a. Note that 1 – 3θ +
3θ2 ≥ , so θ can’t be chosen to make this probability come out right.
24. Proceed as in the previous exercise; the sum of the interval lengths is

To compute the average length, let pk be the probability of a run of length ≥
k; the average is

The value for a truly random sequence would be e − 1; and our value is e −
1 + (e/2 – 1)/a + O(1/a2). [Note: The same result holds for an ascending
run, since we have Un > Un+1 if and only if 1 – Un < 1 – Un+1. This would
lead us to suspect that runs in linear congruential sequences might be
slightly longer than normal, so the run test should be applied to such
generators.]
25. x must be in the interval [(k + α′ – θ)/a . . (k + β′ – θ)/a) for some k,
and also in the interval [α . . β). Let k0 = ⌈aα + θ – β′⌉, k1 = ⌈aβ + θ – β′⌉.
With due regard to boundary conditions, we get the probability

This is (β – α)(β′ – α′) + ∊, where |∊| < 2 (β′ – α′)/α.
26. See Fig. A–1. The orderings U1 < U3 < U2 and U2 < U3 < U1 are
impossible; the other four each have probability .

Fig. A–1. Permutation regions for the Fibonacci generator.

27. Un = {Fn−1U0 + FnU1}. We need to have both Fk−1U0 + FkU1 < 1 and
FkU0 + Fk+1U1 > 1. The half-unit-square in which U0 > U1 is broken up as

shown in Fig. A–2, with various values of k indicated. The probability for
a run of length k is , if k = 1; it is 1/Fk−1 Fk+1 – 1/Fk Fk+2, if k > 1. The
corresponding probabilities for a random sequence are 2k/(k + 1)! – 2(k +
1)/(k + 2)!; the following table compares the first few values.

Fig. A–2. Run-length regions for the Fibonacci generator.

28. Fig. A–3 shows the various regions in the general case. The “213”
region means U2 < U1 < U3, if U1 and U2 are chosen at random; the “321”
region means that U3 < U2 < U1, etc. The probabilities for 123 and 321 are

; the probabilities for all other cases are .
To have all equal to , we must have 1 – 6α + 6α2 = 0. [This exercise
establishes a theorem due to J. N. Franklin, Math. Comp. 17 (1963), 28–
59, Theorem 13; other results of Franklin’s paper are related to exercises
22 and 23.]

Fig. A–3. Permutation regions for a generator with potency 2; α = (a −
1)c/m.

Section 3.3.4
1. For generators of maximum period, the 1-D accuracy ν1 is always m,

and μ1 = 2.
2. Let V be the matrix whose rows are V1, . . . , Vt. To minimize Y · Y,

subject to the condition that Y ≠ (0, . . . , 0) and V Y is an integer column
vector X, is equivalent to minimizing (V−1X) · (V−1X), subject to the
condition that X is a nonzero integer column vector. The columns of V−1 are
U1, . . . , Ut.

3. a2 ≡ 2a−1 and a3 ≡ 3a−2 (modulo m). By considering all short
solutions of (15), we find that and , for the respective
vectors (1, –2, 1) and (1, –1, –1, 1), except in the following cases:

4. (a) The unique choice for (x1, x2) is
, and this is ≡

 ≡ (0, 0) (modulo 1); that is, x1

and x2 are integers. (b) When (x1, x2) ≠ (0, 0), we have (x1u11 + x2u21)2 +
(x1u12 + x2u22)2 =

, and by
hypothesis this is .

[Note that this is a stronger result than Lemma A, which tells us only
that and that

, where the latter can be ≥ 1. The idea is
essentially Gauss’s notion of a reduced binary quadratic form,
Disquisitiones Arithmeticæ (Leipzig: 1801), §171.]
5. Conditions (30) remain invariant; hence h cannot be zero in step S2,

when a is relatively prime to m. Since h always decreases in that step, S2
eventually terminates with u2 + v2 ≥ s. Notice that pp′ ≤ 0 throughout the
calculation.

The hinted inequality surely holds the first time step S2 is encountered.
The integer q′ that minimizes (h′ – q′h)2 + (p′ – q′p)2 is q′ = round((h′h +

p′p)/(h2 + p2)), by Eq. (24). If (h′ – q′h)2 + (p′ – q′p)2 < h2 + p2 we must
have q′ ≠ 0, q′ ≠ –1, hence (p′ – q′p)2 ≥ p2, hence (h′ – q′h)2 < h2, i.e., |h′ –
q′h| < h, i.e., q′ is q or q + 1. We have

, so if u2 + v2 < s
the next iteration of step S2 will preserve the assumption in the hint. If u2

+ v2 ≥ s > (u – h)2 + (v – p)2, we have 2 |h(u−h)+p(v−p)| =
2(h(h−u)+p(p−v)) = (u−h)2+(v−p)2+h2+p2–(u2+v2) ≤ (u – h)2 + (v – p)2 ≤
h2 + p2, hence (u – h)2 + (v – p)2 is minimal by exercise 4. Finally if both
u2 + v2 and (u – h)2 + (v – p)2 are ≥ s, let u′ = h′ – q′h, v′ = p′ – q′p; then 2
|hu′ + pv′| ≤ h2 + p2 ≤ u′2 + v′2, and h2 + p2 is minimal by exercise 4.

[Generalizations to finding the shortest 2-D vector with respect to other
metrics are discussed by Kaib and Schnorr, J. Algorithms 21 (1996),
565–578.]
6. If u2 + v2 ≥ s > (u – h)2 + (v – p)2 in the previous answer, we have (v –

p)2 > v2, hence (u – h)2 < u2; and if q = aj, so that h′ = ajh + u, we must
have aj+1 = 1. It follows that , in the notation
of exercise 3.3.3–16.

Now we have m0 = mjpj + mj+1pj−1 = ajmjpj–1 + mjpj–2 + mj+1pj−1 < (aj
+ 1 + 1/aj)mjpj–1 ≤ (A + 1 + 1/A)mjpj–1, and ,
hence the result.
7. We shall prove, using condition (19), that Uj · Uk = 0 for all k ≠ j if

and only if Vj · Vk = 0 for all k ≠ j. Assume that Uj · Uk = 0 for all k ≠ j,
and let Uj = α1V1 + ...+αtVt. Then Uj · Uk = αk for all k, hence Uj = αjVj,
and for all k ≠ j. A symmetric argument
proves the converse.

8. Clearly νt+1 ≤ νt (a fact used implicitly in Algorithm S, since s is not
changed when t increases). For t = 2 this is equivalent to

, i.e., . This bound
reduces to with the given parameters, but for large m and fixed
μ2 the bound (40) is better.

9. Let f(y1, . . . , yt) = θ; then gcd(y1, . . . , yt) = 1, so there is an integer
matrix W of determinant 1 having (y1, . . . , yt) as its first row. (Prove the
latter fact by induction on the magnitude of the smallest nonzero entry in the
row.) Now if X = (x1, . . . , xt) is a row vector, we have XW = X′ if and only
if X = X′W−1, and W−1 is an integer matrix of determinant 1, hence the form
g defined by W U satisfies g(x1, . . . , xt) = f(x′1, . . . , x′t); furthermore g(1,
0, . . . , 0) = θ.

Without loss of generality, assume that f = g. If now S is any orthogonal
matrix, the matrix US defines the same form as U, since (XUS)(XUS)T =
(XU)(XU)T. Choosing S so that its first column is a multiple of and its
other columns are any suitable vectors, we have

for some α1, α2, . . . , αt and some (t − 1) × (t − 1) matrix U′. Hence f(x1, . .
. , xt) = (α1x1 + ... + αtxt)2 + h(x2, . . . , xt). It follows that [in fact,

 for 1 ≤ j ≤ t]. and that h is a positive definite
quadratic form defined by U′, where det . By induction
on t, there are integers (x2, . . . , xt) with

and for these integer values we can choose x1 so that
; equivalently,

. Hence

and the desired inequality follows immediately.
[Note: For t = 2 the result is best possible. For general t, Hermite’s

theorem implies that μt ≤ πt/2(4/3)t(t−1)/4/(t/2)! . A fundamental theorem
due to Minkowski (“Every t-dimensional convex set symmetric about the
origin with volume ≥ 2t contains a nonzero integer point”) gives μt ≤ 2t;

this is stronger than Hermite’s theorem for t ≥ 9. Even stronger results are
known, see (41).]

10. Since y1 and y2 are relatively prime, we can solve u1y2 – u2y1 = m;
furthermore (u1+qy1)y2–(u2+qy2)y1 = m for all q, so we can ensure that

 by choosing an appropriate integer q. Now
y2(u1+au2) ≡ y2u1–y1u2 ≡ 0 (modulo m), and y2 must be relatively prime to
m, hence u1 + au2 ≡ 0. Finally let |u1y1 + u2y2| = αm, ,

; we have , and it remains to be shown that
. and βγ ≥ 1. The identity

 implies that 1 +
α2 = βγ. If , we have 2αγ > 1 + α2, that is,

. But implies that , a
contradiction.
11. Since a is odd, y1 + y2 must be even. To avoid solutions with y1 and y2
both even, let y1 = x1 + x2, y2 = x1 – x2, and solve ,
with x1 ⊥ x2 and x1 even; the corresponding multiplier a will be the
solution to (x2 – x1)a ≡ x2 + x1 (modulo 2e). It is not difficult to prove that
a ≡ 1 (modulo 2k +1) if and only if x1 ≡ 0 (modulo 2k), so we get the best
potency when x1 mod 4 = 2. The problem reduces to finding relatively
prime solutions to where N is a large integer of the form 4k
+ 1. By factoring N over the Gaussian integers, we can see that solutions
exist if and only if each prime factor of N (over the usual integers) has the
form 4k + 1.

According to a famous theorem of Fermat, every prime p of the form 4k
+ 1 can be written p = u2 + v2 = (u + iv)(u – iv), v even, in a unique way
except for the signs of u and v. The numbers u and v can be calculated
efficiently by solving x2 ≡ –1 (modulo p), then calculating u + iv = gcd(x
+ i, p) by Euclid’s algorithm over the Gaussian integers. [We can take x =
n(p−1)/4 mod p for almost half of all integers n. This application of a
Euclidean algorithm is essentially the same as finding the least nonzero u2

+ v2 such that u ± xv ≡ 0 (modulo p). The values of u and v also appear
when Euclid’s algorithm for integers is applied in the ordinary way to p
and x; see J. A. Serret and C. Hermite, J. de Math. Pures et Appl. 13

(1848), 12–15.] If the prime factorization of N is
, we

get 2r−1 distinct solutions to , x1 ⊥ x2, x1 even, by letting |x2|
+ i|x1| = (u1 + iv1)e1 (u2 ± iv2)e2 . . . (ur ± ivr)er ; and all such solutions
are obtained in this way.

Note: When m = 10e, a similar procedure can be used, but it is five
times as much work since we must keep trying until finding a solution with
x1 ≡ 0 (modulo 10). For example, when m = 1010 we have

, and 5773502689 = 53 · 108934013 = (7 + 2i)
(7 – 2i)(2203 + 10202i)(2203 – 10202i). Of the two solutions |x2| + i|x1| =
(7 + 2i)(2203 + 10202i) or (7 + 2i)(2203 – 10202i), the former gives |x1|
= 67008 (no good) and the latter gives |x1| = 75820, |x2| = 4983 (which is
usable). Line 9 of Table 1 was obtained by taking x1 = 75820, x2 = –4983.

Line 14 of the table was obtained as follows:
; we drop down to N = 2479700521, which

equals 37 · 797 · 84089 and has four solutions N = 43642 + 496052 =
263642 + 422452 = 386402 + 314112 = 119602 + 483392. The
corresponding multipliers are 2974037721, 2254986297, 4246248609,
and 956772177. We try also N – 4, but it is ineligible because it is
divisible by 3. On the other hand the prime number N – 8 = 450882 +
211372 leads to the multiplier 3825140801. Similarly, we get additional
multipliers from N –20, N –44, N –48, etc. The multiplier on line 14 is the
best of the first sixteen multipliers found by this procedure; it’s one of the
four obtained from N – 68.

12.
.

The partial derivative with respect to qk is twice the left-hand side of (26).
If the minimum can be achieved, these partial derivatives must all vanish.
13. u11 = 1, u21 = irrational, u12 = u22 = 0.
14. After three Euclidean steps we find , then S4 produces

Transformations (j, q1, q2, q3) = (1, *, 0, 2), (2, –4, *, 1), (3, 0, 0, *), (1, *,
0, 0) result in

Thus , as we already knew from exercise 3.
15. The largest achievable q in (11), minus the smallest achievable, plus 1,
is |u1| + ... + |ut| – δ, where δ = 1 if uiuj < 0 for some i and j, otherwise δ =
0. For example if t = 5, u1 > 0, u2 > 0, u3 > 0, u4 = 0, and u5 < 0, the largest
achievable value is q = u1 + u2 + u3 – 1 and the smallest is q = u5 + 1 =
–|u5| + 1.

[Note that the number of hyperplanes is unchanged when c varies, hence
the same answer applies to the problem of covering L instead of L0.
However, the stated formula is not always exact for covering L0, since the
hyperplanes that intersect the unit hypercube may not all contain points of
L0. In the example above, we can never achieve the value q = u1 + u2 + u3
– 1 in L0 if u1 + u2 + u3 > m; it is achievable if and only if there is a
solution to m – u1 – u2 – u3 = x1u1 + x2u2 + x3u3 + x4|u5| in nonnegative
integers (x1, x2, x3, x4). It may be true that the stated limits are always
achievable when |u1| + ... + |ut| is minimal, but this does not appear to be
obvious.]

16. It suffices to determine all solutions to (15) having minimum |u1| + ... +
|ut|, subtracting 1 if any one of these solutions has components of opposite
sign.

Instead of positive definite quadratic forms, we work with the
somewhat similar function f(x1, . . . , xt) = |x1U1 + ... + xtUt|, defining |Y | =
|y1| + ... + |yt|. Inequality (21) can be replaced by |xk| ≤ f(y1, . . . , yt)
(max1≤j≤t |vkj|).

Thus a workable algorithm can be obtained as follows. Replace steps
S1 through S3 by: “Set U ← (m), V ← (1), r ← 1, s ← m, t ← 1.” (Here
U and V are 1 × 1 matrices; thus the two-dimensional case will be
handled by the general method. A special procedure for t = 2 could, of
course, be used; see the reference following the answer to exercise 5.) In
steps S4 and S7, set s ← min(s, |Uk |). In step S7, set zk ← ⌊max1≤j≤t |vkj|
s/m⌋. In step S9, set s ← min(s, |Y | – δ); and in step S10, output s = Nt.
Otherwise leave the algorithm as it stands, since it already produces
suitably short vectors. [Math. Comp. 29 (1975), 827–833.]

17. When k > t in S9, and if Y · Y ≤ s, output Y and –Y ; furthermore if Y · Y
< s, take back the previous output of vectors for this t. [In the author’s
experience preparing Table 1, there was exactly one vector (and its
negative) output for each νt, except when y1 = 0 or yt = 0.]
18. (a) Let x = m, y = (1 – m)/3, vij = y + xδij, uij = –y + δij. Then

 for j ≠ k, ,
, . (This example satisfies (28) with a

= 1 and works for all m ≡ 1 (modulo 3).)
(b) Interchange the roles of U and V in step S5. Also set s ← min(s, Ui

· Ui) for all Ui that change. For example, when m = 64 this transformation
with j = 1, applied to the matrices of (a), reduces

to

[Since the transformation can increase the length of Vj, an algorithm that
incorporates both transformations must be careful to avoid infinite looping.
See also exercise 23.]
19. No, since a product of non-identity matrices with all off-diagonal
elements nonnegative and all diagonal elements 1 cannot be the identity.

[However, looping would be possible if a subsequent transformation
with q = –1 were performed when –2Vi · Vj = Vj · Vj; the rounding rule
must be asymmetric with respect to sign if non-shortening transformations
are allowed.]

20. When a mod 8 = 5, the points 2−e(x, s(x), . . . , s[t−1](x)) for x in the
period are the same as the points 22–e(y, σ(y), . . . , σt−1(y)) for 0 ≤ y <
2e−2, plus 2−e(t, . . . , t), where σ(y) = (ay + ⌊a/4⌋t) mod 2e−2 and t = X0

mod 4. So in this case we should use Algorithm S with m = 2e−2.
When a mod 8 = 3, the maximum distance between parallel hyperplanes

that cover the points 2−e(x, s(x), . . . , s[t−1](x)) modulo 1 is the same as the
maximum distance covering the points 2−e(x, –s(x), . . . , (–1)t−1s[t−1](x)),
because the negation of coordinates doesn’t change distance. The latter
points are 22–e(y, σ(y), . . . , σt−1(y)) where σ(y) = (–ay – ⌈a/4⌉t) mod
2e−2, plus a constant offset. Again we apply Algorithm S with m = 2e−2;
changing a to m – a has no effect on the result.

21. X4n+4 ≡ X4n (modulo 4), so it is now appropriate to let V1 = (4, 4a2,
4a3)/m, V2 = (0, 1, 0), V3 = (0, 0, 1) define the corresponding lattice L0.
24. Let m = p; an analysis paralleling the text can be given. For example,
when t = 4 we have Xn+3 = ((a2 + b)Xn+1 + abXn) mod m, and we want to
minimize such that u1 + bu3 + abu4 ≡ u2 + au3

+ (a2 + b)u4 ≡ 0 (modulo m).
Replace steps S1 through S3 by the operations of setting

and outputting ν2 = m. Replace step S4 by

S4′. [Advance t.] If t = T, the algorithm terminates. Otherwise set t ← t
+ 1 and mod m. Set Ut to the new row (–r12, –r22, 0, . .
. , 0, 1) of t elements, and set uit ← 0 for 1 ≤ i < t. Set Vt to the new
row (0, . . . , 0, m). For 1 ≤ i < t, set q ← round((vi1r12 + vi2r22)/m),
vit ← vi1r12 + vi2r22 – qm, and Ut ← Ut + qUi. Finally set s ← min(s,
Ut · Ut), k ← t, j ← 1.

[A similar generalization applies to all sequences of length pk − 1 that
satisfy the linear recurrence 3.2.2–(8). Additional numerical examples
have been given by A. Grube, Zeitschrift für angewandte Math. und
Mechanik 53 (1973), T223–T225; L’Ecuyer, Blouin, and Couture, ACM
Trans. Modeling and Comp. Simul. 3 (1993), 87–98.]
25. The given sum is at most twice the quantity

, where

[When d = 1, we have ∑0≤k<m r(k) = (2/π) ln m + 1 + (2/π) ln(2e/π) +
O(1/m).]
26. If gcd(q, m) = d, the same derivation goes through with m replaced by
m/d. Suppose we have and

. If m is replaced by m/d, then s is replaced by
. Since m/d > 1, we can also

replace N by N mod (m/d).
27. It is convenient to use the following functions: ρ(x) = 1 if x = 0, ρ(x) =
x if 0 < x ≤ m/2, ρ(x) = m – x if m/2 < x < m; trunc(x) = ⌊x/2⌋ if 0 ≤ x ≤
m/2, trunc(x) = m – ⌊(m – x)/2⌋ if m/2 < x < m; L(x) = 0 if x = 0, L(x) = ⌊lg
x⌋ + 1 if 0 < x ≤ m/2, L(x) = –(⌊lg(m – x)⌋ + 1) if m/2 < x < m; and l(x) =
max(1, 2|x|–1). Note that l(L(x)) ≤ ρ(x) < 2l(L(x)) and 2ρ(x) ≤ 1/r(x) = m
sin(πx/m) < πρ(x), for 0 < x < m.

Say that a vector (u1, . . . , ut) is bad if it is nonzero and satisfies (15);
and let ρmin be the minimum value of ρ(u1) . . . ρ(ut) over all bad (u1, . . . ,
ut). The vector (u1, . . . , ut) is said to be in class (L(u1), . . . , L(ut)). Thus
there are at most (2 lg m + 1)t classes, and class (L1, . . . , Lt) contains at
most l(L1) . . . l(Lt) vectors. Our proof is based on showing that the bad
vectors in each fixed class contribute at most 2/ρmin to ∑r(u1, . . . , ut); this
establishes the desired bound, since 1/ρmin < πtrmax.

Let μ = ⌊lg ρmin⌋. The μ-fold truncation operator on a vector is defined
to be the following operation repeated μ times: “Let j be minimal such that
ρ(uj) > 1, and replace uj by trunc(uj); but do nothing if ρ(uj) = 1 for all j.”
(This operation essentially throws away one bit of information about (u1, .
. . , ut).) If and are two vectors of the same
class having the same μ-fold truncation, we say they are similar; in this
case it follows that . For
example, any two vectors of the form ((1x2x1)2, 0, m−(1x3)2, (101x5x4)2,
(1101)2) are similar when m is large and μ = 5; the μ-fold truncation
operator successively removes x1, x2, x3, x4, x5. Since the difference of
two bad vectors satisfies (15), it is impossible for two unequal bad
vectors to be similar. Therefore class (L1, . . . , Lt) can contain at most
max(1, l(L1) . . . l(Lt)/2μ) bad vectors. If class (L1, . . . , Lt) contains
exactly one bad vector (u1, . . . , ut), we have r(u1, . . . , ut) ≤ rmax ≤ 1/
ρmin; if it contains ≤ l(L1) . . . l(Lt)/2μ bad vectors, each of them has r(u1, .
. . , ut) ≤ 1/ρ(u1) . . . ρ(ut) ≤ 1/l(L1) . . . l(Lt), and we have 1/2μ < 2/ρmin.

28. Let ζ = e2πi/(m − 1) and let . The analog of
(51) is , hence the analog of (53) is

The analogous theorem now states that

In fact, [summed over nonzero solutions
of 15] + [summed over all nonzero (u1, . . . , ut)].
The latter sum is O(log m)t by exercise 25 with d = 1, and the former sum
is treated as in exercise 27.

Let us now consider the quantity R(a) = ∑r(u1, . . . , ut) summed over
nonzero solutions of (15). Since m is prime, each (u1, . . . , ut) can be a
solution to (15) for at most t − 1 values of a, hence ∑0<a<mR(a) ≤ (t − 1)

∑ r(u1, . . . , ut) = O(t(log m)t). It follows that the average value of R(a)
taken over all ϕ(m − 1) primitive roots is O(t(log m)t/ϕ(m − 1)).

Note: In general 1/ϕ(n) = O(log log n/n); we have therefore proved that
for all prime m and for all T there exists a primitive root a modulo m
such that the linear congruential sequence (1, a, 0, m) has discrepancy

 for 1 ≤ t ≤ T . This method of
proof does not extend to a similar result for linear congruential generators
of period 2e modulo 2e, since for example the vector (1, –3, 3, – 1) solves
(15) for about 22e/3 values of a.

29. To get an upper bound, allow the nonzero components of u = (u1, . . . ,
ut) to be any real values . If k components are nonzero, we
have r(u) ≤ 1/(2kρ(u)) in the notation of the answer to exercise 27. And if

 has a given value ν2, we minimize ρ(u) by taking u1 = ... =
uk−1 = 1 and . Thus . But

, since ν ≥ k ≥ 2.
30. Let’s first minimize q |aq – mp| for 1 ≤ q < m and 0 ≤ p < a. In the
notation of exercise 4.5.3–42, we have aqn – mpn = (–1)nKs–n–1(an+2, . . . ,
as) for 0 ≤ n ≤ s. In the range qn−1 ≤ q < qn we have |aq – mp| ≥ |aqn–1 –
mpn−1|; consequently q |aq – mp| ≥ qn–1|aqn−1 – mpn−1|, and the minimum is
min0≤n<s qn|aqn – mpn| = min0≤n<s Kn(a1, . . . , an)Ks–n–1(an+2, . . . , as). By
exercise 4.5.3–32 we have m = Kn(a1, . . . , an)an+1Ks–n–1(an+2, . . . , as) +
Kn(a1, . . . , an)Ks–n–2(an+3, . . . , as) + Kn−1(a1, . . . , an−1)Ks–n–1(an+2, . . . ,
as); and our problem is essentially that of maximizing the quantity m/Kn(a1,
. . . , an)Ks–n–1(an+2, . . . , as), which lies between an+1 and an+1 + 2.

Now let A = max(a1, . . . , as). Since r(m – u) = r(u), we can assume
that rmax = r(u)r(au mod m) for some u with . Setting u′ =
min(au mod m, (–au) mod m), we have rmax = r(u)r(u′). We know from
the previous paragraph that uu′ ≥ qq′, where A/m ≤ 1/qq′ ≤ (A + 2)/m.
Furthermore 2u ≤ r(u)−1 ≤ πu for , so rmax ≤ 1/(4uu′).
Hence we have rmax ≤ (A + 2)/(4m). (There is asimilar lower bound,
namely rmax > A/(π2m).)

31. Equivalently, the conjecture is that all large m can be written m =
Kn(a1,...,an) for some n and some ai ∊ {1,2,3}. For fixed n the 3n numbers
Kn(a1,...,an) have an average value of order , and their standard
deviation is of order (2.51527)n; so the conjecture is almost surely true. S.
K. Zaremba conjectured in 1972 that all m can be represented with ai ≤ 5;
T. W. Cusick made some early progress on this problem in Mathematika
24 (1977), 166–172, and an excellent survey of later work has been
prepared by A. Kontorovich in Bull. Amer. Math. Soc. 50 (2013), 187–
228. It appears that only the cases m = 54 and m = 150 require ai = 5, and
the largest m’s that require 4s are 2052, 2370, 5052, and 6234; at least, the
author has found representations with ai ≤ 3 for all other integers less than
2000000. When we require ai ≤ 2, the average of Kn(a1,...,an) is

, while the standard deviation grows as (2.04033)n. The
density of such numbers in the author’s experiments (which considered 26

blocks of 214 numbers each, for m ≤ 220) appears to vary between .50 and
.65.

[See I. Borosh and H. Niederreiter, BIT 23 (1983), 65–74, for a
computational method that finds multipliers with small partial quotients.
They have found 2-bounded solutions with m = 2e for 25 ≤ e ≤ 35.]

32. (a) Un – Zn/m1 ≡ (m2 – m1)Yn/m1m2 (modulo 1), and (m1 – m2)/m1m2 ≈
2−54. (Therefore we can analyze the high-order bits of Zn by analyzing Un.
The low-order bits are probably random too, but this argument does not
apply to them.) (b) We have Un = Wn/m for all n. The Chinese remainder
theorem tells us that we need only verify the congruences Wn ≡ Xnm2
(modulo m1) and Wn ≡ –Ynm1 (modulo m2), because m1 ⊥ m2. [Pierre
L’Ecuyer and Shu Tezuka, Math. Comp. 57 (1991), 735–746.]

Section 3.4.1
1. α + β (α – β)U.
2. Let U = X/m; then └kU┘ = r ⇔ r ≤ kX/m < r + 1 ⇔ mr/k ≤ X < m(r +

1)/k ⇔ ⌈mr/k⌉ ≤ X < ⌈m(r + 1)/k⌉. The exact probability is given by the
formula (1/m)(⌈m(r + 1)/k⌉ – ⌈mr/k⌉) = 1/k + ∊, where |∊| < 1/m.

3. If full-word random numbers are given, the result will deviate from the
correct distribution by at most 1/m, as in exercise 2; but all of the excess is
given to the smallest results. Thus if k ≈ m/3, the result will be less than k/2
about of the time. It is much better to obtain a perfectly uniform
distribution by rejecting U if U ≥ k ⌊m/k⌋; see D. E. Knuth, The Stanford
GraphBase (New York: ACM Press, 1994), 221.

On the other hand, if a linear congruential sequence is used, k must be
relatively prime to the modulus m, lest the numbers have a very short
period, by the results of Section 3.2.1.1. For example, if k = 2 and m is
even, the numbers will at best be alternately 0 and 1. The method is
slower than (1) in nearly every case, so it is not recommended.

Unfortunately, however, the “himult” operation in (1) is not supported
in many high-level languages; see exercise 3.2.1.1–3. Division by m/k
may be best when himult is unavailable.
4. max(X1, X2) ≤ x if and only if X1 ≤ x and X2 ≤ x; min(X1, X2) ≥ x if and

only if X1 ≥ x and X2 ≥ x. The probability that two independent events both
happen is the product of the individual probabilities.

5. Obtain independent uniform deviates U1 and U2. Set X ← U2. If U1 ≥ p,
set X ← max(X, U3), where U3 is a third uniform deviate. If U1 ≥ p + q,
also set X ← max(X, U4), where U4 is a fourth uniform deviate. This
method can obviously be generalized to any polynomial, and indeed even to
infinite power series (as shown for example in Algorithm S, which uses
minimization instead of maximization).

We could also proceed as follows (suggested by M. D. MacLaren): If
U1 < p, set X ← U1/p; otherwise if U1 < p + q, set X ← max((U1 – p)/q,
U2); otherwise set X ← max((U1 – p – q)/r, U2, U3). This method requires
less time than the other to obtain the uniform deviates, although it involves
further arithmetical operations and it is slightly less stable numerically.
6. F(x) = A1/(A1 + A2), where A1 and A2 are the areas in Fig. A–4; so

Fig. A–4. Region of “acceptance” for the algorithm of exercise 6.
The probability of termination at step 2 is p = π/4, each time step 2 is
encountered, so the number of executions of step 2 has the geometric
distribution. The characteristics of this number are (min 1, ave 4/π, max ∞,
dev (4/π)), by exercise 17.
7. If k = 1, then n1 = n and the problem is trivial. Otherwise it is always

possible to find i ≠ j such that ni ≤ n ≤ nj. Fill Bi with ni cubes of color Ci
and n – ni of color Cj, then decrease nj by n – ni and eliminate color Ci. We
are left with the same sort of problem but with k reduced by 1; by
induction, it’s possible.

The following algorithm can be used to compute the P and Y tables:
Form a list of pairs (p1, 1) . . . (pk, k) and sort it by first components,
obtaining a list (q1, a1) . . . (qk, ak) where q1 ≤ ... ≤ qk. Set n ← k; then
repeat the following operations until n = 0: Set P [a1 – 1] ← kq1 and Y [a1
– 1] ← xan. Delete (q1, a1) and (qn, an), then insert the new entry (qn –
(1/k – q1), an) into its proper place in the list and decrease n by 1.

(If pj < 1/k the algorithm will never put xj in the Y table; this fact is
used implicitly in Algorithm M. The algorithm attempts to maximize the
probability that V < PK in (3), by always robbing from the richest
remaining element and giving it to the poorest. However, it is very
difficult to determine the absolute maximum of this probability, since such

a task is at least as difficult as the “bin-packing problem”; see Section
7.9.)
8. Replace Pj by (j + Pj)/k for 0 ≤ j < k.
9. Consider the sign of .

10. Let Sj = (j − 1)/5 for 1 ≤ j ≤ 16 and pj+15 = F(Sj+1)–F (Sj)–pj for 1 ≤ j ≤
15; also let p31 = 1 – F(3) and p32 = 0. (Eq. (15) defines p1, . . . , p15.) The
algorithm of exercise 7 can now be used with k = 32 to compute Pj and Yj,
after which we will have 1 ≤ Yj ≤ 15 for 1 ≤ j ≤ 32. Set P0 ← P32 (which
is 0) and Y0 ← Y32. Then set Zj ← 1/(5 – 5Pj) and for 0 ≤
j < 32; Qj ← 1/(5Pj) for 1 ≤ j ≤ 15.

Let and for Sj ≤
x ≤ Sj + h. Then let aj = fj+15(Sj) for 1 ≤ j ≤ 5, bj = fj+15(Sj) for 6 ≤ j ≤ 15;

 also for 1 ≤ j ≤ 5, and aj = fj+15(xj) + (xj –
Sj)bj/h for 6 ≤ j ≤ 15, where xj is the root of the equation

. Finally set Dj+15 ← aj/bj for 1 ≤ j ≤ 15 and Ej+15 ←
25/j for 1 ≤ j ≤ 5, Ej+15 ← 1/(e(2j−1)/50 – 1) for 6 ≤ j ≤ 15.

Table 1 was computed while making use of the following intermediate
values: (p1, . . . , p31) = (.156, .147, .133, .116, .097, .078, .060, .044,
.032, .022, .014, .009, .005, .003, .002, .002, .005, .007, .009, .010, .009,
.009, .008, .006, .005, .004, .002, .002, .001, .001, .003); (x6, . . . , x15) =
(1.115, 1.304, 1.502, 1.700, 1.899, 2.099, 2.298, 2.497, 2.697, 2.896);
(a1, . . . , a15) = (7.5, 9.1, 9.5, 9.8, 9.9, 10.0, 10.0, 10.1, 10.1, 10.1, 10.1,
10.2, 10.2, 10.2, 10.2); (b1, . . . , b15) = (14.9, 11.7, 10.9, 10.4, 10.1, 10.1,
10.2, 10.3, 10.4, 10.5, 10.6, 10.7, 10.7, 10.8, 10.9).

11. Let g(t) = e9/2te−t2/2 for t ≥ 3. Since
, a random variable X with density g

can be computed by setting . Now

e−t2/2 ≤ (t/3)e−t2/2 for t ≥ 3, so we obtain a valid rejection method if we
accept X with probability f(X)/cg(X) = 3/X.

12. We have f′(x) = xf(x) – 1 < 0 for x ≥ 0, since
 for x > 0. Let x = aj−1 and y2 = x2 + 2

ln 2; then

hence y > aj.

13. Take bj = μj; consider now the problem with μj = 0 for each j. In matrix
notation, if Y = AX, where A = (aij), we need AAT = C = (cij). (In other
notation, if Yj = ∑ajkXk, then the average value of YiYj is ∑aikajk.) If this
matrix equation can be solved for A, it can be solved when A is triangular,
since A = BU for some orthogonal matrix U and some triangular B, and BBT

= C. The desired triangular solution can be obtained by solving the
equations , a11a21 = c12, , a11a31 = c13, a21a31 +
a22a32 = c23, . . . , successively for a11, a21, a22, a31, a32, etc. [Note: The
covariance matrix must be positive semidefinite, since the average value of
(∑ yi Yj)2 is ∑cijyiyj, which must be nonnegative. And there is always a
solution when C is positive semidefinite, since C = U−1 diag(λ1, . . . ,
λn)U, where the eigenvalues λj are nonnegative, and U−1 diag

U is a solution.]
14. F(x/c) if c > 0; the step function [x ≥ 0] if c = 0; or 1 – F(x/c) if c < 0.
15. Distribution . Density .
This is called the convolution of the given distributions.
16. It is clear that f(t) ≤ cg(t) for all t as required. Since
we have g(t) = Cta−1 for 0 ≤ t < 1, Ce−t for t ≥ 1, where C = ae/(a + e). A
random variable with density g is easy to obtain as a mixture of two
distributions, G1(x) = xa for 0 ≤ x < 1, and G2(x) = 1 – e1–x for x ≥ 1:

G1. [Initialize.] Set p ← e/(a + e). (This is the probability that G1
should be used.)

G2. [Generate G deviate.] Generate independent uniform deviates U
and V, where V ≠ 0. If U < p, set X ← V1/a and q ← e−X; otherwise
set X ← 1 – ln V and q ← Xa–1. (Now X has density g, and q =
f(X)/cg(X).)

G3. [Reject?] Generate a new uniform deviate U. If U ≥ q, return to
G2.

The average number of iterations is c = (a + e)/(eΓ (a + 1)) < 1.4.
It is possible to streamline this procedure in several ways. First, we

can replace V by an exponential deviate Y of mean 1, generated by
Algorithm S, say, and then we set X ← e−Y/a or X ← 1 + Y in the two
cases. Moreover, if we set q ← pe−X in the first case and q ← p + (1 –
p)Xa–1 in the second, we can use the original U instead of a newly
generated one in step G3. Finally if U < p/e we can accept V1/a

immediately, avoiding the calculation of q about 30 percent of the time.

17. (a) F(x) = 1 – (1 – p)⌊x⌋, for x ≥ 0. (b) G(z) = pz/(1 – (1 – p)z). (c)
Mean 1/p, standard deviation . To do the latter calculation,
observe that if H(z) = q + (1 – q)z, then H′(1) = 1 – q and H″(1) + H′(1) –
(H′(1))2 = q(1 – q), so the mean and variance of 1/H(z) are q − 1 and q(q −
1), respectively. (See Section 1.2.10.) In this case, q = 1/p; the extra factor
z in the numerator of G(z) adds 1 to the mean.
18. Set N ← N1 + N2 – 1, where N1 and N2 independently have the
geometric distribution for probability p. (Consider the generating function.)
19. Set N ← N1 + ... + Nt – t, where the Nj have the geometric distribution
for p. (This is the number of failures before the tth success, when a
sequence of independent trials are made each of which succeeds with
probability p.)

For , and in general when the mean value (namely t(1 –
p)/p) of the distribution is small, we can simply evaluate the probabilities

 consecutively for n = 0, 1, 2, . . . as in the
following algorithm:

N1. [Initialize.] Set N ← 0, q ← pt, r ← q, and generate a random
uniform deviate U. (We will have q = pN and r = p0 + ... + pN during
this algorithm, which stops as soon as U < r.)

N2. [Iterate.] If U ≥ r, set N ← N + 1, q ← q(1 – p)(t − 1 + N)/N, r ← r
+ q, and repeat this step. Otherwise return N and terminate.

[An interesting technique for the negative binomial distribution, for
arbitrarily large real values of t, has been suggested by R. Léger: First

generate a random gamma deviate X of order t, then let N be a random
Poisson deviate of mean X(1 – p)/p.]

20. R1 = 1 + (1 – A/R) · R1. When R2 is performed, the algorithm
terminates with probability I/R; when R3 is performed, it goes to R1 with
probability E/R. We have

21. ; . Since

we have where a = 4(1 + ln c)
and b = 4c; when c = e1/4, I has its maximum value .
Finally the following integration formulas are needed for E:

where a, b > 0. Let the test in step R3 be “X2 ≥ 4ex−1/U –4x”; then the
exterior region hits the top of the rectangle when

. (Incidentally, r(x) reaches its
maximum value at x = 1/2, a point where it is not differentiable!) We have

 du where b = 4ex–1 and a = 4x. The
maximum value of E occurs near x = –.35, where we have E ≈ .29410.
22. (Solution by G. Marsaglia.) Consider the “continuous Poisson
distribution” defined by , for x > 0; if X
has this distribution then ⌊X⌋ is Poisson distributed, since G(x + 1) – G(x)
= e−μμx/x!. If μ is large, G is approximately normal, hence G[−1](Fμ(x)) is
approximately linear, where Fμ(x) is the distribution function for a normal
deviate with mean and variance μ; that is, ,
where F(x) is the normal distribution function (10). Let g(x) be an
efficiently computable function such that |G[−1](Fμ(x)) – g(x)| < ∊ for –∞ <
x < ∞; we can now generate Poisson deviates efficiently as follows:

Generate a normal deviate X, and set , N ← ⌊Y⌋,
. Then if |Y – M| > ∊, output N; otherwise output M –

[G[−1](F (X)) < M].
This approach applies also to the binomial distribution, with

since ⌊G[−1](U)⌋ is binomial with parameters (t, p) and G is approximately
normal.

[See also the alternative method proposed by Ahrens and Dieter in
Computing 25 (1980), 193–208.]

23. Yes. The second method calculates |cos 2θ|, where θ is uniformly
distributed between 0 and π/2. (Let U = r cos θ, V = r sin θ.)
25. . In general, the binary representation is formed by
using 1 for | and 0 for &, from left to right, then suffixing 1. This technique
[see K. D. Tocher, J. Roy. Stat. Soc. B16 (1954), 49] can lead to efficient
generation of independent bits having a given probability p, and it can also
be applied to the geometric and binomial distributions.
26. (a) True:

∑k Pr(N1 = k) Pr(N2 = n – k) = e−μ1–μ2 (μ1 + μ2)n/n!. (b) False, unless
μ2 = 0; otherwise N1 – N2 might be negative.

27. Let the binary representation of p be (.b1b2b3 . . .)2, and proceed
according to the following rules:

B1. [Initialize.] Set m ← t, N ← 0, j ← 1. (During this algorithm, m
represents the number of simulated uniform deviates whose relation
to p is still unknown, since they match p in their leading j−1 bits; and
N is the number of simulated deviates known to be less than p.)

B2. [Look at next column of bits.] Generate a random integer M with the
binomial distribution . (Now M represents the number of
unknown deviates that fail to match bj.) Set m ← m – M, and if bj = 1
set N ← N + M.

B3. [Done?] If m = 0, or if the remaining bits (.bj+1bj+2 . . .)2 of p are all
zero, the algorithm terminates. Otherwise, set j ← j + 1 and return to

step B2.
[When bj = 1 for infinitely many j, the average number of iterations At
satisfies

Letting A(z) = ∑Anzn/n!, we have . Therefore
,

and

in the notation of exercise 5.2.2–48.]
28. Generate a random point (y1, . . . , yn) on the unit sphere, and let

 Generate an independent uniform deviate U, and if
, output the point (y1/ρ, . . . , yn/ρ); otherwise start

over. Here
,

((n + 1)/(a1 + an))n + 1 (a1an/n)n otherwise.

29. Let Xn+1 = 1, then set or Xk ← Xk+1e−Yk/k for k = n,
n − 1, . . . , 1, where Uk is uniform or Yk is exponential. [ACM Trans.
Math. Software 6 (1980), 359–364. This technique was introduced in the
1960s by David Seneschal; see Amer. Statistician 26, 4 (October 1972),
56–57. The alternative of generating n uniform numbers and sorting them is
probably faster, with an appropriate sorting method, but the method
suggested here is particularly valuable if only a few of the largest or
smallest X’s are desired. Notice that (F[−1](X1), . . . , F[−1](Xn)) will be
sorted deviates having distribution F.]
30. Generate random numbers Z1 = –μ−1 ln U1, Z2 = Z1 – μ−1 ln U2, . . . ,
until Zm+1 ≥ 1. Output (Xj, Yj) = f(Zj) for 1 ≤ j ≤ m, where f((.b1b2 . . .
b2r)2) = ((.b1b2 . . . br)2, (.br+1br+2 . . . b2r)2). If the less significant bits are
significantly less random than the more significant bits, it’s safer (but
slower) to let f((.b1b2 . . . b2r)2) = ((.b1b3 . . . b2r−1)2, (.b2b4 . . . b2r)2).

31. (a) It suffices to consider the case k = 2, since a1X1 + ... + akXk = X cos
θ+Y sin θ when X = X1, cos θ = a1, and Y = (a2X2 + ... + akXk)/ sin θ. And

from the substitution u = s cos θ + t sin θ, v = –s sin θ + t cos θ.
(b) There are numbers α > 1 and β > 1 such that

 and ; so the numbers Xn
will grow exponentially with n, by the properties of linear recurrences.

If we break out of the linear recurrence mold by, say, using the
recurrence Xn = Xn−24 cos θn + Xn−55 sin θn, where θn is chosen uniformly
in [0 . . 2π), we probably will obtain decent results; but this alternative
would involve much more computation.

(c) Start with, say, 2048 normal deviates X0, . . . , X1023, Y0, . . . , Y1023.
After having used about 1/3 of them, generate 2048 more as follows:
Choose integers a, b, c, and d uniformly in [0 . . 1024), with a and c odd;
then set

for 0 ≤ j < 1024, where cos θ and sin θ are random ratios (U2 – V2)/(U2 +
V2) and 2UV/(U2 + V2), chosen as in exercise 23. We can reject U and V
unless and . The 2048 new deviates now replace
the old ones. Notice that only a few operations were needed per new
deviate.

This method does not diverge like the sequences considered in (b),
because the sum of squares
remains at the constant value S ≈ 2048, except for a slight roundoff error.
On the other hand, the constancy of S is actually a defect of the method,
because the sum of squares should really have the χ2 distribution with
2048 degrees of freedom. To overcome this problem, the normal deviates
actually delivered to the user should be not Xj but αXj, where

 is a precomputed scale factor. (The
quantity will be a reasonable approximation to the
χ2 deviate desired.)

References: C. S. Wallace [ACM Trans. on Math. Software 22 (1996),
119–127]; R. P. Brent [Lecture Notes in Comp. Sci. 1470 (1998), 1–20].

32. (a) This mapping (X′, Y′) = f(X, Y) is a one-to-one correspondence from
the set {x, y ≥ 0} to itself such that x′ + y′ = x + y and dx′ dy′ = dx dy. We
have

(b) This mapping is a two-to-one correspondence such that x′ + y′ = x
+ y and dx′ dy′ = 2 dx dy.

(c) It suffices to consider the “j-flip” transformation

for a fixed integer j, and then to compose j-flips for j = 0, 1, –1, 2, –2, . . . ,
noticing that the joint probability distribution of X′ and Y′ converges as |j |
→ ∞. Each j-flip is one-to-one, with x′ + y′ = x + y and dx′ dy′ = dx dy.
33. Use U1 as the seed for another random number generator (perhaps a
linear congruential generator with a different multiplier); take U2, U3, . . .
from that one.

Section 3.4.2
1. There are ways to pick n – m records from the last N – t, and

 ways to pick n – m − 1 from N – t − 1 after selecting the (t + 1)st
item.

2. Step S3 will never go to step S5 when the number of records left to be
examined is equal to n – m.

3. We should not confuse conditional and unconditional probabilities. The
quantity m depends randomly on the selections that took place among the
first t elements; if we take the average over all possible choices that could
have occurred among these elements, we will find that (n – m)/(N – t) is
exactly n/N on the average. For example, consider the second element; if

the first element was selected in the sample (this happens with probability
n/N), the second element is selected with probability (n − 1)/(N − 1); if the
first element was not selected, the second is selected with probability n/(N
− 1). The overall probability of selecting the second element is (n/N)((n −
1)/(N − 1)) + (1 – n/N)(n/(N − 1)) = n/N.

4. From the algorithm,

The desired formula can be proved by induction on t. In particular, p(n, N)
= 1.
5. In the notation of exercise 4, the probability that t = k at termination is

. The average is
.

6. Similarly, ; the
variance is therefore (N + 1)(N – n)n/(n + 2)(n + 1)2.

7. Suppose the choice is 1 ≤ x1 < x2 < ... < xn ≤ N. Let x0 = 0, xn+1 = N +
1. The choice is obtained with probability p = ∏1≤t≤N pt, where

The denominator of the product p is N!; the numerator contains the terms N
– n, N – n − 1, . . . , 1 for those t’s that are not x’s, and the terms n, n − 1, .
. . , 1 for those t’s that are x’s. Hence p = (N – n)! n!/N!.

Example: n = 3, N = 8, (x1, x2, x3) = (2, 3, 7); .

8. (a) of the samples omit the
first k records.

(b) Set X ← k − 1, where k is minimum with U ≥ Pr(X ≥ k). Thus, start
with X ← 0, p ← N – n, q ← N, R ← p/q, and while U < R set X ← X + 1,
p ← p − 1, q ← q − 1, R ← Rp/q. (This method is good when n/N is, say,
≥ 1/5. We can assume that n/N ≤ 1/2; otherwise it’s better to select N – n
unsampled items.)

(c)
.

(This method is good if, say, n ≤ 5.)
(d) (See exercise 3.4.1–29.) The value X ← ⌊N(1 – U1/n)⌋ needs to be

rejected with probability only O(n/N). Precise details are worked out
carefully in CACM 27 (1984), 703–718, and a practical implementation
appears in ACM Trans. Math. Software 13 (1987), 58–67. (This method is
good when, say, .)

After skipping X records and selecting the next, we set n ← n−1, N ←
N –X –1, and repeat the process until n = 0. A similar approach speeds up
the reservoir method; see ACM Trans. Math. Software 11 (1985), 37–57.
9. The reservoir gets seven records: 1, 2, 3, 5, 9, 13, 16. The final sample

consists of records 2, 5, 16.
10. Delete step R6 and the variable m. Replace the I table by a table of
records, initialized to the first n records in step R1, and with the new
record replacing the Mth table entry in step R4.
11. Arguing as in Section 1.2.10, which considers the special case n = 1,
we see that the generating function is

The mean is n + ∑n<t≤N(n/t) = n(1 + HN – Hn); and the variance turns out
to be .

12. (Note that π−1 = (btt) . . . (b33)(b22), so we seek an algorithm that goes
from the representation of π to that for π−1.) Set bj ← j for 1 ≤ j ≤ t. Then
for j = 2, 3, . . . , t (in this order), interchange bj ↔ baj. Finally for j = t, . .
. , 3, 2 (in this order), set baj ← bj. (The algorithm is based on the fact that
(att)π1 = π1(btt).)
13. Renumbering the deck 0, 1, . . . , 2n – 2, we find that s takes card
number x into card number (2x) mod (2n − 1), while c takes card x into (x
− 1) mod (2n − 1). We have (c followed by s) = cs = sc2. Therefore any
product of c’s and s’s can be transformed into the form sick. Also 2ϕ(2n−1) ≡
1 modulo (2n−1); since sϕ(2n−1) and c2n−1 are the identity permutation, at
most (2n − 1)ϕ(2n − 1) arrangements are possible. (The exact number of
different arrangements is (2n−1)k, where k is the order of 2 modulo

(2n−1). For if sk = cj, then cj fixes the card 0, so sk = cj = identity.) For
further details, see SIAM Review 3 (1961), 293–297.
14. (a) . We could have deduced this regardless of where he had moved
it, unless he had put it into one of the first three or last two positions. (b) .
Three cut-and-riffles will produce an intermixture of at most eight
cyclically increasing subsequences axj a(xj+1) mod n . . . a(xj+1–1) mod n;
hence the subsequence is a dead giveaway. [Several magic tricks are
based on the fact that three cut-and-riffles are highly non-random; see
Martin Gardner, Mathematical Magic Show (Knopf, 1977), Chapter 7.]
15. Set Yj ← j for t – n < j ≤ t. Then for j = t, t − 1, . . . , t – n + 1 do the
following operations: Set k ← ⌊jU⌋ + 1. If k > t – n then set Xj ← Yk and
Yk ← Yj; otherwise if k = Xi for some i > j (a symbol table algorithm could
be used), then set Xj ← Yi and Yi ← Yj; otherwise set Xj ← k. (The idea is
to let Yt–n+1, . . . , Yj represent Xt–n+1, . . . , Xj, and if i > j and Xi ≤ t – n
also to let Yi represent XXi, in the execution of Algorithm P. It is interesting
to prove the correctness of Dahl’s algorithm. One basic observation is that,
in step P2, Xk ≠ k implies Xk > j, for 1 ≤ k ≤ j.)
16. We may assume that , otherwise it suffices to find the N – n
elements not in the sample. Using a hash table of size 2n, the idea is to
generate random numbers between 1 and N, storing them in the table and
discarding duplicates, until n distinct numbers have been generated. The
average number of random numbers generated is N/N + N/(N − 1) + ... +
N/(N – n + 1) < 2n, by exercise 3.3.2–10, and the average time to process
each number is O(1). We want to output the results in increasing order, and
this can be done as follows: Using an ordered hash table (exercise 6.4–66)
with linear probing, the hash table will appear as if the values had been
inserted in increasing order and the average total number of probes will be
less than . Thus if we use a monotonic hash address such as ⌊2n(k −
1)/N⌋ for the key k, it will be a simple matter to output the keys in sorted
order by making at most two passes over the table. [See CACM 29 (1986),
366–367.]
17. Show inductively that before step j, the set S is a random sample of j –
N − 1 + n integers from {1, . . . , j − 1}. [CACM 30 (1987), 754–757.

Floyd’s method can be used to speed up the solution to exercise 16. It is
essentially dual to Dahl’s algorithm in exercise 15, which operates for
decreasing values of j; see exercise 12.]
18. (a) Oriented trees that essentially merge (1, 2, . . .) with (n, n – 1, . . .),
such as

(b) Collections of 1-cycles and 2-cycles. (c) Binary search trees on the
keys (1, 2, . . . , n), with kj the parent of j (or j, at the root); see Section
6.2.2. The number of (k1, . . . , kn) in each case is (a) 2n−1; (b) , see
5.1.4–(40); (c) . [Case (a) represents the least common
permutation; case (b) represents the most common, when n ≥ 18. See D. P.
Robbins and E. D. Bolker, Æquationes Mathematicæ 22 (1981), 268–
292; D. Goldstein and D. Moews, Æquationes Mathematicæ 65 (2003),
3–30.]
19. See N. Duffield, C. Lund, and M. Thorup, JACM 54 (2007), 32:1–
32:37.

Section 3.5
1. A b-ary sequence, yes (see exercise 2); a [0 . . 1) sequence, no (since

only finitely many values are assumed by the elements).
2. It is 1-distributed and 2-distributed, but not 3-distributed (the binary

number 111 never appears).
3. Repeat the sequence in exercise 3.2.2–17, with a period of length 27.
4. If ν1(n), ν2(n), ν3(n), ν4(n) are the counts for the four probabilities, we

have ν1(n)+ν2(n) = ν3(n)+ν4(n) for all n. So the desired result follows by
addition of limits.

5. The sequence begins , etc.
When n = 1, 3, 7, 15, . . . we have ν(n) = 1, 1, 5, 5, . . . so that ν(22k−1 – 1)
= ν(22k – 1) = (22k – 1)/3; hence ν(n)/n oscillates between and
approximately , and no limit exists. The probability is undefined. [The
methods of Section 4.2.4 show, however, that a numerical value can

meaningfully be assigned to (leading digit of the
radix-4 representation of n + 1 is 1), namely log4 .]

6. By exercise 4 and induction, Pr(Sj(n) for some j,
. As k → ∞, the latter is a monotone

sequence bounded by 1, so it converges; and for some j ≥ 1) ≥
 for all k. For a counterexample to equality, it is not hard

to arrange things so that Sj(n) is always true for some j, yet Pr(Sj(n)) = 0
for all j.

7. Let pi = ∑j≥1 Pr(Sij(n)). The result of the preceding exercise can be
generalized to for some j ≥ 1) ≥ ∑j≥1 , for any disjoint
statements Sj(n). So we have 1 = Pr(Sij(n) for some i, j ≥ 1) ≥ ∑i≥1

 for some j ≥ 1) ≥ ∑i≥1 pi = 1, and hence Pr(Sij(n) for some j ≥ 1)
= pi. Given ε > 0, let I be large enough so that . Let

Clearly , and for all large enough N we have
; hence φ1(N) ≤ 1–φ2(N)–...–φI(N) ≤ 1–

p2–...–pI +ε ≤ 1–(1–ε–p1)+ε = p1+2ε. This proves that for some
j ≥ 1) ≤ p1 + 2ε; hence Pr(S1j(n) for some j ≥ 1) = p1, and the desired result
holds for i = 1. By symmetry of the hypotheses, it holds for any value of i.
8. Add together the probabilities for j, j + d, j + 2d, . . . , m + j – d in

Definition E.
9. lim supn→∞(an + bn) ≤ lim supn→∞ an + lim supn→∞ bn; hence we find

that

and this can happen only if each (yjn – α) tends to zero.
10. In the evaluation of the sum in Eq. (22).
11. 〈U2n〉 is k-distributed if 〈Un〉 is (2, 2k − 1)-distributed.

12. Apply Theorem B with f(x1, . . . , xk) = [u ≤ max(x1, . . . , xk) < v].
13. Let

It remains to translate this into the probability that f(n) – f(n − 1) = k. Let
νk(n) = (number of j ≤ n with f(j) – f(j − 1) = k); let μk(n) =(number of j ≤
n with Uj the beginning of a gap of length k−1); and let μ(n) similarly count
the number of 1 ≤ j ≤ n with Uj ∊ [α . . β). We have μk(f(n)) = νk(n),
μ(f(n)) = n. As n → ∞, we must have f(n) → ∞, hence

[We have only made use of the fact that the sequence is (k + 1)-
distributed.]
14. Let pk = Pr(Un begins a run of length k)

(see exercise 3.3.2–13). Now proceed as in the previous exercise to
transfer this to Pr(f(n)–f(n−1) = k). [We have assumed only that the
sequence is (k+2)-distributed.]
15. For s, t ≥ 0 let

Now proceed as in exercise 13.
16. (Solution by R. P. Stanley.) Whenever the subsequence S = (b − 1), (b −
2), . . . , 1, 0, 0, 1, . . . , (b − 2), (b − 1) appears, a coupon set must end at
the right of S, since some coupon set is completed in the first half of S. We
now proceed to calculate the probability that a coupon set begins at
position n by manipulating the probabilities that the last prior appearance
of S ends at position n − 1, n – 2, etc., as in exercise 15.
18. Proceed as in the proof of Theorem A to calculate and .

19. (Solution by T. Herzog.) Yes. For example, apply exercise 33 to the
sequence 〈U⌊n/2⌋〉, when 〈Un〉 satisfies R4 (or even its weaker
version).
20. (a) 2 and . (When n increases, we break in half.)

(b) Each new point breaks a single interval into two parts. Let ρ be
equal to max . Then

.
So infinitely many m have .

(c) To verify the hint, let come from the interval with endpoints Um
and Um′, and set ak = max(m–n, m′–n, 1). Then
implies ;
hence 2ρ ≤ 1/(H2n – Hn) = 1/ ln 2 + O(1/n).

(d) We have ,
because the (n + 1)st point always breaks the largest interval into intervals
of length and . [Indagationes Math. 11 (1949), 14–17.]
21. (a) No! We have

, and
, because

.
(b, c) See Indagationes Math. 40 (1978), 527–541.

22. If the sequence is k-distributed, the limit is zero by integration and
Theorem B. Conversely, note that if f(x1, . . . , xk) has an absolutely
convergent Fourier series

we have limN → ∞ ,
where

so εr can be made arbitrarily small. Hence this limit is equal to

and Eq. (8) holds for all sufficiently smooth functions f. The remainder of
the proof shows that the function in (9) can be approximated by smooth
functions to any desired accuracy.
23. (a) This follows immediately from exercise 22. (b) Use a discrete
Fourier transform in an analogous way; see D. E. Knuth, AMM 75 (1968),
260–264.
24. (a) Let c be any nonzero integer; we must show, by exercise 22, that

This follows because, if K is any positive integer, we have
. Hence, by

Cauchy’s inequality,

(b) When d = 1, exercise 22 tells us that 〈(α1n + α0) mod 1〉 is
equidistributed if and only if α1 is irrational. When d > 1, we can use (a)
and induction on d. [Acta Math. 56 (1931), 373–456. The result in (b) had
previously been obtained in a more complicated way by H. Weyl, Nachr.
Gesellschaft der Wiss. Göttingen, Math.-Phys. Kl. (1914), 234–244. A
similar argument proves that the polynomial sequence is equidistributed if
at least one of the coefficients αd, . . . , α1 is irrational.]
25. If the sequence is equidistributed, the denominator in Corollary S
approaches , and the numerator approaches the quantity in this exercise.

26. See Math. Comp. 17 (1963), 50–54. [Consider also the following
example by A. G. Waterman: Let 〈Un〉 be an equidistributed [0 . . 1)
sequence and 〈Xn〉 an ∞-distributed binary sequence. Let
or according as Xn is 0 or 1. Then 〈Vn〉 is equidistributed
and white, but . Let Wn = (Vn – εn) mod 1 where
〈εn〉 is any sequence that decreases monotonically to 0; then 〈Wn〉 is
equidistributed and white, yet .]

28. Let 〈Un〉 be ∞-distributed, and consider the sequence
. This is 3-distributed, using the fact that 〈Un〉 is (16, 3)-

distributed.
29. If x = x1x2 . . . xt is any binary number, we can consider the number

 of times Xp . . . Xp+t−1 = x, where 1 ≤ p ≤ n and p is even. Similarly,
let count the number of times when p is odd. Let

. Now

where the ν’s in these summations have 2k subscripts, 2k − 1 of which are
asterisks (meaning that they are being summed over—each sum is taken
over 22k−1 combinations of zeros and ones), and where “≈” denotes
approximate equality (except for an error of at most 2k due to end
conditions). Therefore we find that

where x = x1 . . . x2k contains r(x) zeros in odd positions and s(x) zeros in
even positions. By (2k)-distribution, the parenthesized quantity tends to
k(22k−1)/22k = k/2. The remaining sum is clearly a maximum if

 when r(x) > s(x), and when r(x) < s(x). So
the maximum of the right-hand side becomes

Now , so the proof is
complete. Note that we have

30. Construct a digraph with 22k nodes labeled (Ex1 . . . x2k−1) and (Ox1 . .
. x2k−1), where each xj is either 0 or 1. Let there be 1 + f(x1, x2, . . . , x2k)
directed arcs from (Ex1 . . . x2k−1) to (Ox2 . . . x2k), and 1 – f(x1, x2, . . . ,
x2k) directed arcs leading from (Ox1 . . . x2k−1) to (Ex2 . . . x2k), where f(x1,
x2, . . . , x2k) = sign(x1 – x2 + x3 – x4 + ... – x2k). We find that each node has
the same number of arcs leading into it as there are leading out; for
example, (Ex1 . . . x2k−1) has 1 – f(0, x1, . . . , x2k−1) + 1 – f(1, x1, . . . ,
x2k−1) leading in and 1 + f(x1, . . . , x2k−1, 0) + 1 + f(x1, . . . , x2k−1, 1)
leading out, and f(x, x1, . . . , x2k−1) = –f(x1, . . . , x2k−1, x). Drop all nodes
that have no paths leading either in or out, namely (Ex1 . . . x2k−1) if f(0, x1,
. . . , x2k−1) = +1,

Fig. A–5. Directed graph for the construction in exercise 30.

or (Ox1 ... x2k−1) if f(1, x1,..., x2k−1) = –1. The resulting directed graph is
seen to be connected, since we can get from any node to (E1010...1) and
from this to any desired node. By Theorem 2.3.4.2G, there is a cyclic path
traversing each arc; this path has length 22k+1, and we may assume that it

starts at node (E00 . . . 0). Construct a cyclic sequence with X1 = ... = X2k−1
= 0, and Xn+2k−1 = x2k if the nth arc of the path is from (Ex1...x2k−1

) to
(Ox2...x2k

) or from (Ox1...x2k−1) to (Ex2...x2k
). For example, the graph for k =

2 is shown in Fig. A–5; the arcs of the cyclic path are numbered from 1 to
32, and the cyclic sequence is

Notice that in this sequence. The sequence is clearly
(2k)-distributed, since each (2k)-tuple x1x2...x2k occurs

times in the cycle. The fact that Pr(X2n = 0) has the desired value comes
from the fact that the maximum value on the right-hand side in the proof of
the preceding exercise has been achieved by this construction.

31. Use Algorithm W with rule R1 selecting the entire sequence. [For a
generalization of this type of nonrandom behavior in R5-sequences, see
Jean Ville, Étude Critique de la Notion de Collectif ((Paris: 1939), 55–
62. Perhaps R6 is also too weak, from this standpoint, but no such
counterexample is presently known.]
32. If R, R′ are computable subsequence rules, so is R″ = RR′ defined by
the following functions: = 1 if and only if R
defines the subsequence xr1

,..., xrk
 of x0,..., xn−1, where k ≥ 0 and 0 ≤ r1 <

... < rk < n and .

Now 〈Xn〉RR′ is (〈Xn〉 R)R′. The result follows immediately.

33. Given ε > 0, find N0 such that N > N0 implies that both |νr(N)/N – p| < ε
and |νs(N)/N – p| < ε. Then find N1 such that N > N1 implies that tN is rM or
SM for some M > N0. Now N > N1 implies that
some M > N0. Now N > N1 implies that

34. For example, if the binary representation of t is (1 0b−2 1 0a1 1 1 0a2 1 .
. . 1 0ak)2, where “0a” stands for a sequence of a consecutive zeros, let the

rule Rt accept Un if and only if ⌊bUn−k⌋ = a1, . . . , ⌊bUn−1⌋ = ak.

35. Let a0 = s0 and am+1 = max{sk | 0 ≤ k < 2am}. Construct a subsequence
rule that selects element Xn if and only if n = sk for some k < 2am, when n
is in the range am ≤ n < am+1. Then .

36. Let b and k be arbitrary but fixed integers greater than 1. Let Yn =
⌊bUn⌋. An arbitrary infinite subsequence 〈Zn〉 = 〈Ysn〉 R determined
by algorithms S and R (as in the proof of Theorem M) corresponds in a
straightforward but notationally hopeless manner to algorithms S′ and R′
that inspect Xt, Xt+1, . . . , Xt+s and/or select Xt, Xt+1, . . . , Xt+min(k−1,s) of
〈Xn〉 if and only if S and R inspect and/or select Ys, where Us =
(0.XtXt+1 . . . Xt+s)2. Algorithms S′ and R′ determine an infinite 1-
distributed subsequence of 〈Xn〉 and in fact (as in exercise 32) this
subsequence is ∞-distributed so it is (k, 1)-distributed. Hence we find that

 and differ from 1/b by less than 1/2k.
[The result of this exercise is true if “R6” is replaced consistently by

“R4” or “R5”; but it is false if “R1” is used, since X might be
identically zero.]

37. For n ≥ 2 replace Un2 by , where δn = 0 or 1 according as
the set {U(n−1)2 + 1, . . . , Un2 – 1} contains an even or odd number of
elements less than . [Advances in Math. 14 (1974), 333–334; see also the
Ph.D. thesis of Thomas N. Herzog, Univ. of Maryland (1975).]
39. See Acta Arithmetica 21 (1972), 45–50. The best possible value of c
is unknown.
40. Since Fk depends only on B1 . . . Bk, we have . Let
q(B1 . . . Bk) = Pr(Bk+1 = 1 | B1 . . . Bk), where the probability is taken over
all elements of S having B1 . . . Bk as the first k bits. Similarly, let qb(B1 . .
. Bk) = Pr(Fk = 1 and . Then we have

 mod
 and

.

Hence . [See Theorem 4 of Goldreich,
Goldwasser, and Micali in JACM 33 (1986), 792–807.]
41. Choose k uniformly from {0, . . . , N − 1} and use the construction in
the proof of Lemma P1. Then the proof of P1 shows that A′ will be equal to
1 with probability .
42. (a) Let X = X1 + ... + Xn. Clearly E(X) = nμ; and we have

.
Also E((X – nμ)2) = ∑x≥0 x Pr((X – nμ)2 = x) ≥ ∑x≥tnσ2 x Pr((X – nμ)2 = x)
≥ ∑x≥tnσ2 tnσ2 Pr((X – nμ)2 = x) = tnσ2 Pr((X – nμ)2 ≥ tnσ2).

(b) There is a position i where , say ci = 0 and . Then
there’s a position j where cj = 1. For any fixed setting of B in the k – 2
rows other than i or j, we have (cB, c′B) = (d, d′) if and only if rows i and j
have particular values; this occurs with probability 1/22R.

(c) In the notation of Algorithm L, take n = 2k − 1 and Xc = (–1)G(cB+ei);
then μ = s and σ2 = 1 – s2. The probability that X = ∑c≠0 Xc is negative is at
most the probability that (X – nμ)2 ≥ n2μ2. By (a) this is at most σ2/(nμ2).
43. The conclusion for fixed M would be of no interest, since there
obviously exists an algorithm to factor any fixed M (namely, an algorithm
that knows the factors). The theory applies to all algorithms that have short
running time, not only to algorithms that are effectively discoverable.
44. If every one-digit change to a random table yields a random table, all
tables are random (or none are). If we don’t allow degrees of randomness,
the answer must therefore be, “Not always.”

Section 3.6
1.

2. Putting a random number generator into a program makes the results
essentially unpredictable to the programmer. If the behavior of the machine
on each problem were known in advance, few programs would ever be
written. As Turing has said, the actions of a computer quite often do
surprise its programmer, especially when a program is being debugged.

So the world had better watch out.
7. In fact, you only need the 2-bit values ⌊Xn/216⌋ mod 4; see D. E. Knuth,

IEEE Trans. IT-31 (1985), 49–52. J. Reeds, Cryptologia 1 (1977), 20–26,
3 (1979), 83–95, initiated the study of related problems; see also J. Boyar,
J. Cryptology 1 (1989), 177–184. In SICOMP 17 (1988), 262–280, Frieze,
Håstad, Kannan, Lagarias, and Shamir discuss general techniques that are
useful in problems like this.

8. We can, say, generate X1000000 by making one million successive
calls, and compare it to the correct value (a1000000X0 + (a1000000 – 1)c/(a −
1)) mod m, which can also be expressed as ((a1000000(X0(a − 1) + c) – c)
mod (a − 1)m)/(a − 1). The latter can be evaluated quickly by an
independent method (see Algorithm 4.6.3A). For example, 482711000000

mod 2147483647 = 1263606197. Most errors will be detected, because
recurrence (1) is not self-correcting.

9. (a) The values of X0, X1, . . . , X99 are not all even. The polynomial z100

+ z37 + 1 is primitive (see Section 3.2.2); hence there is a number h(s) such
that P0(z) ≡ zh(s) (modulo 2 and z100 + z37 + 1). Now zPn+1(z) = Pn(z) –
Xnz37 – Xn+63 + Xn+63z100 + Xn+100z37 ≡ Pn(z)+Xn+63(z100 +z37 +1) (modulo
2), so the result holds by induction.

(b) The operations “square” and “multiply by z” in ran start change
p(z) = x99z99 + ... + x1z + x0 to p(z)2 and zp(z), respectively, modulo 2 and
z100 + z37 + 1, because p(z)2 ≡ p(z2). (We consider here only the low-order
bits. The other bits are manipulated in an ad hoc way that tends to preserve
and/or enhance whatever disorder they already have.) Therefore if s = (1sj

. . . s1s0)2 we have h(s) = (1s0s1 . . . sj1)2 · 269.

(c) zh(s)–n ≡ zh(s′)–n′ (modulo 2 and z100 + z37 + 1) implies that h(s) – n
≡ h(s′) – n′ (modulo 2100 – 1). Since 269 ≤ h(s) < 2100 – 269, we have |n –
n′| ≥ |h(s) – h(s′)| ≥ 270.

[This method of initialization was inspired by comments of R. P. Brent,
Proc. Australian Supercomputer Conf. 5 (1992), 95–104, although
Brent’s algorithm was completely different. In general if the lags are k > l,
if 0 ≤ s < 2e, and if the separation parameter t satisfies t + e ≤ k, this
method of proof shows that |n – n′| ≥ 2t − 1, with 2t − 1 occurring only if
{s, s′} = {0, 2e − 1}.]

10. The following code belongs to the simplified language Subset
FORTRAN, as defined by the American National Standards Institute,
except for its use of PARAMETER statements for readability.

11. Floating point arithmetic on 64-bit operands conforming to ANSI/IEEE
Standard 754 allows us to compute Un = (Un−100 – Un−37) mod 1 with
perfect accuracy for fractions Un that are integer multiples of 2−53.
However, the following program uses the additive recurrence Un = (Un−100

+ Un−37) mod 1 on integer multiples of 2−52 instead, because pipelined
computers can subtract an integer part more quickly than they can branch
conditionally on the sign of an intermediate result. The theory of exercise 9
applies equally well to this sequence.

A FORTRAN translation similar to the code in exercise 10 will
generate exactly the same numbers as this C routine.

12. A simple linear congruential generator like (1) would fail, because m
would be much too small. Good results are possible by combining three
(not two) such generators, with multipliers and moduli (157, 32363), (146,
31727), (142, 31657), as suggested by P. L’Ecuyer in CACM 31 (1988),
747–748. However, the best method is probably to use the C programs ran
array and ran start, with the following changes to keep all numbers in
range: ‘long’ becomes ‘int’; ‘MM’ is defined to be ‘(1U<<15)’; and

the type of variable ss should be unsigned int. This generates 15-bit
integers, all of whose bits are usable. The seed is now restricted to the
range [0 . . 32765]. The “rudimentary test routine” will print X1009×2009 =
24130, given the seed 12509.
13. A program for subtract-with-borrow would be very similar to ran
array, but slower because of the carry maintenance. As in exercise 11,
floating point arithmetic could be used with perfect accuracy. It is possible
to guarantee disjointness of the sequences produced from different seeds s
by initializing the generator with the (–n)th element of the sequence, where
n = 270s; this requires computing bn mod (bk – bl ± 1). Squaring a radix-b
number mod bk – bl ± 1 is, however, considerably more complicated than
the analogous operation in program ran start, and for k in a practical range
it takes about k1.6 operations instead of O(k).

Both methods probably generate sequences of the same quality in
practice, when they have roughly the same value of k. The only significant
difference between them is a better theoretical guarantee and a provably
immense period for the subtract-with-borrow method; the analysis of
lagged Fibonacci generators is less complete. Experience shows that we
should not reduce the value of k in subtract-with-borrow just because of
these theoretical advantages. When all is said and done, lagged Fibonacci
generators seem preferable from a practical standpoint; the subtract-with-
borrow method is then valuable chiefly because of the insight it gives us
into the excellent behavior of the simpler approach.

14. We have Xn+200 ≡ (Xn + Xn+126) (modulo 2); see exercise 3.2.2–32.
Hence Yn+100 ≡ Yn + Yn+26 when n mod 100 > 73. Similarly Xn+200 ≡ Xn +
Xn+26 + Xn+89; hence Yn+100 ≡ Yn +Yn+26 +Yn+89 when n mod 100 < 11. Thus
Yn+100 is a sum of only two or three elements of {Yn, . . . , Yn+99}, in 26% +
11% of all cases; a preponderance of 0s will then tend to make Yn+100 = 0.

More precisely, consider the sequence 〈u1, u2, . . . 〉 = 〈126, 89,
152, 115, 78, . . . , 100, 63, 126, . . . 〉 where un+1 = un – 37 + 100[un <
100]. Then we have

where vj = uj + (–1)[uj ≥ 100]100; for example, Xn+200 ≡ Xn + Xn+26 + Xn+189
+ Xn+152 ≡ Xn + Xn+26 + Xn+189 + Xn+52 + Xn+115. If the subscripts are all <
n + t and ≥ n + 100 + t, we obtain a k-term expression for Yn+100 when n
mod 100 = 100 – t, for 1 ≤ t ≤ 100. The case t = 63 is an exception,
because Xn + Xn+1 + ... + Xn+62 + Xn+163 + Xn+164 + ... + Xn+199 ≡ 0; in this
case Yn+100 is independent of {Yn, . . . , Yn+99}. The case t = 64 is
interesting because it gives the 99-term relation Yn+100 ≡ Yn+1 + Yn+2 + ... +
Yn+99; this tends to be 0 in spite of the large number of terms, because most
of the 100-tuples that have 40 or fewer 1s have even parity.

When there is a k-term relation, the probability that Yn+100 = 1 is

The quantity t takes the values 100, 99, . . . , 1, 100, 99, . . . , 1, . . . as bits
are printed; so we find that the expected number of 1s printed is 106(26p2
+ 11p3 + 26p4 + 11p6 + 11p9 + 4p12 + 4p20 + 3p28 + p47 + p74 + p99 +
1/2)/100 ≈ 14043. The expected number of digits printed is 106

, so the expected number of 0s is ≈ 14401.
The detectable bias goes away if more elements are discarded. For

example, if we use only 100 elements of ran array(a,300), the probability
can be shown to be (26p5 + 22p6 + 19p10 + ...)/100; with ran
array(a,400) it is worse, (15p3 + 37p6 + 15p9 + ...)/100, because Xn+400 ≡
Xn + Xn + 252. With ran array(a,1009) as recommended in the text we
have (17p7 + 10p11 + 2p12 + ...)/100, which can only be detected by such
experiments if the threshold for printing is raised from 60 to, say, 75; but
then the expected number of outputs is only about 0.28 per million trials.

[This exercise is based on ideas of Y. Kurita, H. Leeb, and M.
Matsumoto, communicated to the author in 1997.]

15. The following program makes it possible to obtain a new random
integer quickly with the expression ran arr next(), once ran start has been
called to get things started:

Reset ran arr ptr = &ran arr sentinel if ran start is used again.

Section 4.1
1. (1010)–2, (1011)–2, (1000)–2, . . . , (11000)–2, (11001)–2, (11110)–2.

2. (a) –(110001)2, –(11.001001001001 . . .)2,
(11.00100100001111110110101 . . .)2.

(b) (11010011)–2, (1101.001011001011 . . .)–2,
(111.0110010001000000101 . . .)–2.

(c)
.

(d) –(9.4)1/10, –(. . . 7582417582413)1/10, (. . .
3462648323979853562951413)1/10.

3. (1010113.2)2i.
4. (a) Between rA and rX. (b) The remainder in rX has radix point

between bytes 3 and 4; the quotient in rA has radix point one byte to the
right of the least significant portion of the register.

5. It has been subtracted from 999 . . . 9 = 10p − 1, instead of from 1000 .
. . 0 = 10p.

6. (a, c) 2p−1 – 1, –(2p−1 – 1); (b) 2p−1 – 1, –2p−1.
7. A ten’s complement representation for a negative number x can be

obtained by considering 10n + x (where n is large enough for this to be
positive) and extending it on the left with infinitely many nines. The nines’

complement representation can be obtained in the usual manner. (These two
representations are equal for nonterminating decimals, otherwise the nines’
complement representation has the form . . . (a)99999 . . . while the ten’s
complement representation has the form . . . (a + 1)0000) The
representations may be considered sensible if we regard the value of the
infinite sum N = 9 + 90 + 900 + 9000 + ... as –1, since N − 10N = 9.

See also exercise 31, which considers p-adic number systems. The
latter agree with the p’s complement notations considered here, for
numbers whose radix-p representation is terminating, but there is no
simple relation between the field of p-adic numbers and the field of real
numbers.
8. ∑j ajbj = ∑j (akj+k−1bk − 1 + ... + akj)bkj.
9. A BAD AD0BE FACADE FADED. [Note: Other possible “number

sentences” would be D0 A DEED A DECADE; A CAD FED A BABE
BEEF, C0C0A, C0FFEE; B0B FACED A DEAD D0D0.]
10.

,

if

where 〈kn〉 is any doubly infinite sequence of integers with kj+1 > kj and
k0 = 0.
11. (The following algorithm works both for addition or subtraction,
depending on whether the plus or minus sign is chosen.)

Start by setting k ← an+1 ← an+2 ← bn+1 ← bn+2 ← 0; then for m = 0,
1, . . . , n + 2 do the following: Set cm ← am ± bm + k; then if cm ≥ 2, set k
← –1 and cm ← cm – 2; otherwise if cm < 0, set k ← 1 and cm ← cm + 2;
otherwise (namely if 0 ≤ cm ≤ 1), set k ← 0.

12. (a) Subtract ±(. . . a30a10)–2 from ±(. . . a40a20a0)–2 in the negabinary
system. (See also exercise 7.1.3–7 for a trickier solution that uses full-
word bitwise operations.) (b) Subtract (. . . b30b10)2 from (. . . b40b20b0)2
in the binary system.

13. .

14.

15. , and the rectangle on the right.

Fig. A–6. Fundamental region for quater-imaginary numbers.

16. It is tempting to try to do this in a very simple way, by using the rule 2
= (1100)i–1 to take care of carries; but that leads to a nonterminating
method if, for example, we try to add 1 to (11101)i−1 = –1.

The following solution does the job by providing four related
algorithms (namely for adding or subtracting 1 or i). If α is a string of
zeros and ones, let αP be a string of zeros and ones such that (αP)i−1 =
(α)i−1 + 1; and let α−P, αQ, α−Q be defined similarly, with –1, +i, and –i
respectively in place of +1. Then

Here x stands for either 0 or 1, and the strings are extended on the left with
zeros if necessary. The processes will clearly always terminate. Hence
every number of the form a + bi with a and b integers is representable in
the i − 1 system.
17. No (in spite of exercise 28); the number –1 cannot be so represented.
This can be proved by constructing a set S as in Fig. 1. We do have the
representations –i = (0.1111 . . .)1+i, i = (100.1111 . . .)1+i.

18. Let S0 be the set of points (a7a6a5a4a3a2a1a0)i−1, where each ak is 0 or
1. (Thus, S0 is given by the 256 interior dots shown in Fig. 1, if that picture
is multiplied by 16.) We first show that S is closed: If {y1, y2, . . . } is an
infinite subset of S, we have , where each ank is in
S0. Construct a tree whose nodes are (an1, . . ., anr), for 1 ≤ r ≤ n, and let a
node of this tree be an ancestor of another node if it is an initial
subsequence of that node. By the infinity lemma (Theorem 2.3.4.3K) this
tree has an infinite path (a1, a2, a3, . . .); consequently is a
limit point of {y1, y2, . . .} in S.

By the answer to exercise 16, all numbers of the form (a+bi)/16k are
representable, when a and b are integers. Therefore if x and y are
arbitrary reals and k ≥ 1, the number zk = (⌊16kx⌋ + ⌊16ky⌋i)/16k is in S +
m + ni for some integers m and n. It can be shown that S + m + ni is
bounded away from the origin when (m, n) ≠ (0, 0). Consequently if |x|
and |y| are sufficiently small and k is sufficiently large, we have zk ∊ S,
and limk→∞ zk = x + yi is in S.

[B. Mandelbrot named S the “twindragon” because he noticed that it is
essentially obtained by joining two “dragon curves” belly-to-belly; see
his book Fractals: Form, Chance, and Dimension (San Francisco:
Freeman, 1977), 313–314, where he also stated that the dimension of the
boundary is 2 lg x ≈ 1.523627, where x = 1 + 2x−2 ≈ 1.69562. Other
properties of the dragon curve are described in C. Davis and D. E. Knuth,
J. Recr. Math. 3 (1970), 66–81, 133–149. The sets S for digits {0, 1} and
other complex bases are illustrated and analyzed by D. Goffinet in AMM
98 (1991), 249–255.]

I. Kátai and J. Szabó have shown that the radix –d+i yields a number
system with digits {0, 1, . . ., d2}; see Acta Scient. Math. 37 (1975), 255–
260. Further properties of such systems have been investigated by W. J.
Gilbert, Canadian J. Math. 34 (1982), 1335–1348; Math. Magazine 57
(1984), 77–81. Another interesting case, with digits {0, 1, i, –1, –i} and
radix 2 + i, has been suggested by V. Norton [Math. Magazine 57 (1984),
250–251]. For studies of number systems based on more general
algebraic integers, see I. Kátai and B. Kovács, Acta Math. Acad. Sci.
Hung. 37 (1981), 159–164, 405–407; B. Kovács, Acta Math. Hung. 58
(1991), 113–120; B. Kovács and A. Peth , Studia Scient. Math. Hung. 27
(1992), 169–172.

19. If m > u or m < l, find a ∊ D such that m ≡ a (modulo b); the desired
representation will be a representation of m′ = (m – a)/b followed by a.
Note that m > u implies l < m′ < m; m < l implies m < m′ < u; so the
algorithm terminates.

[There are no solutions when b = 2. The representation will be unique
if and only if 0 ∊ D; nonunique representation occurs for example when D
= {–3, –1, 7}, b = 3, since . When b ≥ 3 it is not
difficult to show that there are exactly 2b−3 solution sets D in which |a| < b
for all a ∊ D. Furthermore the set D = {0, 1, 2 – ε2bn, 3 – ε3bn, . . ., b – 2
– εb−2bn, b − 1 – bn} gives unique representations, for all b ≥ 3 and n ≥ 1,
when each εj is 0 or 1. References: Proc. IEEE Symp. Comp. Arith. 4
(1978), 1–9; JACM 29 (1982), 1131–1143.]

20. (a)

has nine representations. (b) A “D-fraction”. a1a2 . . . always lies between
–1/9 and +71/9. Suppose x has ten or more D-decimal representations.
Then for sufficiently large k, 10kx has ten representations that differ to the
left of the decimal point: 10kx = n1 + f1 = ... = n10 + f10 where each fj is a
D-fraction. By uniqueness of integer representations, the nj are distinct, say
n1 < ... < n10, hence n10 – n1 ≥ 9; but this implies f1 – f10 ≥ 9 > 71/9 – (–
1/9), a contradiction. (c) Any number of the form 0.a1a2 . . ., where each aj

is –1 or 8, equals .a′1a′2 . . . where a′j = aj + 9 (and it even has six more
representations , etc.).
21. We can convert to such a representation by using a method like that
suggested in the text for converting to balanced ternary.

In contrast to the system of exercise 20, zero can be represented in
infinitely many ways, all obtained from (or
from the negative of this representation) by multiplying it by a power of
ten. The representations of unity are

,
etc., where . [AMM 57 (1950), 90–
93.]

22. Given some approximation bn . . . b1b0 with error
 for t > 0, we will show how to reduce the error

by approximately 10−t. (The process can be started by finding a suitable
; then a finite number of reductions of this type will

make the error less than ε.) Simply choose m > n so large that the decimal
representation of –10mα has a one in position 10−t and no ones in positions
10−t+1, 10−t+2, . . ., 10n. Then 10mα + (a suitable sum of powers of 10
between 10m and 10n) + .

23. The set S = {∑k≥1 akb−k | ak ∊ D} is closed as in exercise 18, hence it
is measurable, and in fact it has positive measure. Since bS = ∪a∊D (a + S),
we have bμ(S) = μ(bS) ≤ ∑a∊D μ(a + S) = ∑a∊D μ(S) = bμ(S), and we must
therefore have μ((a + S) ∩ (a′ + S)) = 0 when a ≠ a′ ∊ D. Now T has
measure zero if 0 ∊ D, since T is a union of countably many sets of the form
bk(n + ((a + S) ∩ (a′ + S))), a ≠ a′, each of measure zero. On the other
hand, as pointed out by K. A. Brakke, every real number has infinitely
many representations in the number system of exercise 21.

[The set T cannot be empty, since the real numbers cannot be written as
a countable union of disjoint, closed, bounded sets; see AMM 84 (1977),
827–828, and the more detailed analysis by Petkovšek in AMM 97
(1990), 408–411. If D has fewer than b elements, the set of numbers
representable with radix b and digits from D has measure zero. If D has
more than b elements and represents all reals, T has infinite measure.]

24. {2a · 10k + a′ | 0 ≤ a < 5, 0 ≤ a′ < 2} or {5a′ · 10k + a | 0 ≤ a < 5, 0 ≤
a′ < 2}, for k ≥ 0. [R. L. Graham has shown that there are no more sets of
integer digits with these properties. And Andrew Odlyzko has shown that
the restriction to integers is superfluous, in the sense that if the smallest
two elements of D are 0 and 1, all the digits must be integers. Proof. Let S
= {∑k<0 akbk | ak ∊ D} be the set of “fractions,” and let X = {(an . . . a0)b |
ak ∊ D} be the set of “whole numbers”; then [0 . . ∞) = ∪x∊X (x + S), and (x
+ S) ∩ (x′ + S) has measure zero for x ≠ x′ ∊ X. We have (0 . . 1) ⊆ S, and
by induction on m we will prove that (m . . m + 1) ⊆ xm + S for some xm ∊
X. Let xm ∊ X be such that (m . . m + ε) ∩ (xm + S) has positive measure for
all ε > 0. Then xm ≤ m, and xm must be an integer lest x⌊xm⌋ + S overlap xm
+ S too much. If xm > 0, the fact that (m – xm . . m – xm + 1) ∩ S has
positive measure implies by induction that this measure is 1, and (m . . m +
1) ⊆ xm +S since S is closed. If xm = 0 and (m . . m + 1) ⊈ S, we must have
m < x′m < m + 1 for some x′m ∊ X, where (m . . x′m) ⊆ S; but then 1 + S
overlaps x′m + S. See Proc. London Math. Soc. (3) 18 (1978), 581–595.]

Note: If we drop the restriction 0 ∊ D, there are many other cases,
some of which are quite interesting, especially {1, 2, 3, 4, 5, 6, 7, 8, 9,
10}, {1, 2, 3, 4, 5, 51, 52, 53, 54, 55}, and {2, 3, 4, 5, 6, 52, 53, 54, 55,
56}. Alternatively if we allow negative digits we obtain many other
solutions by the method of exercise 19, plus further sets of unusual digits
like {–1, 0, 1, 2, 3, 4, 5, 6, 7, 18} that don’t meet the conditions stated
there. It appears hopeless to find a nice characterization of all solutions
with negative digits.

25. A positive number whose radix-b representation has m consecutive (b
− 1)’s to the right of the radix point must have the form c/bn + (bm –
θ)/bn+m, where c and n are nonnegative integers and 0 < θ ≤ 1. So if u/v
has this form, we find that bm+nu = bmcv + bmv – θv. Therefore θv is an
integer that is a multiple of bm. But 0 < θv ≤ v < bm. [There can be
arbitrarily long runs of other digits a, if 0 ≤ a < b − 1, for example in the
representation of a/(b − 1).]
26. The proof of “sufficiency” is a straightforward generalization of the
usual proof for base b, by successively constructing the desired

representation. The proof of “necessity” breaks into two parts: If βn+1 is
greater than ∑k≤n ckβk for some n, then βn+1 – ε has no representation for
small ε. If βn+1 ≤ ∑k≤n ckβk for all n, but equality does not always hold, we
can show that there are two representations for certain x. [See
Transactions of the Royal Society of Canada, series III, 46 (1952), 45–
55.]
27. Proof by induction on |n|: If n is even we must take e0 > 0, and the result
follows by induction, since n/2 has a unique such representation. If n is
odd, we must take e0 = 0, and the problem reduces to representing –(n −
1)/2; if the latter quantity is either zero or one, there is obviously only one
way to proceed, otherwise it has a unique reversing representation by
induction. [A. D. Booth, in Quarterly J. Mechanics and Applied Math. 4
(1951), 236–240, applied this principle to two’s complement
multiplication.]

[It follows that every positive integer has exactly two such
representations with decreasing exponents e0 > e1 > ... > et: one with t
even and the other with t odd.]

28. A proof like that of exercise 27 may be given. Note that a + bi is a
multiple of 1 + i by a complex integer if and only if a + b is even. This
representation is intimately related to the dragon curve discussed in the
answer to exercise 18.
29. It suffices to prove that any collection {T0, T1, T2, . . .} satisfying
Property B may be obtained by collapsing some collection {S0, S1, S2, . .
.}, where S0 = {0, 1, . . ., b − 1} and all elements of S1, S2, . . . are
multiples of b.

To prove the latter statement, we may assume that 1 ∊ T0 and that there
is a least element b > 1 such that b ∉ T0. We will prove, by induction on n,
that if nb ∉ T0, then nb + 1, nb + 2, . . ., nb + b − 1 are not in any of the
Tj’s; but if nb ∊ T0, then so are nb + 1, . . ., nb + b − 1. The result then
follows with S1 = {nb | nb ∊ T0}, S2 = T1, S3 = T2, etc.

If nb ∉ T0, then nb = t0 + t1 + ..., where t1, t2, . . . are multiples of b;
hence t0 < nb is a multiple of b. By induction, (t0 + k) + t1 + t2 + ... is the

representation of nb + k, for 0 < k < b; hence nb + k ∉ Tj for any j.

If nb ∊ T0 and 0 < k < b, let the representation of nb + k be t0 + t1 +
We cannot have tj = nb + k for j ≥ 1, lest nb + b have two representations
(b – k) + ... + (nb + k) + ... = (nb) + ... + b + By induction, t0 mod b =
k; and the representation nb = (t0 – k) + t1 + ... implies that t0 = nb + k.

[Reference: Nieuw Archief voor Wiskunde (3) 4 (1956), 15–17. A
finite analog of this result was derived by P. A. MacMahon, Combinatory
Analysis 1 (1915), 217–223.]

30. (a) Let Aj be the set of numbers n whose representation does not
involve bj; then by the uniqueness property, n ∊ Aj if and only if n + bj ∉ Aj.
Consequently we have n ∊ Aj if and only if n + 2bj ∊ Aj. It follows that, for
j ≠ k, n ∊ Aj ∩ Ak if and only if n + 2bjbk ∊ Aj ∩ Ak. Let m be the number of
integers n ∊ Aj ∩ Ak such that 0 ≤ n < 2bjbk. Then this interval contains
exactly m integers that are in Aj but not Ak, exactly m in Ak but not Aj, and
exactly m in neither Aj nor Ak; hence 4m = 2bjbk. Therefore bj and bk
cannot both be odd. But at least one bj is odd, of course, since odd
numbers can be represented.

(b) According to (a) we can renumber the b’s so that b0 is odd and b1,
b2, . . . are even; then b1, b2, . . . must also be a binary basis, and the
process can be iterated.

(c) If it is a binary basis, we must have positive and negative dk’s for
arbitrarily large k, in order to represent ±2n when n is large. Conversely,
the following algorithm may be used:

S1. [Initialize.] Set k ← 0.
S2. [Done?] If n = 0, terminate.
S3. [Choose.] If n is even, set n ← n/2. Otherwise include 2kdk in the

representation, and set n ← (n – dk)/2.
S4. [Advance k.] Increase k by 1 and return to S2.
At each step the choice is forced; furthermore step S3 always decreases

|n| unless n = –dk, hence the algorithm must terminate.

(d) Two iterations of steps S2–S4 in the preceding algorithm will
change 4m → m, 4m + 1 → m + 5, 4m + 2 → m + 7, 4m + 3 → m − 1.
Arguing as in exercise 19, we need only show that the algorithm terminates
for –2 ≤ n ≤ 8; all other values of n are moved toward this interval. In this
range 3 → –1 → –2 → 6 → 8 → 2 → 7 → 0 and 4 → 1 → 5 → 6. Thus 1
= 7 · 20 – 13 · 21 + 7 · 22 – 13 · 23 – 13 · 25 – 13 · 29 + 7 · 210.

Note: The choice d0, d1, d2, . . . = 5, –3, 3, 5, –3, 3, . . . also yields a
binary basis. For further details see Math. Comp. 18 (1964), 537–546; A.
D. Sands, Acta Math. Acad. Sci. Hung. 8 (1957), 65–86.

31. (See also the related exercises 3.2.2–11, 4.3.2–13, 4.6.2–22.)
(a) By multiplying numerator and denominator by suitable powers of 2,

we may assume that u = (. . . u2u1u0)2 and v = (. . . v2v1v0)2 are 2-adic
integers, where v0 = 1. The following computational method now
determines w, using the notation u(n) to stand for the integer (un−1 . . . u0)2 =
u mod 2n when n > 0:

Let w0 = u0 and w(1) = w0. For n = 1, 2, . . ., assume that we have found
an integer w(n) = (wn−1 . . . w0)2 such that u(n) ≡ v(n)w(n) (modulo 2n). Then
we have u(n+1) ≡ v(n+1)w(n) (modulo 2n), hence wn = 0 or 1 according as
the quantity (u(n+1) – v(n+1)w(n)) mod 2n+1 is 0 or 2n.

(b) Find the smallest integer k such that 2k ≡ 1 (modulo 2n + 1). Then
we have 1/(2n + 1) = m/(2k − 1) for some integer m, 1 ≤ m < 2k−1. Let α be
the k-bit binary representation of m; then (0.ααα . . .)2 times 2n + 1 is
(0.111 . . .)2 = 1 in the binary system, and (. . . ααα)2 times 2n + 1 is (. . .
111)2 = –1 in the 2-adic system.

(c) If u is rational, say u = m/(2en) where n is odd and positive, the 2-
adic representation of u is periodic, because the set of numbers with
periodic expansions includes –1/n and is closed under the operations of
negation, division by 2, and addition. Conversely, if uN+λ = uN for all
sufficiently large N, the 2-adic number (2λ – 1)2ru is an integer for all
sufficiently large r.

(d) The square of any number of the form (. . . u2u11)2 has the form (. .
. 001)2, hence the condition is necessary. To show the sufficiency, we can

use the following procedure to compute v = when n mod 8 = 1:
H1. [Initialize.] Set m ← (n − 1)/8, k ← 2, v0 ← 1, v1 ← 0, v ← 1.

(During this algorithm we will have v = (vk−1 . . . v1v0)2 and v2 = n –
2k+1m.)

H2. [Transform.] If m is even, set vk ← 0, m ← m/2. Otherwise set vk

← 1, m ← (m – v – 2k−1)/2, v ← v + 2k.
H3. [Advance k.] Increase k by 1 and return to H2.

32. A more general result appears in Math. Comp. 29 (1975), 84–86.
33. Let Kn be the set of all such n-digit numbers, so that kn = |Kn|. If S and T
are any finite sets of integers, we shall say S ~ T if S = T + x for some
integer x, and we shall write kn(S) = |Kn(S)|, where Kn(S) is the family of
all subsets of Kn that are ~ S. When n = 0, we have kn(S) = 0 unless |S| ≤ 1,
since zero is the only “0-digit” number. When n ≥ 1 and S = {s1, . . ., sr},
we have

where the inner union is over all sequences of digits (a1, . . ., ar) satisfying
the condition ai ≡ si + j (modulo b) for 1 ≤ i ≤ r. In this formula we require
ti – ti′ = (si – ai)/b – (si′ – ai′)/b for 1 ≤ i < i′ ≤ r, so that the naming of
subscripts is uniquely determined. By the principle of inclusion and
exclusion, therefore, we have kn(S) = ∑0≤j<b ∑m≥1(–1)m−1f(S, m, j), where
f(S, m, j) is the number of sets of integers that can be expressed as {t1b +
a1, . . ., trb + ar} in the manner above for m different sequences (a1, . . .,
ar), summed over all choices of m different sequences (a1, . . ., ar). Given
m different sequences for 1 ≤ l ≤ m, the number of such
sets is . Thus there is
a collection of sets T(S) such that

where each cT is an integer. Furthermore if T ∊ T(S), its elements are near
those of S; we have min T ≥ (min S – max D)/b and max T ≤ (max S + b − 1
– min D)/b. Thus we obtain simultaneous recurrence relations for the
sequences 〈kn(S)〉, where S runs through the nonempty integer subsets of
[l . . u + 1], in the notation of exercise 19. Since kn = kn(S) for any one-
element set S, the sequence 〈kn〉 appears among these recurrences. The
coefficients cT can be computed from the first few values of kn(S), so we
can obtain a system of equations defining the generating functions kS(z) =
∑kn(S)zn = [|S| ≤ 1] + z ∑T∊T (S) cT kT (z). [See J. Algorithms 2 (1981),
31–43.]

For example, when D = {–1, 0, 3} and b = 3 we have and
, so the relevant sets S are {0}, {0, 1}, {–1, 1}, and {–1, 0, 1}. The

corresponding sequences for n ≤ 3 are 〈1, 3, 8, 21〉, 〈0, 1, 3, 8〉,
〈0, 0, 1, 4〉, and 〈0, 0, 0, 0〉; so we obtain

and k(z) = 1/(1 – 3z + z2). In this case kn = F2n+2 and kn({0, 2}) = F2n−1 –
1.
34. There is exactly one string αn on the symbols { , 0, 1} such that n =
(αn)2 and αn has no leading zeros or consecutive nonzeros: α0 is empty,
otherwise α2n = αn0, α4n+1 = αn01, α4n−1 = αn0 . Any string that represents
n can be converted to this “canonical signed bit representation” by using
the reductions 1 → 01, 1 → 0 , 01 . . . 11 → 10 . . . 0 , 0 . . . → 0 . .
. 01, and inserting or deleting leading zeros. Since these reductions do not
increase the number of nonzero digits, αn has the fewest. [Advances in
Computers 1 (1960), 244–260.] The number of nonzero digits in αn,
denoted by (n), is the number of 1s in the ordinary representation that are
immediately preceded by 0 or by the substring 00(10)k1 for some k ≥ 0.
(See exercise 7.1.3–35.)

A generalization to radix b > 2 has been given by J. von zur Gathen,
Computational Complexity 1 (1991), 360–394.

Section 4.2.1
1. N = (62, +.60 22 14 00); h = (37, +.66 26 10 00). Note that the quantity

10h would be (38, +.06 62 61 00).
2. bE–q (1 – b−p), b−q–p; bE–q (1 – b−p), b−q−1.
3. When e does not have its smallest value, the most significant “one” bit

(which appears in all such normalized numbers) need not appear in the
computer word.

4. (51, +.10209877); (50, +.12346000); (53, +.99999999). The third
answer would be (54, +.10000000) if the first operand had been (45,
–.50000000), since b/2 is odd.

5. If x ~ y and m is an integer then mb + x ~ mb + y. Furthermore x ~ y
implies x/b ~ y/b, by considering all possible cases. Another crucial
property is that x and y will round to the same integer, whenever bx ~ by.

Now if b−p−2 Fv ≠ fv we must have (bp+2 fv) mod b ≠ 0; hence the
transformation leaves fv unchanged unless eu – ev ≥ 2. Since u was
normalized, it is nonzero and |fu + fv| > b−1 – b−2 ≥ b−2: The leading
nonzero digit of fu + fv must be at most two places to the right of the radix
point, and the rounding operation will convert bp+j (fu + fv) to an integer,
where j ≤ 1. The proof will be complete if we can show that bp+j+1(fu +
fv) ~ bp+j+1(fu + b−p−2 Fv). By the previous paragraph, we have bp+2(fu +
fv) ~ bp+2 fu + Fv = bp+2(fu + b−p−2Fv), which implies the desired result
for all j ≤ 1. Similar remarks apply to step M2 of Algorithm M.

Note that, when b > 2 is even, such an integer Fv always exists; but
when b = 2 we require p + 3 bits (let 2Fv be an integer). When b is odd,
an integer Fv always exists except in the case of division by Algorithm M,
when a remainder of b is possible.

6. (Consider the case eu = ev, fu = –fv in Program A.) Register A retains
its previous sign, as in ADD.

7. Say that a number is normalized if and only if it is zero or its fraction
part lies in the range < |f| < . A (p + 1)-place accumulator suffices for
addition and subtraction; rounding (except during division) is equivalent to

truncation. A very pleasant system indeed! We might represent numbers
with excess-zero exponent, inserted between the first and subsequent digits
of the fraction, and complemented if the fraction is negative, so that the
order of fixed point numbers is preserved.

8. (a) (06, +.12345679) ⊕ (06, –.12345678), (01, +.10345678) ⊕ (00,
–.94000000); (b) (99, +.87654321) ⊕ itself, (99, +.99999999) ⊕ (91,
+.50000000).

9. a = c = (–50, +.10000000), b = (–41, +.20000000), d = (–41,
+.80000000), y = (11, +.10000000).
10. (50, +.99999000) ⊕ (55, +.99999000).
11. (50, +.10000001) ⊗ (50, +.99999990).
12. If 0 < |fu| < |fv|, then |fu| ≤ |fv| – b−p; hence 1/b < |fu/fv| ≤ 1 – b−p/|fv| < 1
– b−p. If 0 < |fv| ≤ |fu|, we have 1/b ≤ |fu/fv|/b ≤ ((1 – b−p)/(1/b))/b = 1 –
b−p.
13. See J. Michael Yohe, IEEE Trans. C-22 (1973), 577–586; see also
exercise 4.2.2–24.
14.

15.

16. If |c| ≥ |d|, then set r ← d ⊘ c, s ← c ⊕ (r ⊗ d); x ← (a ⊕ (b ⊗ r)) ⊘
s, y ← (b ⊖ (a ⊗ r)) ⊘ s. Otherwise set r ← c ⊘ d, s ← d ⊕ (r ⊗ c); x ←
((a ⊗ r) ⊕ b) ⊘ s, y ← ((b ⊗ r) ⊖ a) ⊘ s. Then x + iy is the desired
approximation to (a + bi)/(c + di). Computing s′ ← 1 ⊘ s and multiplying
twice by s′ may be better than dividing twice by s. As with (11), gradual
underflow is recommended for the calculation of r unless special
precautions are taken. [CACM 5 (1962), 435. Other algorithms for
complex arithmetic and function evaluation are given by P. Wynn, BIT 2
(1962), 232–255. For |a + bi|, see Paul Friedland, CACM 10 (1967), 665.]
17. See Robert Morris, IEEE Trans. C-20 (1971), 1578–1579. Error
analysis is more difficult with such systems, so interval arithmetic is
correspondingly more desirable.

18. For positive numbers: Shift fraction left until f1 = 1, then round, then if
the fraction is zero (rounding overflow) shift it right again. For negative
numbers: Shift fraction left until f1 = 0, then round, then if the fraction is
zero (rounding underflow) shift it right again.
19. (73–(5–[rounding digits are 0 . . . 0])(6–[magnitude is rounded up]) +
[ev<eu]+ [first rounding digit is] – [fraction overflow] – 10[result
zero]+7[rounding overflow]+ 7N + (3 + (16 + [result negative])[opposite
signs])X)u, where N is the number of left shifts during normalization, and X
is the condition that rX receives nonzero digits and there is no fraction
overflow. The maximum time of 84u occurs for example when

[The average time, considering the data in Section 4.2.4, will be less than
47u.]

Section 4.2.2

1. u ⊖ v = u ⊕ –v = –v ⊕ u = –(v ⊕ –u) = –(v ⊖ u).
2. u ⊕ x ≥ u ⊕ 0 = u, by (8), (2), (6); hence by (8) again, (u ⊕ x) ⊕ v ≥ u
⊕ v. Similarly, (8) and (6) together with (2) imply that (u ⊕ x) ⊕ (v ⊕ y) ≥
(u ⊕ x) ⊕ v.

3. u = 8.0000001, v = 1.2500008, w = 8.0000008; (u ⊗ v) ⊗ w =
80.000064, yet u ⊗ (v ⊗ w) = 80.000057.

4. Yes; let 1/u ≈ v = w, where v is large.
5. Not always; in decimal arithmetic take u = v = 9.
6. (a) Yes. (b) Only for b + p ≤ 4 (try u = 1 – b−p). But see exercise 27.
7. If u and v are consecutive floating binary numbers, u ⊕ v = 2u or 2v.

When it is 2v we often have . For example, u = (.10 . . .
001)2, v = (.10 . . . 010)2, u ⊕ v = 2v, and .

8. (a) ~, ≈; (b) ~, ≈; (c) ~, ≈; (d) ~; (e) ~.
9. |u–w| ≤ |u−v|+|v–w| ≤ ε1 min(beu−q, bev –q)+ε2 min(bev –q, bew –q) ≤ ε1beu–q

+ ε2bew–q ≤ (ε1 + ε2) max(beu–q, bew–q). The result cannot be strengthened in
general, since for example we might have eu very small compared to both

ev and ew, and this means that u – w might be fairly large under the
hypotheses.
10. We have (.a1 . . . ap−1ap)b⊗(.9 . . . 99)b = (.a1 . . . ap−1(ap–1))b if ap ≥
1 and a1 ≥ ; here “9” stands for b − 1. Furthermore, (.a1 . . . ap−1ap)b ⊗
(1.0 . . . 0)b = (.a1 . . . ap−10)b, so the multiplication is not monotone if b >
2 and ap ≥ 1 + [a1 ≥]. But when b = 2, this argument can be extended to
show that multiplication is monotone; obviously the “certain computer”
had b > 2.
11. Without loss of generality, let x be an integer, 0 ≤ x < bp. If e ≤ 0, then t
= 0. If 0 < e ≤ p, then x – t has at most p + 1 digits, the least significant
being zero. If e > p, then x – t = 0. [The result holds also under the weaker
hypothesis |t| < be; in that case we might have x – t = be when e > p.]
12. Assume that eu = p, ev ≤ 0, u > 0. Case 1, u > bp−1, Case (1a), w = u +
1, v ≥ , ev = 0. Then u′ = u or u + 1, v′ = 1, u″ = u, v″ = 1 or 0. Case (1b),
w = u, |v| ≤ . Then u′ = u, v′ = 0, u″ = u, v″ = 0. If |v| = and more general
rounding is permitted we might also have u′ = u ± 1, v″ = ∓1. Case (1c), w
= u − 1, v ≤ – , ev = 0. Then u′ = u or u − 1, v′ = –1, u″ = u, v″ = –1 or 0.
Case 2, u = bp−1. Case (2a), w = u + 1, v ≥ , ev = 0. Like (1a). Case (2b),
w = u, |v| ≤ , u′ ≥ u. Like (1b). Case (2c), w = u, |v| ≤ , u′ < u. Then u′ = u
– j/b where v = j/b + v1 and |v1| ≥ b−1 for some positive integer j ≤ b;
we have v′ = 0, u″ = u, v″ = j/b. Case (2d), w < u. Then w = u – j/b where
v = –j/b + v1 and |v1| ≤ b−1 for some positive integer j ≤ b; we have (v′,
u″) = (–j/b, u), and (u′, v″) = (u, –j/b) or (u − 1/b, (1 – j)/b), the latter case
only when v1 = b−1. In all cases u ⊖ u′ = u – u′, v ⊖ v′ = v – v′, u ⊖ u″ =
u – u″, v ⊖ v″ = v – v″, round(w – u – v) = w – u – v.
13. Since round(x) = 0 if and only if x = 0, we want to find a large set of
integer pairs (m, n) with the property that m ⊘ n is an integer if and only if
m/n is. Assume that |m|, |n| < bp. If m/n is an integer, then m ⊘ n = m/n is
also. Conversely if m/n is not an integer, but m ⊘ n is, we have 1/|n| ≤ |m
⊘ n – m/n| < |m/n|b1–p, hence |m| > 2bp−1. Our answer is therefore to

require |m| ≤ 2bp−1 and 0 < |n| < bp. (Slightly weaker hypotheses are also
possible.)
14. |(u ⊗ v) ⊗ w – uvw| ≤ |(u ⊗ v) ⊗ w – (u ⊗ v)w| + |w| |u ⊗ v – uv| ≤
δ(u⊗v)⊗w + bew–q–lw δu⊗v ≤ (1 + b)δ(u⊗v)⊗w. Now |e(u⊗v)⊗w – eu⊗(v⊗w)| ≤ 2,
so we may take ε = (1 + b)(1 + b2)b−p.

15. u ≤ v implies that (u ⊕ u) ⊘ 2 ≤ (u ⊕ v) ⊘ 2 ≤ (v ⊕ v) ⊘ 2, so the
condition holds for all u and v if and only if it holds whenever u = v. For
base b = 2, the condition is therefore always satisfied (barring overflow);
but for b > 2 there are numbers v ≠ w such that v ⊕ v = w ⊕ w, hence the
condition fails. [On the other hand, the formula u ⊕ ((v ⊖ u) ⊘ 2) does
give a midpoint in the correct range. Proof. It suffices to show that u + (v
⊖ u) ⊘ 2 ≤ v, i.e., (v ⊖ u) ⊘ 2 ≤ v – u; and it is easy to verify that round(
round(x)) ≤ x for all x ≥ 0.]
16. (a) Exponent changes occur at ∑10 = 11.111111, ∑91 = 101.11110, ∑901
= 1001.1102, ∑9001 = 10001.020, ∑90009 = 100000.91, ∑900819 =
1000000.0; therefore ∑1000000 = 1109099.1.

(b) After calculating 1.2345679 =
1224782.1, (14) tries to take the square root of –.0053187053. But (15)
and (16) are exact in this case. [If, however, xk = 1+⌊(k−1)/2⌋10−7, (15)
and (16) have errors of order n. See Chan and Lewis, CACM 22 (1979),
526–531, for further results on the accuracy of standard deviation
calculations.]

(c) We need to show that u ⊕ ((v ⊖ u) ⊘ k) lies between u and v; see
exercise 15.

17.

19. Let γk = δk = ηk = σk = 0 for k > n. It suffices to find the coefficient of
x1, since the coefficient of xk will be just the same except with all
subscripts increased by k − 1. Let (fk, gk) denote the coefficient of x1 in (sk
– ck, ck) respectively. Then f1 = (1+η1)(1–γ1–γ1δ1–γ1σ1–δ1σ1–γ1δ1σ1), g1 =
(1+δ1)(1+η1)(γ1+σ1+γ1σ1), and fk = (1–γkσk –δkσk –γkδkσk)fk−1+(γk –ηk
+γkδk +γkηk +γkδkηk +γkηkσk +δkηkσk + γkδkηkσk)gk−1, gk = σk(1 + γk)(1
+ δk)fk−1 – (1 + δk)(γk + γkηk + ηkσk + γkηkσk)gk−1, for 1 < k ≤ n. Thus fn

= 1 + η1 – γ1 + (4n terms of 2nd order) + (higher order terms) = 1 + η1 – γ1

+ O(nε2) is sufficiently small. [The Kahan summation formula was first
published in CACM 8 (1965), 40; see also Proc. IFIP Congress (1971), 2,
1232, and further developments by K. Ozawa, J. Information Proc. 6
(1983), 226–230. Kahan observed that sn ⊖cn =

 where |φk| ≤ 2ε+O((n+1–k)ε2). For another
approach to accurate summation, see R. J. Hanson, CACM 18 (1975), 57–
58. When some x’s are negative and others are positive, we may be able to
match them advantageously, as explained by T. O. Espelid, SIAM Review
37 (1995), 603–607. See also G. Bohlender, IEEE Trans. C-26 (1977),
621–632, for algorithms that compute round(x1 + ... + xn) and round(x1 . . .
xn) exactly, given {x1, . . ., xn}.]
20. By the proof of Theorem C, (47) fails for ew = p only if |v| + ≥ |w – u|
≥ bp−1 + b−1; hence |fu| ≥ |fv| ≥ 1 – (b − 1)b−p. We now find that a
necessary and sufficient condition for failure is that |fw| is essentially
rounded to 2 during the normalization process (actually to 2/b after scaling
right for fraction overflow)—a very rare case indeed!
21. (Solution by G. W. Veltkamp.) Let c = 2⌈p/2⌉ + 1; we may assume that p
≥ 2, so c is representable. First compute u′ = u ⊗ c, u1 = (u ⊖ u′) ⊕ u′, u2

= u ⊖ u1; similarly, v′ = v ⊗ c, v1 = (v ⊖ v′) ⊕ v′, v2 = v ⊖ v1. Then set w
← u ⊗ v, w′ ← (((u1 ⊗ v1 ⊖ w) ⊕ (u1 ⊗ v2)) ⊕ (u2 ⊗ v1)) ⊕ (u2 ⊗ v2).

It suffices to prove this when u, v > 0 and eu = ev = p, so that u and v
are integers ∊ [2p−1. . 2p). Then u = u1 + u2 where 2p−1 ≤ u1 ≤ 2p, u1 mod
2⌈p/2⌉ = 0, and |u2| ≤ 2⌈p/2⌉–1; similarly v = v1 + v2. The operations during
the calculation of w′ are exact, because w – u1v1 is a multiple of 2p−1 such
that |w – u1v1| ≤ |w – uv| + |u2v1 + u1v2 + u2v2| ≤ 2p−1 + 2p+⌈p/2⌉ + 2p−1; and
similarly |w – u1v1 – u1v2| ≤ |w – uv| + |u2v| < 2p−1 + 2⌈p/2⌉–1+p, where w –
u1v1 – u1v2 is a multiple of 2⌈p/2⌉.

22. We may assume that bp−1 ≤ u, v < bp. If uv ≤ b2p−1, then x1 = uv – r
where |r| ≤ bp−1, hence x2 = round(u – r/v) = x0 (since |r/v| ≤ bp−1/bp−1 ≤

, and equality implies v = bp−1 hence r = 0). If uv > b2p−1, then x1 = uv – r
where |r| ≤ bp, hence x1/v = u – r/v < bp + b and x2 ≤ bp. If x2 = bp, then
x3 = x1 (since the condition (bp –)v ≤ x1 implies that x1 is a multiple of
bp, and we have x1 < bp(v +)). If x2 < bp and x1 > b2p−1, then let x2 = x1/v
+ q where |q| ≤ ; we have x3 = round(x1 + qv) = x1. Finally if x2 < bp, x1 =
b2p−1, and x3 < b2p−1, then x4 = x2 by the first case above. This situation
arises, for example, when b = 10, p = 2, u = 19, v = 55, x1 = 1000, x2 = 18,
x3 = 990.
23. If u ≥ 0 or u ≤ –1 we have u 1 = u mod 1, so the identity holds. If
–1 < u < 0, then u 1 = u ⊕ 1 = u + 1 + r where |r| ≤ b−p; the
identity holds if and only if round(1 + r) = 1, so it always holds if we
round to even. With the text’s rounding rule the identity fails if and only if b
is a multiple of 4 and –1 < u < 0 and u mod 2b−p = b−p (for example, p =
3, b = 8, u = –(.0124)8).

24. Let u = [ul . . ur], v = [vl . . vr]. Then u⊕v = [ul vl . . ur vr], where
x y = y x, x +0 = x for all x, x –0 = x for all x ≠ +0, x +∞ for
all x ≠ –∞, and x –∞ needn’t be defined; x y = –((–x) (–y)). If x ⊕
y would overflow in normal floating point arithmetic because x + y is too
large, then x y is +∞ and x y is the largest representable number.

For subtraction, let u ⊖ v = u ⊕ (–v), where –v = [–vr . . –vl].

Multiplication is somewhat more complicated. The correct procedure
is to let u ⊗ v = [min(ul vl, ul vr, ur vl, ur vr) . . max(ul vl, ul

 vr, ur vl, ur vr)], where x y = y x, x (–y) = –(x y) = (–
x) y; x +0 = (+0 for x > 0, –0 for x < 0); x –0 = –(x +0); x
+∞ = (+∞ +0, –∞ for x < –0). (It is possible to determine the min and max
simply by looking at the signs of ul, ur, vl, and vr, thereby computing only
two of the eight products, except when ul < 0 < ur and vl < 0 < vr; in the
latter case we compute four products, and the answer is [min(ul vr, ur

 vl) . . max(ul vl, ur vr.)

Finally, u ⊘ v is undefined if vl < 0 < vr; otherwise we use the formulas
for multiplication with vl and vr replaced respectively by and ,
where x y−1 = x y, x y−1 = x y, (±0)−1 = ±∞,(±∞)−1 = ±0.

[See E. R. Hansen, Math. Comp. 22 (1968), 374–384. An alternative
scheme, in which division by 0 gives no error messages and intervals may
be neighborhoods of ∞, has been proposed by W. M. Kahan. In Kahan’s
scheme, for example, the reciprocal of [–1 . . +1] is [+1 . . –1], and an
attempt to multiply an interval containing 0 by an interval containing ∞
yields [–∞ . . +∞], the set of all numbers. See Numerical Analysis, Univ.
Michigan Engineering Summer Conf. Notes No. 6818 (1968).]

25. Cancellation reveals previous errors in the computation of u and v. For
example, if ε is small, we often get poor accuracy when computing f(x + ε)
⊖ f(x), because the rounded calculation of f(x + ε) destroys much of the
information about ε. It is desirable to rewrite such formulas as ε ⊗ g(x, ε),
where g(x, ε)= (f(x + ε) – f(x))/ε is first computed symbolically. Thus, if
f(x) = x2 then g(x, ε) = 2x + ε; if then

.
26. Let e = max(eu, eu′), e′ = max(ev, ev′), e″ = max(eu⊕v, eu′⊕v′), and
assume that q = 0. Then (u ⊕ v) – (u′ ⊕ v′) ≤ u + v + be″–p – u′ – v′ +
be″–p ≤ εbe + εbe′ + be″–p, and e″ ≥ max(e, e′). Hence u ⊕ v ~ u′ ⊕ v′ (2ε +
b−p).

If b = 2 this estimate can be improved to 1.5ε + b−p. For ε + b,−p is an
upper bound if u – u′ and v – v′ have opposite signs, and in the other case
we cannot have e = e′ = e″.

27. The stated identity is a consequence of the fact that 1 ⊘ (1 ⊘ u) = u
whenever b−1 ≤ fu ≤ b−1/2. If the latter were false, there would be integers x
and y such that bp−1 < x < bp−1/2 and either y− ≤ b2p−1/x < b2p–1/(x−) ≤ y
or y ≤ b2p–1/(x+) < b2p−1/x ≤ y + . But that is clearly impossible unless
we have x(x +) > b2p−1, yet the latter condition implies y = ⌊bp−1/2⌋ = x.
28. See Math. Comp. 32 (1978), 227–232.

29. When b = 2 and p = 1 and x > 0, we have round(x) = 2e(x) where e(x)=
⌊lg x⌋. Let f(x) = xα and let t(n)= ⌊⌊αn+lg ⌋/α+lg ⌋. Then ĥ(2e) = 2t(e).
When α = .99 we find ĥ(2e) = 2e−1 for 41 < e ≤ 58.
31. According to the theory in Section 4.5.3, the convergents to the
continued fraction are pn/qn = Kn+1(1, 1, 2,
1, 2,...)/Kn(1, 2, 1, 2,...). These convergents are excellent approximations
to , hence ; in fact, . The
example given is

.
Floating point subtraction of from yields zero, unless we can
represent almost perfectly; subtracting from generally gives
rounding errors much larger than . Similar examples can be based on
continued fraction approximations to any algebraic number.
32. (J. Ziegler Hunts, 2014.) a = 1/2 and b mod 1 = 1/4.

Section 4.2.3
1. First, (wm, wl) = (.573, .248); then wmvl/vm = .290; so the answer is

(.572, .958). This in fact is the correct result to six decimals.
2. The answer is not affected, since the normalization routine truncates to

eight places and can never look at this particular byte position. (Scaling to
the left occurs at most once during normalization, since the inputs are
normalized.)

3. Overflow obviously cannot occur at line 09, since we are adding two-
byte quantities, or at line 22, since we are adding four-byte quantities. In
line 30 we are computing the sum of three four-byte quantities, so this
cannot overflow. Finally, in line 32, overflow is impossible because the
product fufv must be less than unity.

4. Insert ‘JOV OFLO; ENT1 0’ between lines 03 and 04. Also replace
lines 21–22 by ‘ADD TEMP(ABS); JNOV *+2; INC1 1’, and
change lines 28–31 to ‘SLAX 5; ADD TEMP; JNOV *+2; INC1
1; ENTX 0,1; SRC 5’. This adds five lines of code and only 1, 2, or
3 units of execution time.

5. Insert ‘JOV OFLO’ after line 06. Change lines 23, 31, 39 respectively
to ‘SRAX 0,1’, ‘SLAX 5’, ‘ADD ACC’. Between lines 40 and 41, insert
‘DEC2 1; JNOV DNORM; INC2 1; INCX 1; SRC 1’. (It’s
tempting to remove the ‘DEC2 1’ in favor of ‘STZ EXPO’, but then
‘INC2 1’ might overflow rI2!) This adds six lines of code; the running
time decreases by 3u, unless there is fraction overflow, when it increases
by 7u.

6.

7. All three routines give zero as the answer if and only if the exact result
would be zero, so we need not worry about zero denominators in the
expressions for relative error. The worst case of the addition routine is
pretty bad: Visualized in decimal notation, if the inputs are 1.0000000 and
–.99999999, the answer is b−7 instead of b−8; thus the maximum relative
error δ1 is b − 1, where b is the byte size.

For multiplication and division, we may assume that both operands are
positive and have the same exponent QQ. The maximum error in
multiplication is readily bounded by considering Fig. 4: When uv ≥ 1/b,
we have 0 ≤ uv – u ⊗ v < 3b−9 + (b − 1)b−9, so the relative error is
bounded by (b + 2)b−8. When 1/b2 ≤ uv < 1/b, we have 0 ≤ uv – u ⊗ v <
3b−9, so the relative error in this case is bounded by 3b−9/uv ≤ 3b−7. We
take δ2 to be the larger of the two estimates, namely 3b−7.

Division requires a more careful analysis of Program D. The quantity
actually computed by the subroutine is α – δ – bε((α – δ″)(β – δ′) – δ″′) –
δn where α = (um + εul)/bvm, β = vl/bvm, and the nonnegative truncation
errors (δ, δ′, δ″, δ″′) are respectively less than (b−10, b−5, b−5, b−6); finally
δn (the truncation during normalization) is nonnegative and less than either
b−9 or b−8, depending on whether scaling occurs or not. The actual value

of the quotient is α/(1 + bεβ) = α – bεαβ + b2αβ2δ″″, where δ″″ is the
nonnegative error due to truncation of the infinite series (2); here δ″″ < ε2

= b−10, since it is an alternating series. The relative error is therefore the
absolute value of (bεδ′ + bεδ″β/α + bεδ″′/α) – (δ/α + bεδ′δ″/α + b2β2δ″″ +
δn/α), times (1 + bεβ). The positive terms in this expression are bounded
by b−9 + b−8 + b−8, and the negative terms are bounded by b−8 + b−12 + b−8

plus the contribution by the normalizing phase, which can be about b−7 in
magnitude. It is therefore clear that the potentially greatest part of the
relative error comes during the normalization phase, and that δ3 = (b +
2)b−8 is a safe upper bound for the relative error.
8. Addition: If eu ≤ ev + 1, the entire relative error occurs during the

normalization phase, so it is bounded above by b−7. If eu ≥ ev +2, and if the
signs are the same, again the entire error may be ascribed to normalization;
if the signs are opposite, the error due to shifting digits out of the register is
in the opposite direction from the subsequent error introduced during
normalization. Both of these errors are bounded by b−7, hence δ1 = b−7.
(This is substantially better than the result in exercise 7.)

Multiplication: An analysis as in exercise 7 gives δ2 = (b + 2)b−8.

Section 4.2.4
1. Since fraction overflow can occur only when the operands have the

same sign, this is the probability that fraction overflow occurs divided by
the probability that the operands have the same sign, namely, 7%/(
(91%)) ≈ 15%.

3. log10 2.4 – log10 2.3 ≈ 1.84834%.

4. The pages would be uniformly gray.
5. The probability that 10fU ≤ r is (r − 1)/10 + (r − 1)/100 + ... = (r −

1)/9. So in this case the leading digits are uniformly distributed; for
example, the leading digit is 1 with probability .

6. The probability that there are three leading zero bits is log16 2 = ; the
probability that there are two leading zero bits is log16 4 – log16 2 = ; and
similarly for the other two cases. The “average” number of leading zero

bits is 1 , so the “average” number of “significant bits” is p + . The
worst case, p − 1 bits, occurs however with rather high probability. In
practice, it is usually necessary to base error estimates on the worst case,
since a chain of calculations is only as strong as its weakest link. In the
error analysis of Section 4.2.2, the upper bound on relative rounding error
for floating hex is 21–p. In the binary case we can have p + 1 significant bits
in all normalized numbers (see exercise 4.2.1–3), with relative rounding
errors bounded by 2−1–p. Extensive computational experience confirms that
floating binary produces significantly more accurate results than the
equivalent floating hex, even when the binary numbers have a precision of
p bits instead of p + 1.

Tables 1 and 2 show that hexadecimal arithmetic can be done a little
faster, since fewer cycles are needed when scaling to the right or
normalizing to the left. But this fact is insignificant compared to the
substantial advantages of b = 2 over other radices (see also Theorem
4.2.2C and exercises 4.2.2–13, 15, 21), especially since floating binary
can be made as fast as floating hex with only a tiny increase in total
processor cost.
7. For example, suppose that ∑m (F (10km ·5k)–F (10km)) = log 5k/log

10k and also that ∑m (F (10km ·4k) – F(10km)) = log 4k/log 10k; then

for all k. But now let ε be a small positive number, and choose δ > 0 so
that F(x) < ε for 0 < x < δ, and choose M > 0 so that F(x) > 1 – ε for x > M.
We can take k so large that 10−k · 5k < δ and 4k > M; hence by the
monotonicity of F,

8. When s > r, P0(10ns) is 1 for small n, and 0 when ⌊10ns⌋ > ⌊10nr⌋.
The least n for which this happens may be arbitrarily large, so no uniform

bound can be given for N0(ε) independent of s. (In general, calculus
textbooks prove that such a uniform bound would imply that the limit
function S0(s) would be continuous, and it isn’t.)

9. Let q1, q2, . . . be such that for all
n. It follows that for all m
and n.
10. When 1 < r < 10 the generating function C(z) has simple poles at the
points 1 + wn, where wn = 2πni/ln 10, hence

where E(z) is analytic in the entire plane. Thus if θ = arctan(2π/ln 10),

11. When (logb U) mod 1 is uniformly distributed in [0 . . 1), so is (logb
1/U) mod 1 = (1 – logb U) mod 1.
12. We have

consequently

Since

for all z, hence A(h) ≤ A(g). By symmetry, A(h) ≤ A(f). [Bell System Tech.
J. 49 (1970), 1609–1625.]

13. Let X = (logb U) mod 1 and Y = (logb V) mod 1, so that X and Y are
independently and uniformly distributed in [0 . . 1). No left shift is needed
if and only if X + Y ≥ 1, and that occurs with probability 1/2.

(Similarly, the probability is 1/2 that floating point division by
Algorithm 4.2.1M needs no normalization shifts; this analysis needs only
the weaker assumption that both of the operands independently have the
same distribution.)

14. For convenience, the calculations are shown here for b = 10. If k = 0,
the probability of a carry is

(See Fig. A–7.) The value of the integral is

Fig. A–7.
and

(The latter integral is essentially a “dilogarithm.”) Hence the probability
of a carry when k = 0 is (1/ln 10)2(π2/6 – 2 ∑n≥1 1/n210n) ≈ .27154. [Note:
When b = 2 and k = 0, fraction overflow always occurs, so this derivation
proves that ∑n≥1 1/n22n = π2/12 – (ln 2)2/2.]

When k > 0, the probability is

Thus when b = 10, fraction overflow should occur with approximate
probability .272p0+ .017p1 + .002p2 + When b = 2 the corresponding
figures are p0 + .655p1 + .288p2 + .137p3 + .067p4 + .033p5 + .016p6 +
.008p7 + .004p8 + .002p9 + .001p10 +

Now if we use the probabilities from Table 1, dividing by .91 to
eliminate zero operands and assuming that the probabilities are
independent of the operand signs, we predict a probability of about 14
percent when b = 10, instead of the 15 percent in exercise 1. For b = 2,
we predict about 48 percent, while the table yields 44 percent. These
results are certainly in agreement within the limits of experimental error.

15. When k = 0, the leading digit is 1 if and only if there is a carry. (It is
possible for fraction overflow and subsequent rounding to yield a leading
digit of 2, when b ≥ 4, but we are ignoring rounding in this exercise.) The
probability of fraction overflow is approximately .272, as shown in the
previous exercise, and .272 < log10 2.

When k > 0, the leading digit is 1 with probability

16. To prove the hint [which is due to Landau, Prace Matematyczno-
Fizyczne 21 (1910), 103–113], assume first that lim sup an = λ > 0. Let ε =
λ/(λ + 4M) and choose N so that |a1 + ... + an| < ελn for all n > N. Let n
> N/(1 – ε), n > 5/ε be such that an > λ. Then, by induction, an–k ≥ an –
kM/(n – εn) > λ for 0 ≤ k < εn, and ∑n–εn<k≤n ak ≥ λ(εn − 1) > λεn. But

since n – εn > N. A similar contradiction applies if lim inf an < 0.
Assuming that Pm+1(n) → λ as n → ∞, let ak = Pm(k) – λ. If m > 0, the

ak satisfy the hypotheses of the hint (see Eq. 4.2.2–(15)), since 0 ≤ Pm(k)
≤ 1; hence Pm(n) → λ.

17. See J. Math. Soc. Japan 4 (1952), 313–322. (The fact that harmonic
probability extends ordinary probability follows from a theorem of
Cesàro, [Atti della Reale Accademia dei Lincei, Rendiconti (4) 4 (1888),

452–457]. Persi Diaconis [Ph.D. thesis, Harvard University, 1974] has
shown among other things that the definition of probability by repeated
averaging is weaker than harmonic probability, in the following precise
sense: If limm→∞ lim infn→∞ Pm(n) = limm→∞ lim supn→∞ Pm(n) = λ then
the harmonic probability is λ. On the other hand the statement “10k2 ≤ n <
10k2+k for some integer k > 0” has harmonic probability , while repeated
averaging never settles down to give it any particular probability.)
18. Let p(a) = P (La) and p(a, b) = ∑a≤k<b p(k) for 1 ≤ a < b. Since La =
L10a ∪ L10a+1 ∪ ... ∪ L10a+9 for all a, we have p(a) = p(10a, 10(a + 1)) by
(i). Furthermore since P (S) = P (2S) + P (2S + 1) by (i), (ii), (iii), we
have p(a) = p(2a, 2(a + 1)). It follows that p(a, b) = p(2m10na, 2m10nb)
for all m, n ≥ 0.

If 1 < b/a < b′/a′, then p(a, b) ≤ p(a′, b′). The reason is that there exist
integers m, n, m′, n′ such that 2m′10n′a′ ≤ 2m10na < 2m10nb ≤ 2m′10n′b′ as a
consequence of the fact that log 2/log 10 is irrational, hence we can apply
(v). (See exercise 3.5–22 with k = 1 and Un = n log 2/log 10.) In
particular, p(a) ≥ p(a + 1), and it follows that p(a, b)/p(a, b + 1) ≥ (b –
a)/(b + 1 – a). (See Eq. 4.2.2–(15).)

Now we can prove that p(a, b) = p(a′, b′) whenever b/a = b′/a′; for p(a,
b) = p(10na, 10nb) ≤ cnp(10na, 10nb – 1) ≤ cnp(a′, b′), for arbitrarily
large values of n, where cn = 10n(b – a)/(10n(b – a) – 1) = 1 + O(10−n).

For any positive integer n we have p(an, bn) = p(an, ban−1) + p(ban−1,
b2an−2) + ... + p(bn−1a, bn) = np(a, b). If 10m ≤ an ≤ 10m+1 and 10m′ ≤ bn ≤
10m′+1, then p(10m+1, 10m′) ≤ p(an, bn) ≤ p(10m, 10m′+1) by (v). But p(1,
10) = 1 by (iv), hence p(10m, 10m′) = m′ – m for all m′ ≥ m. We conclude
that ⌊log10 bn⌋ – ⌊log10 an⌋ – 1 ≤ np(a, b) ≤ ⌊log10 bn⌋ + ⌊log10 an⌋ + 1
for all n, and p(a, b) = log10(b/a).

[This exercise was inspired by D. I. A. Cohen, who proved a slightly
weaker result in J. Combinatorial Theory A20 (1976), 367–370.]

19. Equivalently, 〈(log10 Fn) mod 1〉 is equidistributed in the sense of
Definition 3.5B. Since log10 Fn = n log10 φ – log10 + O(φ−2n) by 1.2.8–

(14), this is equivalent to equidistribution of 〈n log10 φ〉, which follows
from ex. 3.5–22. [Fibonacci Quarterly 5 (1967), 137–140.] The same
proof shows that the sequences 〈bn〉 obey the logarithmic law for all
integers b > 1 that aren’t powers of 10 [Yaglom and Yaglom, Challenging
Problems with Elementary Solutions (Moscow: 1954; English translation,
1964), Problem 91b].

Notes: Many other sequences of integers have this property. For
example, Persi Diaconis [Annals of Probability 5 (1977), 72–81] showed
that 〈n!〉 is one such sequence, and that binomial coefficients obey the
logarithmic law too, in the sense that

P. Schatte [Math. Nachrichten 148 (1990), 137–144] proved that the
denominators of continued fraction approximations have logarithmic
fraction parts, whenever the partial quotients have a repeating pattern with
polynomial variation as in exercise 4.5.3–16. One interesting open
question is whether the sequence 〈2!, (2!)!, ((2!)!)!, . . . 〉 has
logarithmic fraction parts; see J. H. Conway and M. J. T. Guy, Eureka 25
(1962), 18–19.

Section 4.3.1
2. If the ith number to be added is ui = (ui(n−1) . . . ui1ui0)b, use Algorithm

A with step A2 changed to the following:
A2′. [Add digits.] Set

(The maximum value of k is m − 1, so step A3 would have to be altered if
m > b.)

3.

Running time, assuming that K = MN, is 5.5MN + 7N + 4 cycles.
4. We may make the following assertion before A1: “n ≥ 1; and 0 ≤ ui, vi

< b for 0 ≤ i < n.” Before A2, we assert: “0 ≤ j < n; 0 ≤ ui, vi < b for 0 ≤ i <
n; 0 ≤ wi < b for 0 ≤ i < j; 0 ≤ k ≤ 1; and (uj−1 . . . u0)b + (vj−1 . . . v0)b =
(kwj−1 . . . w0)b.” The latter statement means more precisely that

Before A3, we assert: “0 ≤ j < n; 0 ≤ ui, vi < b for 0 ≤ i < n; 0 ≤ wi < b for
0 ≤ i ≤ j; 0 ≤ k ≤ 1; and (uj . . . u0)b + (vj . . . v0)b = (kwj . . . w0)b.” After
A3, we assert that 0 ≤ wi < b for 0 ≤ i < n; 0 ≤ wn ≤ 1; and (un−1 . . . u0)b +
(vn−1 . . . v0)b = (wn . . . w0)b.

It is a simple matter to complete the proof by verifying the necessary
implications between the assertions and by showing that the algorithm
always terminates.
5.

B1. Set j ← n − 1, wn ← 0.
B2. Set t ← uj + vj, wj ← t mod b, i ← j.

B3. If t ≥ b, set i ← i + 1, t ← wi + 1, wi ← t mod b, and repeat this step
until t < b.

B4. Decrease j by one, and if j ≥ 0 go back to B2.
6.

C1. Set j ← n − 1, i ← n, r ← 0.
C2. Set t ← uj + vj. If t ≥ b, set wi ← r + 1 and wk ← 0 for i > k > j;

then set i ← j and r ← t mod b. Otherwise if t < b − 1, set wi ← r
and wk ← b − 1 for i > k > j; then set i ← j and r ← t.

C3. Decrease j by one. If j ≥ 0, go back to C2; otherwise set wi ← r,
and wk ← b − 1 for i > k ≥ 0.

7. When j = n – 3, for example, we have k = 0 with probability (b +
1)/2b; k = 1 with probability ((b − 1)/2b)(1 – 1/b), namely the probability
that a carry occurs and that the preceding digit wasn’t b − 1; k = 2 with
probability ((b − 1)/2b)(1/b)(1 – 1/b); and k = 3 with probability ((b −
1)/2b)(1/b)(1/b)(1). For fixed k we may add the probabilities as j varies
from n − 1 to 0; this gives the mean number of times the carry propagates
back k places,

As a check, we find that the average number of carries is

in agreement with (6).

8.

The running time depends on L, the number of positions in which uj + vj ≥
b; and on K, the total number of carries. It is not difficult to see that K is
the same quantity that appears in Program A. The analysis in the text shows
that L has the average value N((b − 1)/2b), and K has the average value
(N – b−1 – b−2 – ... – b−n). So if we ignore terms of order 1/b, the running
time is 9N + L + 7K + 3 ≈ 13N + 3 cycles.
9. Replace “b” by “bj” everywhere in step A2.

10. If lines 06 and 07 were interchanged, we would almost always have
overflow, but register A might have a negative value at line 08, so this
would not work. If the instructions on lines 05 and 06 were interchanged,
the sequence of overflows occurring in the program would be slightly
different in some cases, but the program would still be right.
11. This is equivalent to lexicographic comparison of strings: (i) Set j ← n
− 1; (ii) if uj < vj, terminate [u < v]; if uj = vj and j = 0, terminate [u = v];
if uj = vj and j > 0, set j ← j − 1 and repeat (ii); if uj > vj, terminate [u >
v]. This algorithm tends to be quite fast, since there is usually low
probability that j will have to decrease very much before we encounter a
case with uj ≠ vj.
12. Use Algorithm S with uj = 0 and vj = wj. Another borrow will occur at
the end of the algorithm; this time it should be ignored.
13.

The running time is 23N + K + 5 cycles, and K is roughly N.
14. The key inductive assertion is the one that should be valid at the
beginning of step M4; all others are readily filled in from this one, which
is as follows: 0 ≤ i < m; 0 ≤ j < n; 0 ≤ ul < b for 0 ≤ l < m; 0 ≤ vl < b for 0
≤ l < n; 0 ≤ wl < b for 0 ≤ l < j + m; 0 ≤ k < b; and, in the notation of the
answer to exercise 4,

15. The error is nonnegative and less than (n − 2)b−n−1. [Similarly, if we
ignore the products with i + j > n + 3, the error is bounded by (n − 3)b−n−2,
etc.; but, in some cases, we must compute all of the products if we want to
get the true rounded result. Further analysis shows that correctly rounded
results of multiprecision floating point fractions can almost always be
obtained by doing only about half the work needed to compute the full
double-length product; moreover, a simple test will identify the rare cases
for which full precision is needed. See W. Krandick and J. R. Johnson,
Proc. IEEE Symp. Computer Arithmetic 11 (1993), 228–233.]
16.

Q1. Set r ← 0, j ← n − 1.
Q2. Set wj ← ⌊(rb + uj)/v⌋, r ← (rb + uj) mod v.
Q3. Decrease j by 1, and return to Q2 if j ≥ 0.

17. u/v > unbn/(vn−1 + 1)bn−1 = b(1 – 1/(vn−1 + 1)) > b(1 – 1/(b/2)) = b –
2.
18. (unb + un−1)/(vn−1 + 1) ≤ u/(vn−1 + 1)bn−1 < u/v.

19. u – v ≤ u – vn−1bn−1 – vn−2bn−2 = un−2bn−2 + ... + u0 + rbn−1 –
vn−2bn−2 < bn−2(un−2 + 1 + b – vn−2) ≤ 0. Since u – v < 0, q < .

20. If q ≤ – 2, then u < (– 1)v < (vn−1bn−1 + (vn−2 + 1)bn−2) – v <
vn−1bn−1 + vn−2bn−2 + bn−1 – v ≤ vn−1bn−1 + (b + un−2)bn−2 + bn−1 – v =
unbn + un−1bn−1 + un−2bn−2 + bn−1 – v ≤ unbn + un−1bn−1 + un−2bn−2 ≤ u. In
other words, u < u, and this is a contradiction.
21. (Solution by G. K. Goyal.) The inequality vn−2 ≤ b + un−2 implies
that we have ≤ (unb2 + un−1b + un−2)/(vn−1b + vn−2) ≤ u/((vn−1b +
vn−2)bn−2). Now u mod v = u – qv = v(1 – α) where 0 < α = 1 + q – u/v ≤
– u/v ≤ u(1/((vn−1b + vn−2)bn−2) – 1/v) = u(vn−3bn−3 + ...)/((vn−1b +
vn−2)bn−2v) < u/(vn−1bv) ≤ /(vn−1b) ≤ (b−1)/(vn−1b), and this is at most 2/b
since vn−1 ≥ (b−1).

22. Let u = 4100, v = 588. We first try = ⌊ ⌋ = 8, but 8 · 8 > 10(41 –
40) + 0. Then we set = 7, and now we find 7 · 8 < 10(41 – 35) + 0. But 7

times 588 equals 4116, so the true quotient is q = 6. (Incidentally, this
example shows that Theorem B cannot be improved under the given
hypotheses, when b = 10. Similarly, when b = 216 we can let u =
(7fff800100000000)16, v = (800080020005)16.)

23. Obviously v⌊b/(v + 1)⌋ < (v + 1)⌊b/(v + 1)⌋ ≤ b; and the lower bound
certainly holds if v ≥ b/2. Otherwise v⌊b/(v + 1)⌋ ≥ v(b – v)/(v + 1) ≥ (b −
1)/2 > ⌊b/2⌋ – 1.
24. The approximate probability is only logb 2, not . (For example, if b =
232, the probability that vn−1 ≥ 231 is approximately ; this is still high
enough to warrant the special test for d = 1 in steps D1 and D8.)
25.

26. (See the algorithm of exercise 16.)

At this point, the division routine is complete; and by the next exercise,
rAX = 0.
27. It is du mod dv = d(u mod v).
28. For convenience, let us assume that v has a decimal point at the left,
i.e., v = (vn.vn–1vn−2 . . .)b. After step N1 we have ≤ v < 1 + 1/b: For

and

The latter quantity takes its smallest value when vn−1 = 1, since it is a
concave function and the other extreme value is greater.

The formula in step N2 may be written , so we see

as above that v will never become ≥ 1 + 1/b.
The minimum value of v after one iteration of step N2 is ≥

if t = vn−1 + 1. The minimum of this quantity occurs for t = b/2 + 1; a lower
bound is 1 – 3/2b. Hence vn−1 ≥ b – 2, after one iteration of step N2.
Finally, we have (1 – 3/2b)(1 + 1/b)2 > 1, when b ≥ 5, so at most two more
iterations are needed. The assertion is easily verified when b < 5.
29. True, since (uj+n . . . uj)b < v.

30. In Algorithms A and S, such overlap is possible if the algorithms are
rewritten slightly; for example, in Algorithm A we could rewrite step A2
thus: “Set t ← uj+vj+k, wj ← t mod b, k ← ⌊t/b⌋.”

In Algorithm M, vj may be in the same location as wj+n. In Algorithm D,
it is most convenient (as in Program D, exercise 26) to let rn−1 . . . r0 be
the same as un−1 . . . u0; and we can also let qm . . . q0 be the same as um+n
. . . un, provided that no alteration of uj+n is made in step D6. (Line 098 of
Program D can safely be changed to ‘J1N 2B’, since uj+n isn’t used in
the subsequent calculation.)

31. Consider the situation of Fig. 6 with u = (uj+n . . . uj+1uj)3 as in
Algorithm D. If the leading nonzero digits of u and v have the same sign,
set r ← u – v, q ← 1; otherwise set r ← u + v, q ← –1. Now if |r| > |u|, or
if |r| = |u| and the first nonzero digit of uj−1 . . . u0 has the same sign as the
first nonzero digit of r, set q ← 0; otherwise set uj+n . . . uj equal to the
digits of r.
32. See M. Nadler, CACM 4 (1961), 192–193; Z. Pawlak and A. Wakulicz,
Bull. de l’Acad. Polonaise des Sciences, Classe III, 5 (1957), 233–236
(see also pages 803–804); and exercise 4.1–15.
34. See, for example, R. E. Maeder, The Mathematica Journal 6, 2
(Spring 1996), 32–40; 6, 3 (Summer 1996), 37–43.
36. Given φ with an accuracy of ±2−2n, we can successively compute φ−1,
φ−2, . . . by subtraction until φ−k < 2−n; the accumulated error will not
exceed 21–n. Then we can use the series ln φ = ln((1 + φ−3)/(1 – φ−3)) =
2(φ−3 + φ−9 + φ−15 + ...). [See William Schooling’s article in Napier
Tercentenary Memorial, edited by C. G. Knott (London: Longmans, 1915),
337–344.] An even better procedure, suggested in 1965 by J. W. Wrench,
Jr., is to evaluate

37. Let d = 2e so that b > dvn−1 ≥ b/2. Instead of normalizing u and v in step
D1, simply compute the two leading digits v′v″ of 2e(vn−1vn−2vn−3)b by
shifting left e bits. In step D3, use (v′, v″) instead of (vn−1, vn−2) and (u′, u″,
u″′) instead of (uj+n, uj+n−1, uj+n−2), where the digits u′u″u″′ are obtained
from (uj+n . . . uj+n−3)b by shifting left e bits. Omit division by d in step D8.
(In essence, u and v are being “virtually” shifted. This method saves
computation when m is small compared to n.)
38. Set k ← n, r ← 0, s ← 1, t ← 0, w ← u; we will preserve the invariant
relation uv = 22k(r + s2 – s) + 22k–nt + 22k−2nvw with 0 ≤ t, w < 2n, and
with 0 < r ≤ 2s unless (r, s) = (0, 1). While k > 0, let 4w = 2nw′ + w″ and
4t + w′v = 2nt′ + t″, where 0 ≤ w″, t″ < 2n and 0 ≤ t′ ≤ 6; then set t ← t″, w
← w″, s ← 2s, r ← 4r + t′ – s, k ← k − 1. If r ≤ 0, set s ← s − 1 and r ← r
+ 2s; otherwise, if r > 2s, set r ← r – 2s and s ← s + 1 (this correction
might need to be done twice). Repeat until k = 0. Then uv = r + s2 – s,
since w is always a multiple of 22n−2k. Consequently r = 0 if and only if uv
= 0; otherwise the answer is s, because uv – s ≤ s2 < uv + s.
39. Let Sj = ∑k≥0 16−k/(8k +j). We want to know whether or not 2n−1π mod
1 < . Since π = 4S1 – 2S4 – S5 – S6, it suffices to have good estimates of
2n−1Sj mod 1. Now 2n−1Sj is congruent (modulo 1) to ∑0≤k<n/4 anjk/(8k + j)
+ ∑k≥n/4 2n−1–4k/(8k + j), where anjk = 2n−1–4k mod (8k + j). Each term in
the first sum can be approximated within 2−m by computing anjk in O(log n)
operations (Section 4.6.3) and then finding the scaled quotient ⌊2manjk/(8k
+ j)⌋. The second sum can be approximated within 2−m by computing 2m

times its first m/4 terms. If m ≈ 2 lg n, the range of uncertainty will be ≈
1/n, and this will almost always be accurate enough. [Math. Comp. 66
(1997), 903–913.]

Notes: Let ζ = eπi/4 = (1 + i)/ be an 8th root of unity, and consider
the values lj = ln(1 – ζj/). Then l0 = ln(1 – 1/), l1 = 7 = ln – i
arctan 1, l2 = 6 = ln – i arctan(1/), l3 = 5 = ln – i arctan(1/3), l4

= ln(1 + 1/). Also –Sj/2j/2 = (l0 + ζ−j l1 + ... + ζ−7j l7) for 1 ≤ j ≤ 8 by

1.2.9–(13). Therefore 4S1 – 2S4 – S5 – S6 = 2l0 – (2 – 2i)2l1 + 2l4 + (2 +
2i)l7 = π. Other identities of interest are:

In general we have

where

and

40. To get the most significant n/2 places, we need about
basic operations (see exercise 15). And we can get the least significant n/2
places by using a b-adic method when b is a power of 2 (see exercise 4.1–
31): The problem is easily reduced to the case where v is odd. Let u = (. . .
u2u1u0)b, v = (. . . v2v1v0)b, and w = (. . . w2w1w0)b, where we want to
solve u = vw (modulo bn/2). Compute v′ such that v′v mod b = 1 (see
exercise 4.5.2–17). Then w0 = v′u0 mod b, and we can compute u′ = u –
w0v, w1 = v′u′0 mod b, etc. The rightmost n/2 places are found after about
n2 basic operations. So the total is n2 + O(n), while Algorithm D needs
about n2 + O(n). A pure right-to-left method for all n digits would require
 n2 + O(n). [See A. Schönhage and E. Vetter, Lecture Notes in Comp. Sci.

855 (1994), 448–459; W. Krandick and T. Jebelean, J. Symbolic
Computation 21 (1996), 441–455.]
41. (a) If m = 0, let v = u. Otherwise subtract xw from (um+n−1 . . . u1u0)b,
where x = u0w′ mod b; this zeroes out the units digit, so we have
effectively reduced m by 1. (This operation is closely related to the
computation of u/w in b-adic arithmetic, since u/w = q + bmv/w for some
integer q; see exercise 4.1–31. It wins over ordinary division because we
never have to correct a trial divisor. To compute w′ when b is a power of
2, notice that if w0w′ ≡ 1 (modulo 2e) then w0w″ ≡ 1 (modulo 22e) when w″
= (2 – w0w′)w′, by the 2-adic analog of “Newton’s method.”)

(b) Apply (a) to the product uv. Memory space is conserved if we
interlace multiplication and modulation as follows: Set k ← 0, t ← 0. Then
while k < n, preserve the invariant relation bkt ≡ (uk−1 . . . u0)v (modulo w)
by setting t ← t + ukv, t ← (t–xw)/b, k ← k+1, where x = t0w′ mod b is
chosen to make t–xw a multiple of b. This solution assumes that t, u, and v
have a signed magnitude representation; we can work also with
nonnegative numbers < 2w or with complement notations, as discussed by
Shand and Vuillemin and by Kornerup, [IEEE Symp. Computer Arithmetic
11 (1993), 252–259, 277–283]. If n is large, the techniques of Section
4.3.3 speed up the multiplication.

(c) Represent all numbers congruent to u (modulo w) by an internal
value r(u) where r(u) ≡ bnu. Then addition and subtraction are handled as

usual, while multiplication is r(uv) = bmult(r(u), r(v)), where bmult is the
operation of (b). At the beginning of the computation, replace each operand
u by r(u) = bmult(u, a), using the precomputed constant a = b2n mod w. At
the end, replace each r(u) by u = bmult(r(u), 1). [In the application to RSA
encryption, Section 4.5.4, we could redefine the coding scheme so that
precomputation and postcomputation are unnecessary.]
42. An interesting analysis by J. M. Holte in AMM 104 (1997), 138–149,
establishes the exact formula

The inner sum is when j = 0.
(Exercise 5.1.3–25 explains why Eulerian numbers arise in this
connection.)
43. By exercise 1.2.4–35 we have w = ⌊W/216⌋, where W = (28+1)t =
(28+1)(uv+27). Therefore if uv/255 > c+ , we have c < 28, hence w ≥
⌊(216(c+1)+28–c)/216⌋ ≥ c+1; if uv/255 < c + , we have w ≤ ⌊(216(c + 1)
– c − 1)/216⌋ = c. [See J. F. Blinn, IEEE Computer Graphics and Applic.
14, 6 (November 1994), 78–82.]

Section 4.3.2
1. The solution is unique since 7·11·13 = 1001. The constructive proof of

Theorem C tells us that the answer is ((11·13)6+6·(7·13)10+5·(7·11)12)
mod 1001. But this answer is perhaps not explicit enough! By (24) we have
v1 = 1, v2 = (6 – 1) · 8 mod 11 = 7, v3 = ((5 – 1) · 2 – 7) · 6 mod 13 = 6, so
u = 6 · 7 · 11 + 7 · 7 + 1 = 512.

2. No. There is at most one such u; the additional condition u1 ≡ ... ≡ ur
(modulo 1) is necessary and sufficient, and it follows that such a
generalization is not very interesting.

3. u ≡ ui (modulo mi) implies that u ≡ ui (modulo gcd(mi, mj)), so the
condition ui ≡ uj (modulo gcd(mi, mj)) must surely hold if there is a
solution. Furthermore if u ≡ v (modulo mj) for all j, then u – v is a multiple
of lcm(m1, . . ., mr) = m; hence there is at most one solution.

The proof can now be completed in a nonconstructive manner by
counting the number of different r-tuples (u1, . . ., ur) satisfying the
conditions 0 ≤ uj < mj and ui ≡ uj (modulo gcd(mi, mj)). If this number is
m, there must be a solution since (u mod m1, . . ., u mod mr) takes on m
distinct values as u goes from a to a + m − 1. Assume that u1, . . ., ur−1
have been chosen satisfying the given conditions; we must now pick ur ≡
uj (modulo gcd(mj, mr)) for 1 ≤ j < r, and by the generalized Chinese
remainder theorem for r − 1 elements there are

ways to do this. [This proof is based on identities (10), (11), (12), and
(14) of Section 4.5.2.]

A constructive proof [A. S. Fraenkel, Proc. Amer. Math. Soc. 14
(1963), 790–791] generalizing (25) can be given as follows. Let Mj =
lcm(m1, . . ., mj); we wish to find u = vrMr–1 + ... + v2M1 + v1, where 0 ≤
vj < Mj/Mj–1. Assume that v1, . . ., vj−1 have already been determined; then
we must solve the congruence

Here vj−1Mj−2 + ... + v1 ≡ ui ≡ uj (modulo gcd(mi, mj)) for i < j by
hypothesis, so c = uj – (vj−1Mj−2 + ... + v1) is a multiple of

We therefore must solve vjMj–1 ≡ c (modulo mj). By Euclid’s algorithm
there is a number cj such that cjMj–1 ≡ dj (modulo mj); hence we may take

Notice that, as in the nonconstructive proof, we have mj/dj = Mj/Mj–1.

4. (After m4 = 91 = 7 · 13, we have used up all products of two or more
odd primes that can be less than 100, so m5, . . . must all be prime.) We find

and then we are stuck (m22 = 1 does no good).

5. (a) No. The obvious upper bound,

is attained if we choose m1 = 34, m2 = 52, etc. (It is more difficult,
however, to maximize m1 . . . mr when r is fixed, or to maximize e1 + ... +
er with relatively prime ej as we would attempt to do when using moduli
2ej – 1.) (b) Replacing 100 by 256 and allowing even moduli gives 283553.
. . 2511 ≈ 1.67 · 10109.
6. (a) If e = f + kg, then 2e = 2f (2g)k ≡ 2f · 1k (modulo 2g − 1). So if 2e ≡

2f (modulo 2g − 1), we have 2e mod g ≡ 2f mod g (modulo 2g − 1); and since
the latter quantities lie between zero and 2g − 1 we must have e mod g = f
mod g. (b) By part (a), (1 + 2d + ... + 2(c−1)d) · (2e − 1) ≡ (1 + 2d + ... +
2(c−1)d) · (2d − 1) = 2cd − 1 ≡ 2ce − 1 ≡ 21 – 1 = 1 (modulo 2f − 1).

7. We have vjmj–1 . . . m1 ≡ uj – (vj−1mj−2 . . . m1 + ... + v1) and Cjmj–1 . . .
m1 ≡ 1 (modulo mj) by (23), (25), and (26); see P. A. Pritchard, CACM 27
(1984), 57.

This method of rewriting the formulas uses the same number of
arithmetic operations and fewer constants; but the number of constants is
fewer only if we order the moduli so that m1 < m2 < ... < mr, otherwise we
would need a table of mi mod mj. This ordering of the moduli might seem
to require more computation than if we made m1 the largest, m2 the next
largest, etc., since there are many more operations to be done modulo mr
than modulo m1; but since vj can be as large as mj – 1, we are better off
with m1 < m2 < ... < mr in (24) also. So this idea appears to be preferable
to the formulas in the text, although Section 4.3.3B shows that the formulas
in the text are advantageous when the moduli have the form (14).
8. Modulo mj: mj−1 . . . m1vj ≡ mj−1 . . . m1 (. . . ((uj –v1)c1j –v2)c2j –...–vj–

1) × c(j−1)j ≡ mj–2 . . . m1 (. . . (uj – v1)c1j – ... – vj–2)c(j−2)j – vj–1mj−2 . . . m1
≡ ... ≡ uj – v1 – v2m1 – ... – vj−1mj−2 . . . m1.

9. ur ← ((. . . (vrmr–1 + vr−1) mr−2 + ...) m1 + v1) mod mr, . . ., u2 ← (v2m1
+ v1) mod m2, u1 ← v1 mod m1.

(The computation should be done in this order, if we want to let uj and vj
share the same memory locations, as they can in (24).)
10. If we redefine the “mod” operator so that it produces residues in the
symmetrical range, the basic formulas (2), (3), (4) for arithmetic and (24),
(25) for conversion remain the same, and the number u in (25) lies in the
desired range (10). (Here (25) is a balanced mixed-radix notation,
generalizing balanced ternary notation.) The comparison of two numbers
may still be done from left to right, in the simple manner described in the
text. Furthermore, it is possible to retain the value uj in a single computer
word, if we have signed magnitude representation within the computer,
even if mj is almost twice the word size. But the arithmetic operations
analogous to (11) and (12) are more difficult, so it appears that this idea
would result in slightly slower operation on most computers.
11. Multiply by (m + 1) = ((m1 + 1), . . ., (mr + 1)). Note that

 (modulo m). In general if v is relatively prime to m, then we
can find (by Euclid’s algorithm) a number such that vv′
≡ 1 (modulo m); and then if u is known to be a multiple of v we have u/v =
uv′, where the latter is computed with modular multiplication. When v is
not relatively prime to m, division is much harder.
12. Replace mj by m in (11). [Another way to test for overflow, if m is
odd, is to maintain extra bits u0 = u mod 2 and v0 = v mod 2. Then
overflow has occurred if and only if u0 + v0 ≢ w1 + ... + wr (modulo 2),
where (w1, . . ., wr) are the mixed-radix digits corresponding to u + v.]

13. (a) x2 – x = (x − 1)x ≡ 0 (modulo 10n) is equivalent to (x − 1)x ≡ 0
(modulo pn) for p = 2 and 5. Either x or x−1 must be a multiple of p, and
then the other is relatively prime to pn; so either x or x − 1 must be a
multiple of pn. If x mod 2n = x mod 5n = 0 or 1, we must have x mod 10n =
0 or 1; hence automorphs have x mod 2n ≠ x mod 5n. (b) If x = qpn + r,
where r = 0 or 1, then r ≡ r2 ≡ r3, so 3x2 – 2x3 ≡ (6qpnr + 3r) – (6qpnr +
2r) ≡ r (modulo p2n). (c) Let c′ be (3(cx)2 – 2(cx)3)/x2 = 3c2 – 2c3x.

Note: Since the last k digits of an n-digit automorph form a k-digit
automorph, it makes sense to speak of the two ∞-digit automorphs, x and 1
– x, which are 10-adic numbers (see exercise 4.1–31). The set of 10-adic

numbers is equivalent under modular arithmetic to the set of ordered pairs
(u1, u2), where u1 is a 2-adic number and u2 is a 5-adic number.

14. Find the cyclic convolution (z0, z1, . . ., zn−1) of floating point
approximations to (a0u0, a1u1, . . ., an−1un−1) and (a0v0, a1v1, . . ., an−1vn−1),
where the constants ak = 2−(kq mod n)/n have been precomputed. The
identities and now imply
that where tk ≈ zk/ak. If sufficient accuracy has
been maintained, each tk will be very close to an integer. The
representation of w can readily be found from those integers. [R. Crandall
and B. Fagin, Math. Comp. 62 (1994), 305–324. For improved error
bounds, and extensions to moduli of the form k · 2n ± 1, see Colin
Percival, Math. Comp. 72 (2002), 387–395.]

Section 4.3.3

1.

2.

3. The result is true when k ≤ 2, so assume that k > 2. Let qk = 2Qk, rk =
2Rk, so that and Qk = Qk−1+Rk−1. We must show that 1+(Rk +
1)2Rk ≤ 2Qk−1; this inequality isn’t close at all. One way is to observe that 1
+ (Rk + 1)2Rk ≤ 1 + 22Rk and 2Rk < Qk−1 when k > 2. (The fact that 2Rk <
Qk−1 is readily proved by induction since Rk+1 – Rk ≤ 1 and Qk – Qk−1 ≥ 2.)

4. For j = 1, . . ., r, calculate Ue(j2), jUo(j2), Ve(j2), jVo(j2); and by
recursively calling the multiplication algorithm, calculate

Then we have We(j2) = (W (j) + W (–j))/2, Wo(j2) = (W (j) – W (–j))/(2j).
Also calculate We(0) = U(0)V (0). Now construct difference tables for We
and Wo, which are polynomials whose respective degrees are r and r − 1.

This method reduces the size of the numbers being handled, and reduces
the number of additions and multiplications. Its only disadvantage is a
longer program (since the control is somewhat more complex, and some
of the calculations must be done with signed numbers).

Another possibility would perhaps be to evaluate We and Wo at 12, 22,
42, . . ., (2r)2; although the numbers involved are larger, the calculations
are faster, since all multiplications are replaced by shifting and all
divisions are by binary numbers of the form 2j(2k − 1). (Simple
procedures are available for dividing by such numbers.)
5. Start the q and r sequences out with q0 and q1 large enough so that the

inequality in exercise 3 is valid. Then we will find in the formulas like
those preceding Theorem B that we have η1 → 0 and

. The factor Qk/Qk+1
→ 1 as k → ∞, so we can ignore it if we want to show that η2 < 1 – ε for
all large k. Now

.
Hence η2 ≤ (1 + 1/(2rk))2−1/(3Rk), and lg η2 < 0 for large enough k.

Note: Algorithm T can also be modified to define a sequence q0, q1, . . .
of a similar type that is based on n, so that n ≈ qk + qk+1 after step T1.
This modification leads to the estimate (21).
6. Any common divisor of 6q +d1 and 6q +d2 must also divide their

difference d2 –d1. The differences are 2, 3, 4, 6, 8, 1, 2, 4, 6, 1, 3, 5, 2,
4, 2, so we must only show at most one of the given numbers is divisible by
each of the primes 2, 3, 5. Clearly only 6q + 2 is even, and only 6q + 3 is a
multiple of 3; and there is at most one multiple of 5, since qk ≢ 3 (modulo
5).

7. Let pk−1 < n ≤ pk. We have tk ≤ 6tk−1 + ck3k for some constant c; so
tk/6k ≤ tk–1/6k−1 + ck/2k ≤ t0 + c ∑j≥1 j/2j = M. Thus

.
8. False. To see the fallacy, try it with k = 2.
9. ũs = û(qs) mod K. In particular, if q = –1 we get û(–r) mod K, which

avoids data-flipping when computing inverse transforms.
10. A[j](sk−1, . . ., sk–j, tk–j–1, . . ., t0) can be written

and this is ∑p,q upvqS(p, q), where |S(p, q)| = 0 or 2j. We have |S(p, q)| = 2j

for exactly 22k/2j values of p and q.
11. An automaton cannot have z2 = 1 until it has c ≥ 2, and this occurs first
for Mj at time 3j − 1. It follows that Mj cannot have z2z1z0 ≠ 000 until time
3(j − 1). Furthermore, if Mj has z0 ≠ 0 at time t, we cannot change this to z0
= 0 without affecting the output; but the output cannot be affected by this
value of z0 until at least time t + j − 1, so we must have t + j − 1 ≤ 2n.
Since the first argument we gave proves that 3(j − 1) ≤ t, we must have 4(j
− 1) ≤ 2n, that is, j − 1 ≤ n/2, i.e., j ≤ ⌊n/2⌋ + 1. This is the best possible
bound, since the inputs u = v = 2n − 1 require the use of Mj for all j ≤ ⌊n/2⌋
+ 1. (For example, Table 2 shows that M2 is needed to multiply two-bit
numbers, at time 3.)
12. We can “sweep through” K lists of MIX-like instructions, executing the
first instruction on each list, in O(K + (N log N)2) steps as follows: (i) A
radix list sort (Section 5.2.5) will group together all identical instructions,
in time O(K +N). (ii) Each set of j identical instructions can be performed
in O(log N)2 +O(j) steps, and there are O(N2) sets. A bounded number of
sweeps will finish all the lists. The remaining details are straightforward;
for example, arithmetic operations can be simulated by converting p and q
to binary. [SICOMP 9 (1980), 490–508.]
13. If it takes T(n) steps to multiply n-bit numbers, we can accomplish m-
bit times n-bit multiplication by breaking the n-bit number into ⌈n/m⌉ m-bit

groups, using ⌈n/m⌉T (m) + O(n + m) operations. The results cited in the
text therefore give an estimated running time of O(n log m log log m) on
Turing machines, or O(n log m) on machines with random access to words
of bounded size, or O(n) on pointer machines.
15. The best upper bound known is O(n(log n)2 log log n), due to M. J.
Fischer and L. J. Stockmeyer [J. Comp. and Syst. Sci. 9 (1974), 317–331];
their construction works on multitape Turing machines, and is O(n log n)
on pointer machines. The best lower bound known is of order n log n/log
log n, due to M. S. Paterson, M. J. Fischer, and A. R. Meyer [SIAM/AMS
Proceedings 7 (1974), 97–111]; this applies to multitape Turing machines
but not to pointer machines.

16. Let 2k be the smallest power of 2 that exceeds 2K. Set at ← ω−t2/2ut and

bt ← ω(2K−2–t)2/2, where ut = 0 for t ≥ K. We want to evaluate the
convolutions for r = 2K – 2 – s, when 0 ≤ s < K. The
convolutions can be found by using three fast Fourier transformations of
order 2k, as in the text’s multiplication procedure. [Note that this
technique, sometimes called the “chirp transform,” works for any complex
number ω, not necessarily a root of unity. See L. I. Bluestein, Northeast
Electronics Res. and Eng. Meeting Record 10 (1968), 218–219; D. H.
Bailey and P. N. Swarztrauber, SIAM Review 33 (1991), 389–404.]
17. The quantity Dn = Kn+1 – Kn satisfies D1 = 2, D2n = 2Dn, and D2n+1 =
Dn; hence Dn = 2e1–t+2 when n has the stated form. It follows that Kn = 3e1
+ , by induction on n.

Incidentally, Kn is odd, and we can multiply an n-place integer by an (n
+ 1)-place integer with (Kn + Kn+1)/2 1-place multiplications. The
generating function K(z) = ∑n≥1 Knzn satisfies zK(z) + z2 = K(z2)(z + 1)(z
+ 2); hence K(–1) = 1 and K(1) = .

18. The following scheme uses 3N + SN places of working storage, where
S1 = 0, S2n = Sn, and S2n−1 = Sn + 1, hence Sn = e1 – et – t + 2 – [t = 1] in
the notation of the previous exercise. Let N = 2n – ε, where ε is 0 or 1, and
assume that N > 1. Given N-place numbers u = 2nU1 +U0 and v = 2nV1 +V0,
we first form |U0 –U1| and |V0 –V1| in two n-place areas starting at

positions 0 and n of the (3N + SN)-place working area. Then we place their
product into the working area starting at position 3n + Sn. The next step is
to form the 2(n – ε)-place product U1V1, starting in position 0; using that
product, we change the 3n – 2ε places starting at position 3n + Sn to the
value of U1V1 –(U0 –U1)(V0 –V1)+2nU1V1. (Notice that 3n−2ε+3n+Sn = 3N
+SN .) Finally, we form the 2n-place product U0V0 starting at position 0,
and add it to the partial result starting at positions 2n + Sn and 3n + Sn. We
must also move the 2N-place answer to its final position by shifting it
down 2n + Sn positions.

The final move could be avoided by a trickier variation that cyclically
rotates its output by a given amount within a designated working area. If
the 2N-place product is not allowed to be adjacent to the auxiliary
working space, we need about N more places of memory (that is, a total of
about 6N instead of 5N places, for the input, output, and temporary
storage); see R. Maeder, Lecture Notes in Comp. Sci. 722 (1993), 59–65.

19. Let m = s2 + r where –s < r ≤ s. We can use (2) with U1 = ⌊u/s⌋, U0 = u
mod s, V1 = ⌊v/s⌋, V0 = v mod s, and with s playing the role of 2n. If we
know the signs of U1 – U0 and V1 – V0 we know how to compute the
product |U1 – U0| |V1 – V0|, which is < m, and whether to add or subtract it.
It remains to multiply by s and by s2 ≡ –r. Each of these can be done with
four multiplication/divisions, using exercise 3.2.1.1–9, but only seven are
needed because one of the multiplications needed to compute sx mod m is
by r or r+s. Thus 14 multiplication/divisions are sufficient (or 12, in case
u = v or u is constant). Without the ability to compare operands, we can
still do the job with one more multiplication, by computing U0V1 and U1V0
separately.

Section 4.4
1. We compute (. . . (ambm–1+am−1)bm−2+ ... + a1)b0+a0 by adding and

multiplying in the BJ system.

(Addition and multiplication by a constant in a mixed-radix system are
readily done using a simple generalization of the usual carry rule; see
exercise 4.3.1–9.)
2. We compute ⌊u/B0⌋, ⌊⌊u/B0⌋/B1⌋, etc., and the remainders are A0, A1,

etc. The division is done in the bj system.

Answer: 8 T. 3 cwt. 1 st. 2 lb. 5 oz.
3. The following procedure due to G. L. Steele Jr. and Jon L White

generalizes Taranto’s algorithm for B = 2 originally published in CACM 2,
7 (July 1959), 27.

A1. [Initialize.] Set M ← 0, U0 ← 0.
A2. [Done?] If u < ε or u > 1 – ε, go to step A4. (Otherwise no M-place

fraction will satisfy the given conditions.)
A3. [Transform.] Set M ← M + 1, U–M ← ⌊Bu⌋, u ← Bu mod 1, ε ←

Bε, and return to A2. (This transformation returns us to essentially
the same state we were in before; the remaining problem is to
convert u to U with fewest radix-B places so that |U – u| < ε. Note,
however, that ε may now be ≥ 1; in this case we could go
immediately to step A4 instead of storing the new value of ε.)

A4. [Round.] If u ≥ , increase U–M by 1. (If u = exactly, another
rounding rule such as “increase U–M by 1 only when it is odd” might
be preferred; see Section 4.2.2.)

Step A4 will never increase U–M from B − 1 to B; for if U–M = B − 1 we
must have M > 0, but no (M − 1)-place fraction was sufficiently accurate.
Steele and White go on to consider floating point conversions in their
paper [SIGPLAN Notices 25, 6 (June 1990), 112–126]. See also D. E.
Knuth in Beauty is Our Business, edited by W. H. J. Feijen et al. (New
York: Springer, 1990), 233–242.
4. (a) 1/2k = 5k/10k. (b) Every prime divisor of b divides B.
5. If and only if 10n − 1 ≤ c < w; see (3).
7. αu ≤ ux ≤ αu + u/w ≤ αu + 1, hence ⌊αu⌋ ≤ ⌊ux⌋ ≤ ⌊αu + 1⌋.

Furthermore, in the special case cited we have ux < αu + α and ⌊αu⌋ = ⌊αu
+ α – ε⌋ for 0 < ε ≤ α.

8.

9. Let pk = 22k+2. By induction on k we have vk(u) ≤ (1 – 1/pk)(⌊u/2⌋ +
1); hence ⌊vk(u)/16⌋ ≤ ⌊⌊u/2⌋/5⌋ = ⌊u/10⌋ for all integers u ≥ 0.
Furthermore, since vk(u + 1) ≥ vk(u), the smallest counterexample to
⌊vk(u)/16⌋ = ⌊u/10⌋ must occur when u is a multiple of 10.

Now let u = 10m be fixed, and suppose vk(u) mod pk = rk so that
vk+1(u) = vk(u) + (vk(u) – rk)/pk. The fact that implies that
there exist integers m0, m1, m2, . . . such that m0 = m, vk(u) = (pk – 1)mk +
xk, and mk = mk+1pk + xk – rk, where xk+1 = (pk + 1)xk – pkrk. Unwinding
this recurrence yields

Furthermore vk(u) + mk = vk+1(u) + mk+1 is independent of k, and it
follows that vk(u)/16 = m + (3 – mk)/16. So the minimal counterexample u
= 10yk is obtained for 0 ≤ k ≤ 4 by setting mk = 4 and rj = pj – 1 in the
formula yk = (vk + mk – c0). In hexadecimal notation, yk turns out to be
the final 2k digits of 434243414342434.

Since v4(10y4) is less than 264, the same counterexample is also
minimal for all k > 4. One way to work with larger operands is to modify
the method by starting with v0(u) = 6⌊u/2⌋ + 6 and letting ck = 6(pk –
1)/(p0 – 1), m0 = 2m. (In effect, we are truncating one bit further to the
right than before.) Then ⌊vk(u)/32⌋ = ⌊u/10⌋ when u is less than 10zk, for
1 ≤ k ≤ 7, where zk = (vk + mk – 6) when mk = 7, r0 = 14, and rj = pj –
1 for j > 0. For example, z4 = 1c342c3424342c34. [This exercise is
based on ideas of R. A. Vowels, Australian Comp. J. 24 (1992), 81–85.]

10. (i) Shift right one; (ii) Extract the left bit of each group; (iii) Shift the
result of (ii) right two; (iv) Shift the result of (iii) right one, and add it to
the result of (iii); (v) Subtract the result of (iv) from the result of (i).

11.

12. First convert the ternary number to nonary (radix 9) notation, then
proceed as in octal-to-decimal conversion but without doubling. Decimal
to nonary is similar. In the given example, we have

13.

14. Let K(n) be the number of steps required to convert an n-digit decimal
number to binary and at the same time to compute the binary representation
of 10n. Then we have K(2n) ≤ 2K(n) + O(M(n)). Proof. Given the number
U = (u2n−1 . . . u0)10, compute U1 = (u2n−1 . . . un)10 and U0 = (un−1 . . . u0)10

and 10n, in 2K(n) steps, then compute U = 10nU1 + U0 and 102n = 10n ·

10n in O(M(n)) steps. It follows that K(2n) = O(M(2n) + 2M(2n−1) +
4M(2n−2) + ...) = O(nM(2n)).

[Similarly, Schönhage has observed that we can convert a (2n lg 10)-bit
number U from binary to decimal, in O(nM(2n)) steps. First form V =
102n−1 in O(M(2n−1) + M(2n−2) + ...) = O(M(2n)) steps, then compute U0 =
(U mod V) and U1 = ⌊U/V ⌋ in O(M(2n)) further steps, then convert U0
and U1.]

17. See W. D. Clinger, SIGPLAN Notices 25, 6 (June 1990), 92–101, and
the paper by Steele and White cited in the answer to exercise 3.
18. Let U = roundB(u, P) and v = roundb(U, p). We may assume that u > 0,
so that U > 0 and v > 0. Case 1: v < u. Determine e and E such that be−1 < u
≤ be, BE−1 ≤ U < BE. Then u ≤ U + BE−P and U ≤ u – be−p; hence BP−1 ≤
BP−E U < BP−E u ≤ bp−eu ≤ bp. Case 2: v > u. Determine e and E such that
be−1 ≤ u < be, BE−1 < U ≤ BE. Then u ≥ U − BE−P and U ≥ u + be−p;
hence BP−1 ≤ BP−E (U – BE−P) < BP−E u ≤ bp>−eu < bp. Thus we have
proved that BP−1 < bp whenever v ≠ u.

Conversely, if BP−1 < bp, the proof above suggests that the most likely
example for which u ≠ v will occur when u is a power of b and at the
same time it is close to a power of B. We have BP−1bp < BP−1bp + bp –
BP−1 +)(bp –); hence 1 < α = 1/(1 – b−p) < 1 + B1−P = β. There are
integers e and E such that logB α < e logB b – E < logB β, by exercise
4.5.3–50. Hence α < be/BE < β, for some e and E. Now we have
roundB(be, P) = BE, and roundb(BE, p) < be. [CACM 11 (1968), 47–50;
Proc. Amer. Math. Soc. 19 (1968), 716–723.]

For example, if bp = 210 and BP = 104, the number u = 26408 ≈ .100049 ·
101930 rounds down to U = .1 · 101930 ≈ (.111111111101111111111)2 ·
26408, which rounds down to 26408 –26398. (The smallest example is
actually round((.1111111001)2 ·2784) = .1011 · 10236, round(.1011 · 10235)
= (.11111110010)2 · 2784, found by Fred J. Tydeman.)

19. m1 = (F0F0F0F0)16, c1 = 1 – 10/16 makes U = ((u7u6)10 . . .
(u1u0)10)256; then m2 = (FF00FF00)16, c2 = 1 – 102/162 makes U =
((u7u6u5u4)10(u3u2u1u0)10)65536; and m3 = (FFFF0000)16, c3 = 1 – 104/164

finishes the job. [Compare with Schönhage’s algorithm in exercise 14. This
technique is due to Roy A. Keir, circa 1958.]

Section 4.5.1
1. Test whether or not uv′ < u′v, since the denominators are positive. (See

also the answer to exercise 4.5.3–39.)
2. If c > 1 divides both u/d and v/d, then cd divides both u and v.
3. Let p be prime. If pe is a divisor of uv and u′v′ for e ≥ 1, then either

pe\u and pe\v′ or pe\u′ and pe\v; hence pe\ gcd(u, v′) gcd(u′, v). The
converse follows by reversing the argument.

4. Let d1 = gcd(u, v), d2 = gcd(u′, v′); the answer is w = (u/d1)
(v′/d2)sign(v), w′ = |(u′/d2)(v/d1)|, with a “divide by zero” error message if
v = 0.

5. d1 = 10, t = 17 · 7 – 27 · 12 = –205, d2 = 5, w = –41, w′ = 168.

6. Let u″ = u′/d1, v″ = v′/d1; our goal is to show that gcd(uv″ + u″v, d1) =
gcd(uv″ + u″v, d1u″v″). If p is a prime that divides u″, then p does not
divide u or v″, so p does not divide uv″ + u″v. A similar argument holds
for prime divisors of v″, so no prime divisors of u″v″ affect the given gcd.

7. (N − 1)2 + (N − 2)2 = 2N2 – (6N – 5). If the inputs are n-bit binary
numbers, 2n + 1 bits may be necessary to represent t.

8. For multiplication and division these quantities obey the rules x/0 =
sign(x)∞, (±∞) × x = x × (±∞) = (±∞)/x = ±sign(x)∞, x/(±∞) = 0, provided
that x is finite and nonzero, without change to the algorithms described.
Furthermore, the algorithms can readily be modified so that 0/0 = 0×(±∞) =
(±∞)×0 = “(0/0)”, where the latter is a representation of “undefined.” If
either operand is undefined the result should be undefined also.

Since the multiplication and division subroutines can yield these fairly
natural rules of extended arithmetic, it is sometimes worthwhile to modify
the addition and subtraction operations so that they satisfy the rules x ± ∞

= ±∞, x ± (–∞) = ∓∞, for x finite; (±∞) + (±∞) = ±∞ – (∓∞) = ±∞;
furthermore (±∞) + (∓∞) = (±∞) – (±∞) = (0/0); and if either or both
operands are (0/0), the result should also be (0/0). Equality tests and
comparisons may be treated in a similar manner.

The remarks above are independent of “overflow” indications. If ∞ is
being used to suggest overflow, it is incorrect to let 1/∞ be equal to zero,
lest inaccurate results be regarded as true answers. It is far better to
represent overflow by (0/0), and to adhere to the convention that the result
of any operation is undefined if at least one of the inputs is undefined.
This type of overflow indication has the advantage that final results of an
extended calculation reveal exactly which answers are defined and which
are not.
9. If u/u′ ≠ v/v′, then 1 ≤ |uv′ – u′v| = u′v′ |u/u′ – v/v′| < |22nu/u′ – 22nv/v′|;

two quantities differing by more than unity cannot have the same “floor.” (In
other words, the first 2n bits to the right of the binary point are enough to
characterize the value of a binary fraction, when there are n-bit
denominators. We cannot improve this to 2n − 1 bits, for if n = 4 we have

 = (.00010011 . . .)2, = (.00010010 . . .)2.)

11. To divide by (v + v′)/v″, when v and v′ are not both zero, multiply
by the reciprocal, (v – v′)v″/(v2 – 5v′2), and reduce to lowest terms.
12. ((2q−1 – 1)/1); round(x) = (0/1) if and only if |x| ≤ 21–q. Similarly,
round(x) = (1/0) if and only if x ≥ 2q−1.
13. One idea is to limit numerator and denominator to a total of 27 bits,
where we need only store 26 of these bits (since the leading bit of the
denominator is 1 unless the denominator has length 0). This leaves room
for a sign and five bits to indicate the denominator size. Another idea is to
use 28 bits for numerator and denominator, which are to have a total of at
most seven hexadecimal digits, together with a sign and a 3-bit field to
indicate the number of hexadecimal digits in the denominator.

[Using the formulas in the next exercise, the first alternative leads to
exactly 2140040119 finite representable numbers, while the second leads
to 1830986459. The first alternative is preferable because it represents
more values, and because it is cleaner and makes smoother transitions

between ranges. With 64-bit words we would, similarly, limit numerator
and denominator to a total of at most 64 – 6 = 58 bits.]

14. The number of multiples of n in the interval (a . . b] is ⌊b/n⌋ – ⌊a/n⌋.
Hence, by inclusion and exclusion, the answer to this problem is S0 – S1 +
S2 – ..., where Sk is ∑(⌊M2/P⌋ – ⌊M1/P⌋)(⌊N2/P⌋ – ⌊N1/P⌋), summed over
all products P of k distinct primes. We can also express the answer as

Section 4.5.2
1. Substitute min, max, + consistently for gcd, lcm, ×, respectively (after

making sure that the identities are correct when any variable is zero).
2. For prime p, let up, v1p, . . ., vnp be the exponents of p in the canonical

factorizations of u, v1, . . ., vn. By hypothesis, up ≤ v1p + ... + vnp. We must
show that up ≤ min(up, v1p) + ... + min(up, vnp), and this is certainly true if
up is greater than or equal to each vjp, or if up is less than some vjp.

3. Solution 1: If , the number in each case is (2e1 + 1) . . .
(2er + 1). Solution 2: A one-to-one correspondence is obtained if we set u
= gcd(d, n) and v = n2/ lcm(d, n) for each divisor d of n2. [E. Cesàro,
Annali di Matematica Pura ed Applicata (2) 13 (1885), 235–250, §12.]

4. See exercise 3.2.1.2–15(a).
5. Shift u and v right until neither is a multiple of 3, remembering the

proper power of 3 that will appear in the gcd. Each subsequent iteration
sets t ← u + v or t ← u – v (whichever is a multiple of 3), shifts t right
until it is not a multiple of 3, then replaces max(u, v) by the result.

The evidence that gcd(40902, 24140) = 34 is now overwhelming.
6. The probability that both u and v are even is ; the probability that both

are multiples of four is ; etc. Thus A has the distribution given by the
generating function

The mean is , and the standard deviation is . If u
and v are independently and uniformly distributed with 1 ≤ u, v < 2N,
some small correction terms are needed; the mean is then actually

7. When u and v are not both even, each of the cases (even, odd), (odd,
even), (odd, odd) is equally probable, and B = 1, 0, 0 in these cases. Hence
B = on the average. Actually, as in exercise 6, a small correction should
be given to be strictly accurate when 1 ≤ u, v < 2N ; the probability that B =
1 is actually

8. Let F be the number of subtraction steps in which u > v; then E = F + B.
If we change the inputs from (u, v) to (v, u), the value of C stays unchanged,
while F becomes C − 1 – F . Hence Eave = (Cave – 1) + Bave.

9. The binary algorithm first gets to B6 with u = 1963, v = 1359; then t ←
604, 302, 151, etc. The gcd is 302. Using Algorithm X we find that 2 ·
31408 – 23 · 2718 = 302.

10. (a) Two integers are relatively prime if and only if they are not both
divisible by any prime number. (b) Rearrange the sum in (a), with
denominators k = p1 . . . pr. (Each of the sums in (a) and (b) is actually
finite.) (c) Since (n/k)2 – ⌊n/k⌋2 = O(n/k), we have

 Furthermore
∑k>n(n/k)2 = O(n). (d) ∑d\n μ(d) = δ1n. [In fact, we have the more general
result

as in part (b), where the sums on the right are over the prime divisors of n,
and this is equal to .]

Notes: Similarly, we find that a set of k integers is relatively prime
with probability 1/ζ(k) = 1/(∑n≥1 1/nk). This proof of Theorem D is due
to F. Mertens, Crelle 77 (1874), 289–291. The technique actually gives a
much stronger result, namely that 6π−2mn + O(n log m) pairs of integers u
∊ [f(m) . . f(m) + m), v ∊ [g(n) . . g(n) + n) are relatively prime, when m ≤
n, f(m) = O(m), and g(n) = O(n).

11. (a) 6/π2 times , namely 49/(6π2) ≈ .82746. (b) 6/π2 times 1/1
+ 2/4 + 3/9 + ..., namely ∞. (This is true in spite of the results of exercises
12 and 14.)
12. [Annali di Mat. (2) 13 (1885), 235–250, §3.] Let σ(n) be the number of
positive divisors of n. The answer is

[Thus, the average is less than 2, although there are always at least two
common divisors when u and v are not relatively prime.]
13.
14. (a) L = (6/π2) Σd≥1 d−2 ln d = –ζ′(2)/ζ(2) = Σp prime (ln p)/(p2 – 1) ≈
0.56996. (b) (8/π2) Σd≥1[d odd]d−2 ln d = L – ln 2 ≈ 0.33891.

15. v1 = ±v/u3, v2 = ∓u/u3 (the sign depends on whether the number of
iterations is even or odd). This follows from the fact that v1 and v2 are

relatively prime to each other (throughout the algorithm), and that v1u = –
v2v. [Hence v1u = lcm(u, v) at the close of the algorithm, but this is not an
especially efficient way to compute the least common multiple. For a
generalization, see exercise 4.6.1–18.]

Further details can be found in exercise 4.5.3–48.
16. Apply Algorithm X to v and m, thus obtaining a value x such that xv ≡ 1
(modulo m). (This can be done by simplifying Algorithm X so that u2, v2,
and t2 are not computed, since they are never used in the answer.) Then set
w ← ux mod m. [It follows, as in exercise 4.5.3–45, that this process
requires O(n2) units of time, when it is applied to large n-bit numbers. See
exercises 17 and 39 for alternatives to Algorithm X.]
17. We can let u′ = (2u – vu2) mod 22e, as in Newton’s method (see the end
of Section 4.3.1). Equivalently, if uv ≡ 1 + 2ew (modulo 22e), let u′ = u +
2e((–uw) mod 2e).
18. Let u1, u2, u3, v1, v2, v3 be multiprecision variables, in addition to u and
v. The extended algorithm will act the same on u3 and v3 as Algorithm L
does on u and v. New multiprecision operations are to set t ← Auj, t ← t +
Bvj, w ← Cuj, w ← w + Dvj, uj ← t, vj ← w for all j, in step L4; also if B
= 0 in that step to set t ← uj – qvj, uj ← vj, vj ← t for all j and for q =
⌊u3/v3⌋. A similar modification is made to step L1 if v3 is small. The inner
loop (steps L2 and L3) is unchanged.
19. (a) Set t1 = x+2y+3z; then 3t1 +y+2z = 1, 5t1 –3y−20z = 3. Eliminate y,
then 14t1 – 14z = 6: No solution. (b) This time 14t1 – 14z = 0. Divide by
14, eliminate t1; the general solution is x = 8z – 2, y = 1 – 5z, z arbitrary.
20. We can assume that m ≥ n. If m > n = 0 we get to (m – t, 0) with
probability 2−t for 1 ≤ t < m, to (0, 0) with probability 21–m. Valida vi, the
following values can be obtained for n > 0:

Case 1, m = n. From (n, n) we go to (n–t, n) with probability
t/2t−5/2t+1+3/22t, for 2 ≤ t < n. (These values are) To
(0, n) the probability is n/2n−1 – 1/2n−2 + 1/22n−2. To (n, k) the probability
is the same as to (k, n). The algorithm terminates with probability 1/2n−1.

Case 2, m = n+1. From (n+1, n) we get to (n, n) with probability
when n > 1, or 0 when n = 1; to (n – t, n) with probability 11/2t+3 –
3/22t+1, for 1 ≤ t < n − 1. (These values are) We get to
(1, n) with probability 5/2n+1– 3/22n−1, for n > 1; to (0, n) with
probability 3/2n − 1/22n−1.

Case 3, m ≥ n + 2. The probabilities are given by the following table:

The only thing interesting about these results is that they are so messy;
but that makes them uninteresting.

21. Show that for fixed v and for 2m < u < 2m+1, when m is large, each
subtract-and-shift cycle of the algorithm reduces ⌊lg u⌋ by two, on the
average.
22. Exactly (N – m)2m − 1+δm0 integers u in the range 1 ≤ u < 2N have ⌊lg u⌋
= m, after u has been shifted right until it is odd. Thus

(The same formula holds for D in terms of Dmn.)

The middle sum is 22N−2 ∑0≤m<n<N mn2−m–n((α + β)N + γ – αm – βn).
Since

the sum on m is

Thus the coefficient of (α + β)N in the answer is found to be
. A similar argument applies to the other sums.

Note: The exact value of the sums may be obtained after some tedious
calculation by means of the general summation-by-parts formula

23. If x ≤ 1 it is Pr(u ≥ v and v/u ≤ x) = (1–Gn(x)). And if x ≥ 1 it is
+Pr(u ≤ v and v/u ≥ 1/x) = + Gn(1/x); this also equals (1 – Gn(x)) by
(40).
24. ∑k≥1 2−kG(1/(2k + 1)) = S(1). This value, which has no obvious
connection to classical constants, is approximately 0.5432582959.
25. Richard Brent has noted that G(e−y) is an odd function that is analytic
for all real values of y. If we let G(e−y) = λ1y + λ3y3 + λ5y5 + ... = ρ(e−y –
1), we have –ρ1 = λ1 = λ, ρ2 = λ, –ρ3 = λ + λ3, ρ4 = λ + λ3, –ρ5 =
λ + λ3 + λ5;

The first few values are λ1 ≈ .3979226812, λ3 ≈ –.0210096400, λ5 ≈
.0013749841, λ7 ≈ –.0000960351. Wild conjecture: limk→∞(–λ2k+1/λ2k−1)
= 1/π2.
26. The left side is 2S(1/x)–5S(1/2x)+2S(1/4x)–2S(x)+5S(2x)–2S(4x) by
(39); the right side is S(2x) – 2S(4x)+2S(1/x)–S(1/2x)–2S(x)+4S(2x) –
4S(1/2x)+2S(1/4x) by (44). The cases x = 1, x = 1/ , and x = φ are
perhaps the most interesting; for example, x = φ gives 2G(4φ) – 5G(2φ) +
G(φ2/2) – G(φ3) = 2G(2φ2).
27.

 by exercise 1.2.11.2–4, when n > 1; and of course
∑k≥1 2−k(l+1) = 1/(2l+1 – 1).

28. Letting and Tn(m) = 1/(en/m − 1) as in
exercise 6.3–34(b), we find Sn(m) = Tn(m) + O(e−n/mn/m2) and 2Ψn+1 =
∑j≥1 2− 2j Sn(2j) = τn +O(n−3), where τn = ∑j≥1 2−2j Tn(2j). Since τn+1 < τn

and 4τ2n – τn = 1/(en − 1) is positive but exponentially small, it follows
that τn = Θ(n−2). More detailed information can be obtained by writing

The integral is the sum of the residues at the poles 2 + 2πik/ ln 2, namely
n−2 times π2/(6 ln 2) + f(n), where

is a periodic function of lg n whose “average” value is zero.
29. (Solution by P. Flajolet and B. Vallée.) If f(x) = Σk≥1 2−k g(2kx) and

, then f*(s) = ∑k≥1 2−k (s+1) g*(s) = g*(s)/(2s+1 –
1), and under appropriate conditions.
Letting g(x) = 1/(1 + x), we find that the transform in this case is g*(s) =
π/sin πs when 0 < ℜs < 1; hence

It follows that f(x) is the sum of the residues of for
ℜs ≤ 0, namely ,
where

is a periodic function whose absolute value never exceeds 8 × 10−12. (The
fact that P (t) is so small caused Brent to overlook it in his original paper.)

The Mellin transform of f(1/x) is f*(–s) = π/((1–21–s) sin πs) for –1 <
ℜs < 0; thus , and we

now want the residues of the integrand with ℜs ≤ –1: f(1/x) = x – x2 +

... . [This formula could also have been obtained directly.] We have S1(x)
= 1 – f(x), and it follows that

where .
30. We have G2(x) = Σ1(x) – Σ1(1/x) + Σ2(x) – Σ2(1/x), where

The Mellin transforms are
, where

Therefore we obtain the following expansions for 0 ≤ x ≤ 1:

32. Yes: See G. Maze, J. Discrete Algorithms 5 (2007), 176–186.
34. Brigitte Vallée [Algorithmica 22 (1998), 660–685] has found an
elegant and rigorous analysis of Algorithm B, using an approach quite
different from that of Brent. Indeed, her methods are sufficiently different
that they are not yet known to predict the same behavior as Brent’s
heuristic model. Thus the problem of analyzing the binary gcd algorithm,
now solved rigorously for the first time, continues to lead to ever more
tantalizing questions of higher mathematics.
35. By induction, the length is m+⌊n/2⌋+1–[m = n = 1] when m ≥ n. But
exercise 37 shows that the algorithm cannot go as slowly as this.
36. Let an = (2n – (–1)n)/3; then a0, a1, a2, . . . = 0, 1, 1, 3, 5, 11, 21,
(This sequence of numbers has an interesting pattern of zeros and ones in
its binary representation. Notice that an = an−1 + 2an−2, and an + an+1 =
2n.) For m > n, let u = 2m+1 – an+2, v = an+2. For m = n > 0, let u = an+2 and
v = u + (–1)n. Another example for the case m = n > 0 is u = 2n+1 – 2, v =
2n+1 – 1; this choice takes more shifts, and gives B = 1, C = n + 1, D = 2n,
E = n, the worst case for Program B.

37. (Solution by J. O. Shallit.) This is a problem where it appears to be
necessary to prove more than was asked just to prove what was asked. Let
S(u, v) be the number of subtraction steps taken by Algorithm B on inputs u
and v. We will prove that S(u, v) ≤ lg(u + v). This will imply that S(u, v) ≤
⌊lg(u + v)⌋ ≤ ⌊lg 2 max(u, v)⌋ = 1 + ⌊lg max(u, v)⌋ as desired.

Notice that S(u, v) = S(v, u). If u is even, S(u, v) = S(u/2, v); hence we
may assume that u and v are odd. We may also assume that u > v, since
S(u, u) = 1. Then S(u, v) = 1 + S((u – v)/2, v) ≤ 1 + lg((u – v)/2 + v) =
lg(u + v) by induction.

It follows, incidentally, that the smallest case requiring n subtraction
steps is u = 2n−1 + 1, v = 2n−1 – 1.

38. Keep track of the most significant and least significant words of the
operands (the most significant is used to guess the sign of t and the least
significant is to determine the amount of right shift), while building a 2 × 2
matrix A of single-precision integers such that , where w is
the computer word size and where u′ and v′ are smaller u and v. (Instead of
dividing the simulated even operand by 2, multiply the other one by 2, until
obtaining multiples of w after exactly lg w shifts.) Experiments show this
algorithm running four times as fast as Algorithm L, on at least one
computer. With the similar algorithm of exercise 40 we don’t need the most
significant words.

A possibly faster binary algorithm has been described by J. Sorenson,
J. Algorithms 16 (1994), 110–144; Shallit and Sorenson, Lecture Notes
in Comp. Sci. 877 (1994), 169–183.

39. (Solution by Michael Penk.) Assume that u and v are positive.
Y1. [Find power of 2.] Same as step B1.
Y2. [Initialize.] Set (u1, u2, u3) ← (1, 0, u) and (v1, v2, v3) ← (v, 1 – u,

v). If u is odd, set (t1, t2, t3) ← (0, –1, –v) and go to Y4. Otherwise
set (t1, t2, t3) ← (1, 0, u).

Y3. [Halve t3.] If t1 and t2 are both even, set (t1, t2, t3) ← (t1, t2, t3)/2;
otherwise set (t1, t2, t3) ← (t1 + v, t2 – u, t3)/2. (In the latter case, t1 +
v and t2 – u will both be even.)

Y4. [Is t3 even?] If t3 is even, go back to Y3.

Y5. [Reset max(u3, v3).] If t3 is positive, set (u1, u2, u3) ← (t1, t2, t3);
otherwise set (v1, v2, v3) ← (v – t1, –u – t2, –t3).

Y6. [Subtract.] Set (t1, t2, t3) ← (u1, u2, u3) – (v1, v2, v3). Then if t1 ≤ 0,
set (t1, t2) ← (t1 + v, t2 – u). If t3 ≠ 0, go back to Y3. Otherwise the
algorithm terminates with (u1, u2, u3 · 2k) as the output.

It is clear that the relations in (16) are preserved, and that 0 ≤ u1, v1, t1
≤ v, 0 ≥ u2, v2, t2 ≥ –u, 0 < u3 ≤ u, 0 < v3 ≤ v after each of steps Y2–Y6. If
u is odd after step Y1, then step Y3 can be simplified, since t1 and t2 are
both even if and only if t2 is even; similarly, if v is odd, then t1 and t2 are
both even if and only if t1 is even. Thus, as in Algorithm X, it is possible
to suppress all calculations involving u2, v2, and t2, provided that v is odd
after step Y1. This condition is often known in advance (for example, it
holds when v is prime and we are trying to compute u−1 modulo v).

See also A. W. Bojanczyk and R. P. Brent, Computers and Math. 14
(1987), 233, for a similar extension of the algorithm in exercise 40.

40. Let m = lg max(|u|, |v|). We can show inductively that |u| ≤ 2m−(s−c)/2, |v|
≤ 2m−(s+c)/2 after we have performed the operation c ← c + 1 in step K3 s
times. Therefore s ≤ 2m. If K2 is executed t times, we have t ≤ s + 2,
because s increases every time except the first and last. [See VLSI ’83
(North-Holland, 1983), 145–154.]

Notes: When u = 1 and v = 3 · 2k − 1 and k ≥ 2, we have m = k + 2, s =
2k, t = k + 4. When u = uj and v = 2uj−1 in the sequence defined by u0 = 3,
u1 = 1, uj+1 = min(|3uj – 16uj−1|, |5uj – 16uj−1|), we have s = 2j + 2, t = 2j
+ 3, and (empirically) m ≈ φj. Can t be asymptotically larger than 2m/φ?

41. In general, since (au − 1) mod (av − 1) = au mod v – 1 (see Eq. 4.3.2–
(20)), we find that gcd(am − 1, an − 1) = agcd(m,n) – 1 for all positive
integers a.
42. Subtract the kth column from the 2kth, 3kth, 4kth, etc., for k = 1, 2, 3, . .
. . The result is a triangular matrix with xk on the diagonal in column k,
where m = ∑d\m xd. It follows that xm = ϕ(m), so the determinant is
ϕ(1)ϕ(2) . . . ϕ(n).

[In general, “Smith’s determinant,” in which the (i, j) element is f(gcd(i,
j)) for an arbitrary function f, is equal to , by
the same argument. See L. E. Dickson, History of the Theory of Numbers
1 (Carnegie Inst. of Washington, 1919), 122–123.]

Section 4.5.3
1. The running time is about 19.02T + 6, just a trifle slower than Program

4.5.2A.

2.

3. Kn(x1, . . . , xn).
4. By induction, or by taking the determinant of the matrix product in

exercise 2.
5. When the x’s are positive, the q’s of (9) are positive, and qn+1 > qn−1;

hence (9) is an alternating series of decreasing terms, and it converges if
and only if qnqn+1 → ∞. By induction, if the x’s are greater than ∊, we have
qn ≥ (1 + ∊/2)nc, where c is chosen small enough to make this inequality
valid for n = 1 and 2. But if xn = 1/2n, we have qn ≤ 2 – 1/2n.

6. It suffices to prove that A1 = B1; and from the fact that 0 ≤ //x1, . . . , xn//
< 1 whenever x1, . . . , xn are positive integers, we have B1 = ⌊1/X⌋ = A1.

7. Only 1 2 . . . n and n . . . 2 1. (The variable xk appears in exactly Fk
Fn+1–k terms; hence x1 and xn can only be permuted into x1 and xn. If x1 and
xn are fixed by the permutation, it follows by induction that x2, . . . , xn−1 are
also fixed.)

8. This is equivalent to

and by (6) it is equivalent to

9. (a) By definition. (b, d) Prove this when n = 1, then apply (a) to get the
result for general n. (c) Prove it when n = k + 1, then apply (a).
10. If A0 > 0, then B0 = 0, B1 = A0, B2 = A1, B3 = A2, B4 = A3, B5 = A4, m = 5.
If A0 = 0, then B0 = A1, B1 = A2, B2 = A3, B3 = A4, m = 3. If A0 = –1 and A1 =
1, then B0 = –(A2 + 2), B1 = 1, B2 = A3 – 1, B3 = A4, m = 3. If A0 = –1 and A1
> 1, then B0 = –2, B1 = 1, B2 = A1 – 2, B3 = A2, B4 = A3, B5 = A4, m = 5. If
A0 < –1, then B0 = –1, B1 = 1, B2 = –A0 – 2, B3 = 1, B4 = A1 – 1, B5 = A2, B6
= A3, B7 = A4, m = 7. [Actually, the last three cases involve eight subcases;
if any of the B’s is set to zero, the values should be “collapsed together” by
using the rule of exercise 9(c). For example, if A0 = –1 and A1 = A3 = 1, we
actually have B0 = –(A2 + 2), B1 = A4 + 1, m = 1. Double collapsing occurs
when A0 = –2 and A1 = 1.]

11. Let qn = Kn(A1, . . . , An), , pn = Kn+1(A0, . . . ,
An), . By (5) and (11) we have X = (pm +
pm−1Xm)/(qm + qm−1Xm), ; therefore
if Xm = Yn, the stated relation between X and Y holds by (8). Conversely, if
X = (qY + r)/(sY + t) and |qt – rs| = 1, we may assume that s ≥ 0, and we
can show that the partial quotients of X and Y eventually agree, by
induction on s. The result is clear when s = 0, by exercise 9(d). If s > 0, let
q = as + s′, where 0 ≤ s′ < s. Then X = a + 1/((sY + t)/(s′Y + r – at)); since
s(r – at) – ts′ = sr – tq, and s′ < s, we know by induction and exercise 10
that the partial quotients of X and Y eventually agree. [J. de Math. Pures et
Appl. 15 (1850), 153–155. The fact that m is always odd in exercise 10
shows, by a close inspection of this proof, that Xm = Yn if and only if X =
(qY + r)/(sY + t), where qt – rs = (–1)m–n.]
12. (a) Since , we know that is a multiple of
Vn+1; hence by induction , where Un and Vn are
integers. [Notes: An algorithm based on this process has many applications
to the solution of quadratic equations in integers; see, for example, H.
Davenport, The Higher Arithmetic (London: Hutchinson, 1952); W. J.
LeVeque, Topics in Number Theory (Reading, Mass.: Addison–Wesley,
1956); and see also Section 4.5.4. By exercise 1.2.4–35, we have

hence such an algorithm need only work with the positive integer .
Moreover, the identity Vn+1 = An(Un−1 – Un) + Vn−1 makes it unnecessary
to divide when Vn+1 is being determined.]

(b) Let . The stated
identity obviously holds by replacing by in the proof of (a). We
have

where pn and qn are defined in part (c) of this exercise; hence

But by (12), pn−1/qn−1 and pn/qn are extremely close to X; since X ≠ Y, Y –
pn/qn and Y – pn−1/qn−1 will have the same sign as Y – X for all large n.
This proves that Yn < 0 for all large n; hence

; Vn must be positive. Also ,
since Xn > 0. Hence , since .

Finally, we want to show that Un > 0. Since Xn < 1, we have
, so we need only consider the case . Then

, and this is
positive as we have already observed.

Notes: In the repeating cycle,
; hence

.
In other words An+1 is determined by Un+1 and Vn+1; we can determine
(Un, Vn) from its successor (Un+1, Vn+1) in the period. In fact, when

 and , the arguments above
prove that and ;
moreover, if the pair (Un+1, Vn+1) follows (U′, V′) with

 and , then U′ = Un and V′ = Vn.
Hence (Un, Vn) is part of the cycle if and only if
and .

(c)

There is also a companion identity, namely

(d) If Xn = Xm for some n ≠ m, then X is an irrational number that
satisfies the quadratic equation (qnX – pn)/(qn−1X – pn−1) = (qmX –
pm)/(qm−1X – pm−1).

The ideas underlying this exercise go back at least to Jayadeva in India,
prior to A.D. 1073; see K. S. Shukla, Ga ita 5 (1954), 1–20; C.-O.
Selenius, Historia Math. 2 (1975), 167–184. Some of its aspects had also
been discovered in Japan before 1750; see Y. Mikami, The Development
of Mathematics in China and Japan (1913), 223–229. But the main
principles of the theory of continued fractions for quadratics are largely
due to Euler [Novi Comment. Acad. Sci. Petrop. 11 (1765), 28–66] and
Lagrange [Hist. Acad. Sci. 24 (Berlin: 1768), 111–180].

14. As in exercise 9, we need only verify the stated identities when c is the
last partial quotient, and this verification is trivial. Now Hurwitz’s rule
gives 2/e = //1, 2, 1, 2, 0, 1, 1, 1, 1, 1, 0, 2, 3, 2, 0, 1, 1, 3, 1, 1, 0, 2, 5, . . .
//. Taking the reciprocal, collapsing out the zeros as in exercise 9, and
taking note of the pattern that appears, we find (see exercise 16) that

, m ≥ 0. [Schriften der
phys.-ökon. Gesellschaft zu Königsberg 32 (1891), 59–62. Hurwitz also
explained how to multiply by an arbitrary positive integer, in
Vierteljahrsschrift der Naturforschenden Gesellschaft in Zürich 41
(1896), Jubelband II, 34–64, §2.]
15. (This procedure maintains four integers (A, B, C, D) with the invariant
meaning that “our remaining job is to output the continued fraction for
(Ay+B)/(Cy+D), where y is the input yet to come.”) Initially set j ← k ← 0,
(A, B, C, D) ← (a, b, c, d); then input xj and set (A, B, C, D) ← (Axj +B, A,
Cxj +D, C), j ← j+1, one or more times until C + D has the same sign as C.
(When j ≥ 1 and the input has not terminated, we know that 1 < y < ∞; and
when C + D has the same sign as C we know therefore that (Ay + B)/(Cy +
D) lies between (A + B)/(C + D) and A/C.) Now comes the general step: If
no integer lies strictly between (A+B)/(C +D) and A/C, output Xk ←

min(⌊A/C⌋, ⌊(A + B)/(C + D)⌋), and set (A, B, C, D) ← (C, D, A – XkC, B
– XkD), k ← k + 1; otherwise input xj and set (A, B, C, D) ← (Axj + B, A,
Cxj + D, C), j ← j + 1. The general step is repeated ad infinitum.
However, if at any time the final xj is input, the algorithm immediately
switches gears: It outputs the continued fraction for (Axj + B)/(Cxj + D),
using Euclid’s algorithm, and terminates.

The following tableau solves the requested example, where the matrix
 begins at the upper left corner, then shifts right one on input, down

one on output:

M. Mendès France has shown that the number of quotients output per
quotient input is asymptotically bounded between 1/r and r, where r =
2⌊L(|ad – bc|)/2⌋ + 1 and L is the function defined in exercise 38; this
bound is best possible. [Topics in Number Theory, edited by P. Turán,
Colloquia Math. Soc. János Bolyai 13 (1976), 183–194.]

Gosper has also shown that the algorithm above can be generalized to
compute the continued fraction for (axy + bx + cy + d)/(Axy + Bx + Cy +
D) from those of x and y (in particular, to compute sums and products).
[MIT AI Laboratory Memo 239 (29 February 1972), Hack 101.] For
further developments, see J. Vuillemin, ACM Conf. LISP and Functional
Programming 5 (1988), 14–27.

16. It is not difficult to prove by induction that fn(z) = z/(2n + 1) + O(z3) is
an odd function with a convergent power series in a neighborhood of the
origin, and that it satisfies the given differential equation. Hence

It remains to prove that limn→∞ //z−1, 3z−1, . . . , (2n + 1)z−1// = f0(z).
[Actually Euler, age 24, obtained continued fraction expansions for the
considerably more general differential equation

; but he did not bother to prove
convergence, since formal manipulation and intuition were good enough in
the eighteenth century.]

There are several ways to prove the desired limiting equation. First,
letting fn(z) = ∑k ankzk, we can argue from the equation

that (–1)kan(2k+1) is a sum of terms of the form ck/(2n+1)k+1(2n+bk1) . . .
(2n+bkk), where the ck and bkm are positive integers independent of n. For
example, we have –an7 = 4/(2n + 1)4(2n + 3)(2n + 5)(2n + 7) + 1/(2n +
1)4(2n + 3)2(2n + 7). Thus |a(n+1)k| ≤ |ank |, and |fn(z)| ≤ tan |z| for |z| < π/2.
This uniform bound on fn(z) makes the convergence proof very simple.
Careful study of this argument reveals that the power series for fn(z)
actually converges for ; therefore the singularities of
fn(z) get farther and farther away from the origin as n grows, and the
continued fraction actually represents tanh z throughout the complex plane.

Another proof gives further information of a different kind: If we let

then

It follows, by induction, that

Hence

and we want to show that this ratio approaches tanh z. By Equations 1.2.9–
(11) and 1.2.6–(24),

Hence

We now have (e2z – 1)(An(2z) + An(–2z)) – (e2z + 1)(An(2z) – An(–2z)) =
2Rn(2z); hence

and we have an exact formula for the difference. When |2z| ≤ 1, the factor
e2z + 1 is bounded away from zero, |Rn(2z)| ≤ e n!/(2n + 1)!, and

Thus convergence is very rapid, even for complex values of z.
To go from this continued fraction to the continued fraction for ez, we

have tanh z = 1 – 2/(e2z + 1); hence we get the continued-fraction
representation for (e2z + 1)/2 by simple manipulations. Hurwitz’s rule
gives the expansion of e2z + 1, from which we may subtract unity. For n
odd,

Another derivation has been given by C. S. Davis, J. London Math.
Soc. 20 (1945), 194–198. The continued fraction for e was first found
empirically by Roger Cotes, Philosophical Transactions 29 (1714), 5–
45, Proposition 1, Scholium 3. Euler communicated his results in a letter
to Goldbach on November 25, 1731 [Correspondance Mathématique et

Physique, edited by P. H. Fuss, 1 (St. Petersburg: 1843), 56–60], and he
eventually published fuller descriptions in Commentarii Acad. Sci.
Petropolitanæ 9 (1737), 98–137; 11 (1739), 32–81.

17. (b) //x1 – 1, 1, x2 – 2, 1, x3 – 2, 1, . . . , 1, x2n−1 – 2, 1, x2n – 1//. [Note:
One can remove negative parameters from continuants by using the identity

from which we obtain

after a second application. A similar identity appears in exercise 41.]

18. Since we have Km(a1, a2, . . . , am) // a1, a2, . . . , am, x// = Km−1(a2, . . .
, am) + (–1)m/(Km−1(a1, . . . , am−1) + Km(a1, a2, . . . , am)x) by Eqs. (5) and
(8), we also have Km(a1, a2, . . . , am) // a1, a2, . . . , am, x1, a1, a2, . . . , am,
x2, a1, a2, . . . , am, x3, a1, . . . // = Km−1(a2, . . . , am) + //(–1)m(C + Ax1), C
+ Ax2, (–1)m(C + Ax3), . . . //, where A = Km(a1, a2, . . . , am) and C =
Km−1(a2, . . . , am) + Km−1(a1, . . . , am−1). Consequently the stated
difference is (Km−1(a2, . . . , am)–Km−1(a1, . . . , am−1))/Km(a1, a2, . . . , am),
by (6). [The case m = 2 was discussed by Euler in Commentarii Acad. Sci.
Petropolitanæ 9 (1737), 98–137, §24–26.]
19. The sum for 1 ≤ k ≤ N is logb((1 + x)(N + 1)/(N + 1 + x)).

20. Let H = SG, g(x) = (1 + x)G′(x), h(x) = (1 + x)H′(x). Then (37) implies
that h(x + 1)/(x + 2) – h(x)/(x + 1) = –(1 + x)−2g(1/(1 + x))/(1 + 1/(1 + x)).
21. ϕ(x) = c/(cx + 1)2 + (2 – c)/((c − 1)x + 1)2, Uϕ(x) = 1/(x + c)2. When c
≤ 1, the minimum of ϕ(x)/Uϕ(x) occurs at x = 0 and is 2c2 ≤ 2. When c ≥ φ,
the minimum occurs at x = 1 and is ≤ φ2. When c ≈ 1.31266 the values at x
= 0 and x = 1 are nearly equal and the minimum is > 3.2; the bounds
(0.29)nϕ ≤ Unϕ ≤ (0.31)nϕ are obtained. Still better bounds come from
well-chosen linear combinations of the form T g(x) = ∑aj/(x + cj).

23. By the interpolation formula of exercise 4.6.4–15 with x0 = 0, x1 = x, x2
= x + ∊, letting ∊ → 0, we have the general identity

 for some θn(x) between 0
and x, whenever Rn is a function with continuous second derivative. Hence
in this case .
24. ∞. [A. Khinchin, in Compos. Math. 1 (1935), 361–382, proved that the
sum A1 + ... + An of the first n partial quotients of a real number X will be
asymptotically n lg n, for almost all X. Exercise 35 shows that the behavior
is different for rational X.]
25. Any union of intervals can be written as a union of disjoint intervals,
since we have ∪k≥1 Ik = ∪k≥1(Ik \ ∪1≤j<k Ij), and this is a disjoint union in
which Ik \ ∪1≤j<k Ij can be expressed as a finite union of disjoint intervals.
Therefore we may take I = ∪ Ik, where Ik is an interval of length ∊/2k

containing the kth rational number in [0 . . 1], using some enumeration of
the rationals. In this case μ(I) ≤ ∊, but |I ∩ Pn| = n for all n.
26. The continued fractions //A1, . . . , At// that appear are precisely those
for which A1 > 1, At > 1, and Kt(A1, A2, . . . , At) is a divisor of n. Therefore
(6) completes the proof. [Note: If m1/n = //A1, . . . , At// and m2/n = //At, . . .
, A1//, where m1 and m2 are relatively prime to n, then m1m2 ≡ ±1 (modulo
n); this rule defines the correspondence. When A1 = 1 an analogous
symmetry is valid, according to (46).]
27. First prove the result for n = pe, then for n = rs, where r and s are
relatively prime. Alternatively, use the formulas in the next exercise.
28. (a) The left-hand side is multiplicative (see exercise 1.2.4–31), and it
is easily evaluated when n is a power of a prime. (c) From (a), we have
Möbius’s inversion formula: If f(n) = ∑d\n g(d), then g(n) = ∑d\n
μ(n/d)f(d).
29. We have ln ln N + O(N2) by Euler’s summation
formula (see exercise 1.2.11.2–7). Also

, and this is
. Indeed, ∑d≥1 Λ(d)/d2 = –ζ′(2)/ζ(2).

30. The modified algorithm affects the calculation if and only if the
following division step in the unmodified algorithm would have the
quotient 1, and in this case it avoids the following division step. The
probability that a given division step is avoided is the probability that Ak =
1 and that this quotient is preceded by an even number of quotients equal to
1. By the symmetry condition, this is the probability that Ak = 1 and is
followed by an even number of quotients equal to 1. The latter happens if
and only if Xk−1 > φ–1 = 0.618 . . . , where φ is the golden ratio: For Ak =
1 and Ak+1 > 1 if and only if ≤ Xk−1 < 1; Ak = Ak+1 = Ak+2 = 1 and Ak+3 > 1
if and only if ≤ Xk−1 < ; etc. Thus we save approximately Fk−1(1) –
Fk−1(φ – 1) ≈ 1 – lg φ ≈ 0.306 of the division steps. The average number
of steps is approximately ((12 ln φ)/π2) ln n, when v = n and u is relatively
prime to n.

K. Vahlen [Crelle 115 (1895), 221–233] considered all algorithms that
replace (u, v) by (v, (±u) mod v) at each iteration when u mod v ≠ 0. If u ⊥
v there are exactly v such algorithms, and they can be represented as a
binary tree with v leaves. The shallowest leaves, which correspond to the
shortest possible number of iterations over all such gcd algorithms, occur
when the least remainder is taken at each step; the deepest leaves occur
when the greatest remainder is always chosen. [Similar ideas had been
considered by Lagrange in Hist. Acad. Sci. 23 (Berlin: 1768), 111–180,
§58.] For further results see N. G. de Bruijn and W. M. Zaring, Nieuw
Archief voor Wiskunde (3) 1 (1953), 105–112; G. J. Rieger, Math. Nachr.
82 (1978), 157–180.

On many computers, the modified algorithm makes each division step
longer; the idea of exercise 1, which saves all division steps when the
quotient is unity, would be preferable in such cases.

31. Let a0 = 0, a1 = 1, an+1 = 2an + an−1; then
, and the worst case (in the sense

of Theorem F) occurs when u = an + an−1, v = an, n ≥ 2. This result is due
to A. Dupré [J. de Math. 11 (1846), 41–64], who also investigated more
general “look-ahead” procedures suggested by J. Binet.
32. (b) Km−1(x1, . . . , xm−1)Kn−1(xm+2, . . . , xm+n) corresponds to those
Morse code sequences of length m + n in which a dash occupies positions

m and m + 1; the other term corresponds to the opposite case.
(Alternatively, use exercise 2. The more general identity

also appeared in Euler’s paper. Incidentally, “Morse code” was really
invented by F. C. Gerke in 1848; Morse’s prototypes were quite different.)
33. (a) The new representations are x = m/d, y = (n – m)/d, x′ = y′ = d =
gcd(m, n – m), for n < m < n. (b) The relation (n/x′) – y ≤ x < n/x′
defines x. (c) Count the x′ satisfying (b). (d) A pair of integers x > y > 0
with x ⊥ y can be uniquely written in the form x = Km(x1, . . . , xm), y =
Km−1(x1, . . . , xm−1), where x1 ≥ 2 and m ≥ 1; here y/x = //xm, . . . , x1//. (e)
It suffices to show that ∑1≤k≤n/2 T(k, n) = 2⌊n/2⌋ + h(n); this follows from
exercise 26.
34. (a) Dividing x and y by gcd(x, y) yields g(n) = ∑d\n h(n/d); apply
exercise 28(c), and use the symmetry between primed and unprimed
variables. (b) For fixed y and t, the representations with xd ≥ x′ have

; hence there are such representations. Now sum
for . (c) If s(y) is the given sum, then ∑d\y s(d) =
y(H2y – Hy) = k(y), say; hence s(y) = ∑d\y μ(d)k(y/d). Now k(y) = y ln 2 –
1/4 + O(1/y). (d)

.
(Similarly, .) (e)

 (see exercise 4.5.2–10(d)); and
. Hence hd(n) = n((3 ln 2)/π2) ln(n/d) + O(n)

for d ≥ 1. Finally h(n) = 2 ∑cd\n μ(d)hc(n/cd) = ((6 ln 2)/π2)n(ln n−∑ –
∑′)+ O(nσ–1(n)2), where the remaining sums are ∑ = ∑cd\n μ(d) ln(cd)/cd =
0 and ∑′ = ∑cd\n μ(d) ln c/cd = ∑d\n Λ(d)/d. [It is well known that σ–1(n) =
O(log log n); see Hardy and Wright, An Introduction to the Theory of
Numbers, §22.9.]
35. See Proc. Nat. Acad. Sci. 72 (1975), 4720–4722. M. L. V. Pitteway
and C. M. A. Castle [Bull. Inst. Math. and Its Applications 24 (1988),

17–20] have found strong and tantalizing empirical evidence that the sum
of all partial quotients is actually

36. Working the algorithm backwards, assuming that tk – 1 divisions occur
in step C2 for a given value of k, we obtain minimum un when gcd(uk+1, . .
. , un) = Ft1 . . . Ftk and uk ≡ Ft1 . . . Ftk−1

Ftk−1
 (modulo gcd(uk+1, . . . , un));

here the t’s are ≥ 2, t1 ≥ 3, and t1 + ... + tn−1 = N + n − 1. One way to
minimize un = Ft1 . . . Ftn−1

 under these conditions is to take t1 = 3, t2 = ... =
tn−2 = 2, un = 2FN–n+2. If we stipulate also that u1 ≥ u2 ≥ ... ≥ un, the
solution u1 = 2FN–n+3 + 1, u2 = ... = un−1 = 2FN–n+3, un = 2FN–n+2 has
minimum u1. [See CACM 13 (1970), 433–436, 447–448.]

37. See Proc. Amer. Math. Soc. 7 (1956), 1014–1021; see also exercise
6.1–18.
38. Let m = ⌈n/φ⌉, so that m/n = φ−1 + ∊ = //a1, a2, . . . // where 0 < ∊ <
1/n. Let k be minimal such that ak ≥ 2; then (φ1–k + (–1)kFk–1∊)/(φ−k – (–
1)kFk∊) ≥ 2, hence k is even and φ−2 = 2 – φ ≤ φkFk+2∊ = (φ2k+2 – φ−2)∊/

. [Ann. Polon. Math. 1 (1954), 203–206.]
39. At least 287 at bats; //2, 1, 95// = 96/287 ≈ .33449477, and no fraction
with denominator < 287 lies in the interval

To solve the general question of the fraction in [a . . b] with smallest
denominator, where 0 < a < b < 1, note that in terms of regular continued-
fraction representations we have //x1, x2, . . . // < //y1, y2, . . . // if and only
if (–1)jxj < (–1)jyj for the smallest j with xj ≠ yj, where we place “∞”
after the last partial quotient of a rational number. Thus if a = //x1, x2, . . .
// and b = //y1, y2, . . . //, and if j is minimal with xj ≠ yj, the fractions in [a
. . b] have the form c = //x1, . . . , xj−1, zj, . . . , zm// where //zj, . . . , zm//
lies between //xj, xj+1, . . . // and //yj, yj+1, . . . // inclusive. Let K–1 = 0.
The denominator

of c is minimized when m = j and zj = (j odd ⇒ yj + [yj+1 ≠ ∞]; xj + [xj+1 ≠
∞]). [Another way to derive this method comes from the theory in the
following exercise.]
40. One can prove by induction that prql – plqr = 1 at each node, hence pl
and ql are relatively prime. Since p/q < p′/q′ implies that p/q < (p + p′)/(q
+ q′) < p′/q′, it is also clear that the labels on all left descendants of p/q are
less than p/q, while the labels on all its right descendants are greater.
Therefore each rational number occurs at most once as a label.

It remains to show that each rational does appear. If p/q = //a1, . . . , ar,
1//, where each ai is a positive integer, one can show by induction that the
node labeled p/q is found by going left a1 times, then right a2 times, then
left a3 times, etc.

[The sequence of labels on successive levels of this tree was first
studied by M. A. Stern, Crelle 55 (1858), 193–220, although the relation
to binary trees is not explicit in his paper. The notion of obtaining all
possible fractions by successively interpolating (p + p′)/(q + q′) between
adjacent elements p/q and p′/q′ goes back much further: The essential
ideas were published by Daniel Schwenter [Deliciæ Physico-
Mathematicæ (Nürnberg: 1636), Part 1, Problem 87; Geometria
Practica, 3rd edition (1641), 68; see M. Cantor, Geschichte der Math. 2
(1900), 763–765], and by John Wallis in his Treatise of Algebra (1685),
Chapters 10–11. C. Huygens put such ideas to good use when designing
the gear-wheels of his planetarium [see Descriptio Automati Planetarii
(1703), published after his death]. Lagrange gave a full description in
Hist. Acad. Sci. 23 (Berlin: 1767), 311–352, §24, and in his additions to
the French translation of Euler’s algebra (1774), §18–§20. See also
exercise 1.3.2–19; A. Brocot, Revue Chronométrique 3 (1861), 186–194;
D. H. Lehmer, AMM 36 (1929), 59–67.]

41. In fact, the regular continued fractions for numbers of the general form

have an interesting pattern, based on the continuant identity

This identity is most interesting when yn = xm−1, yn−1 = xm−2, etc., since

In particular we find that if pn/qn = Kn−1(x2, . . . , xn)/Kn(x1, . . . , xn) = //x1,
. . . , xn//, then

.
By changing //x1, . . . , xn// to //x1, . . . , xn−1, xn – 1, 1//, we can control the
sign (–1)n as desired.

For example, the partial sums of the first series have the following
continued fractions of even length: //1, 1//; //1, 1, 1, 1, 0, 1// = //1, 1, 1,
2//; //1, 1, 1, 2, 1, 1, 1, 1, 1, 1//; //1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1,
1, 1, 2, 1, 1, 1// = //1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1//;
and from this point on the sequence settles down and obeys a simple
reflecting pattern. We find that the nth partial quotient an can be computed
rapidly as follows, if n − 1 = 20q + r where 0 ≤ r < 20:

Here dn is the “dragon sequence” defined by the rules d0 = 1, d2n = dn,
d4n+1 = 0, d4n+3 = 1; the Jacobi symbol is 1 – 2dn. The dragon curve
discussed in exercise 4.1–18 turns right at its nth step if and only if dn = 1.

Liouville’s numbers with l ≥ 3 are equal to //l – 1, l + 1, l2 – 1, 1, l, l −
1, l12 – 1, 1, l – 2, l, 1, l2 – 1, l + 1, l − 1, l72 – 1, . . . //. The nth partial
quotient an depends on the dragon sequence on n mod 4 as follows: If n
mod 4 = 1 it is l –2+dn−1 +(⌊n/2⌋ mod 4) and if n mod 4 = 2 it is l+2–dn+2

–(⌊n/2⌋ mod 4); if n mod 4 = 0 it is 1 or lk!(k−1) –1, depending on whether
or not dn = 0 or 1, where k is the largest power of 2 dividing n; and if n
mod 4 = 3 it is lk!(k−1) – 1 or 1, depending on whether dn+1 = 0 or 1,

where k is the largest power of 2 dividing n + 1. When l = 2 the same
rules apply, except that 0s must be removed, so there is a more
complicated pattern depending on n mod 24.

[References: J. O. Shallit, J. Number Theory 11 (1979), 209–217;
Allouche, Lubiw, Mendès France, van der Poorten, and Shallit, Acta
Arithmetica 77 (1996), 77–96.]

42. Suppose that ||qX|| = |qX – p|. We can always find integers u and v such
that q = uqn−1 + vqn and p = upn−1 + vpn, where pn = Kn−1(A2, . . . , An),
since qnpn–1 – qn−1pn = ±1. The result is clear if v = 0. Otherwise we must
have uv < 0, hence u(qn−1X – pn−1) has the same sign as v(qnX – pn), and
|qX – p| is equal to |u| |qn–1X – pn−1| + |v| |qnX – pn|. This completes the
proof, since u ≠ 0. See Theorem 6.4S for a generalization.
43. If x is representable, so is the parent of x in the Stern–Brocot tree of
exercise 40; thus the representable numbers form a subtree of that binary
tree. Let (u/u′) and (v/v′) be adjacent representable numbers. Then one is
an ancestor of the other; say (u/u′) is an ancestor of (v/v′), since the other
case is similar. Then (u/u′) is the nearest left ancestor of (v/v′), so all
numbers between u/u′ and v/v′ are left descendants of (v/v′) and the
mediant ((u + v)/(u′ + v′)) is its left child. According to the relation
between regular continued fractions and the binary tree, the mediant and all
of its left descendants will have (u/u′) as their last representable pi/qi,
while all of the mediant’s right descendants will have (v/v′) as one of the
pi/qi. (The numbers pi/qi label the parents of the “turning-point” nodes on
the path to x.)
44. A counterexample for M = N = 100 is (u/u′) = , (v/v′) = . However,
the identity is almost always true, because of (12); it fails only when u/u′ +
v/v′ is very nearly equal to a fraction that is simpler than (u/u′).
45. To determine A and r such that u = Av+r, 0 ≤ r < v, using ordinary long
division, takes O((1 + log A)(log u)) units of time. If the quotients during
the algorithm are A1, A2, . . . , Am, then A1A2 . . . Am ≤ u, so log A1 + ... +log
Am ≤ log u. Also m = O(log u) by Corollary L.

46. Yes, to O(n(log n)2(log log n)), even if we also need to compute the
sequence of partial quotients that would be computed by Euclid’s
algorithm; see A. Schönhage, Acta Informatica 1 (1971), 139–144.

Moreover, Schönhage’s algorithm is asymptotically optimal for computing
a continued fraction expansion, with respect to the multiplications and
divisions it performs [V. Strassen, SICOMP 12 (1983), 1–27]. Algorithm
4.5.2L is better in practice unless n is quite large, but an efficient
implementation for numbers exceeding about 1800 bits is sketched in the
book Fast Algorithms by A. Schönhage, A. F. W. Grotefeld, and E. Vetter
(Heidelberg: Spektrum Akademischer Verlag, 1994), §7.2.
48. Tj = (Kj−2(–a2, . . . , –aj−1), Kj−1(–a1, . . . , –aj−1), Kn–j(aj+1, . . . , an)d)
= ((–1)jKj–2(a2, . . . , aj−1), (–1)j−1Kj−1(a1, . . . , aj−1), Kn–j(aj+1, . . . , an)d).

49. Since λx1 + μz1 = μv and λxn+1 + μzn+1 = –λv/d, there is an odd value of
j such that λxj + μzj ≥ 0 and λxj+2 + μzj+2 ≤ 0. If λxj + μzj > θ and λxj+2 +
μzj+2 < –θ we have μ > θ/zj and λ > –θ/xj+2. It follows that 0 < λxj+1 + μzj+1
< λμxj+1zj/θ – λμzj+1xj+2/θ ≤ 2λμv/θ = 2θ, because we have |xk+1zk | =
Kk−1(a2, . . . , ak)Kn–k(ak+1, . . . , an) ≤ Kn−1(a2, . . . , an) = v/d for all k. [H.
W. Lenstra, Jr., Math. Comp. 42 (1984), 331–340.]
50. Let k = ⌈β/α⌉. If kα < γ, the answer is k; otherwise it is

51. If ax – mz = y and x ⊥ y we have x ⊥ mz. Consider the Stern–Brocot
tree of exercise 40, with an additional node labeled 0/1. Attach the tag
value y = ax – mz together with each node label z/x. We want to find all
nodes z/x whose tag y is at most in absolute value and whose
denominator x is also ≤ θ. The only possible path to such nodes keeps a
positive tag to the left and a negative tag to the right. This rule defines a
unique path, which moves to the right when the tag is positive and to the
left when the tag is negative, stopping when the tag becomes zero. The
same path is followed implicitly when Algorithm 4.5.2X is performed with
u = m and v = a, except that the algorithm skips ahead—it visits only nodes
of the path just before the tag changes sign (the parents of the “turning
point” nodes as in exercise 43).

Let z/x be the first node of the path whose tag y satisfies |y| ≤ θ. If x > θ,
there is no solution, since subsequent values on the path have even larger
denominators. Otherwise (±x, ∓y) is a solution, provided that x ⊥ y.

It is easy to see that there is no solution if y = 0, and that if y ≠ 0 the tag
on the next node of the path will not have the same sign as y. Therefore
node z/x will be visited by Algorithm 4.5.2X, and we will have x = xj =
Kj−1(a1, . . . , aj−1), y = yj = (–1)(j−1)Kn–j(aj+1, . . . , an)d, z = zj = Kj−2(a2, .
. . , aj−1) for some j (see exercise 48). The next possibility for a solution
will be the node labeled z′/x′ = (zj−1 + kzj)/(xj−1 + kxj) with tag y′ = yj−1 +
kyj, where k is as small as possible such that |y′| ≤ θ; we have y′y < 0.
However, x′ must now exceed θ; otherwise we would have m = Kn(a1, . . .
, an)d = x′|y| + x|y′| ≤ θ2 + θ2 = m, and equality cannot hold.

This discussion proves that the problem can be solved efficiently by
applying Algorithm 4.5.2X with u = m and v = a, but with the following
replacement for step X2: “If , the algorithm terminates. The
pair (x, y) = (|v2|, v3 sign(v2)) is then the unique solution, provided that x ⊥
y and ; otherwise there is no solution.” [P. S. Wang, Lecture
Notes in Comp. Sci. 162 (1983), 225–235; P. Kornerup and R. T.
Gregory, BIT 23 (1983), 9–20.]

A similar method works if we require 0 < x ≤ θ1 and |y| ≤ θ2, whenever
2θ1θ2 ≤ m.

Section 4.5.4
1. If dk isn’t prime, its prime factors are cast out before dk is tried.
2. No; the algorithm would fail if pt−1 = pt, giving “1” as a spurious prime

factor.
3. Let P be the product of the first 168 primes. [Note: Although P =

19590 . . . 5910 is a 416-digit number, such a gcd can be computed in much
less time than it would take to do 168 divisions, if we just want to test
whether or not n is prime.]

4. In the notation of exercise 3.1–11,

where f(l) = ∑1≤λ≤l
2⌈ lg max(l+1–λ,λ)⌉. If l = 2k+θ, where 0 < θ ≤ 1, we have

where the function 3 · 2−θ – 2 · 2−2θ reaches a maximum of at θ = lg(4/3)
and has a minimum of 1 at θ = 0 and 1. Therefore the average value of 2⌈lg
max(μ+1,λ)⌉ lies between 1.0 and 1.125 times the average value of μ + λ, and
the result follows.

Notes: Richard Brent has observed that, as m → ∞, the density
 approaches a

normal distribution, and we may assume that θ is uniformly distributed.
Then 3·2−θ – 2·2−2θ takes the average value 3/(4 ln 2), and the average
number of iterations needed by Algorithm B comes to approximately

. A similar analysis of the more
general method in the answer to exercise 3.1–7 gives ,
when p ≈ 2.4771366 is chosen “optimally” as the root of (p2 – 1) ln p = p2

– p + 1. See BIT 20 (1980), 176–184.
Algorithm B is a refinement of Pollard’s original algorithm, which was

based on exercise 3.1–6(b) instead of the yet undiscovered result in
exercise 3.1–7. He showed that the least n such that X2n = Xn has average
value ; this constant π2/12 is explained

by Eq. 4.5.3–(21). Hence the average amount of work needed by his
original algorithm is about gcds (or multiplications mod m)
and squarings. This will actually be better than Algorithm B
when the cost of gcd is more than about 1.17 times the cost of squaring—
as it usually is with large numbers.

Brent noticed, however, that Algorithm B can be improved by not
checking the gcd when k > l/2; if step B4 is repeated until k ≤ l/2, we will
still detect the cycle, after λ⌊ℓ(μ)/λ⌋ = ℓ(μ) – (ℓ(μ) mod λ) further
iterations. The average cost now becomes approximately

 iterations when we square without
taking the gcd, plus
iterations when we do both. [See the analysis by Henri Cohen in A Course
in Computational Algebraic Number Theory (Berlin: Springer, 1993),
§8.5.]
5. Remarkably, 11111 ≡ 8616460799 (modulo 3 · 7 · 8 · 11), so (14) is

correct also for N = 11111 except with respect to the modulus 5. Since the
residues (x2 – N) mod 5 are 4, 0, 3, 3, 0, we must have x mod 5 = 0, 1, or 4.
The first that satisfies all the conditions is x = 144;
but the square root of 1442 – 11111 = 9625 is not an integer. The next case,
however, gives 1562 – 11111 = 13225 = 1152, and 11111 = (156 – 115) ·
(156 + 115) = 41 · 271.

6. Let us count the number of solutions (x, y) of the congruence N ≡ (x – y)
(x + y) (modulo p), where 0 ≤ x, y < p. Since N ≢ 0 and p is prime, x + y ≢
0. For each v ≢ 0 there is a unique u (modulo p) such that N ≡ uv. The
congruences x – y ≡ u, x+y ≡ v now uniquely determine x mod p and y mod
p, since p is odd. Thus the stated congruence has exactly p − 1 solutions (x,
y). If (x, y) is a solution, so is (x, p – y) if y ≠ 0, since (p – y)2 ≡ y2; and if
(x, y1) and (x, y2) are solutions with y1 ≠ y2, we have ; hence y1 = p
– y2. Thus the number of different x values among the solutions (x, y) is (p −
1)/2 if N ≡ x2 has no solutions, or (p + 1)/2 if N ≡ x2 has solutions.

7. One procedure is to keep two indices for each modulus, one for the
current word position and one for the current bit position; loading two
words of the table and doing an indexed shift command will bring the table

entries into proper alignment. (Many computers have special facilities for
such bit manipulation.)

8. (We may assume that N = 2M is even.) The following algorithm uses an
auxiliary table X[1], X[2], . . . , X[M − 1], where X[k] represents the
primality of 2k + 1.

S1. Set X[k] ← 1 for 1 ≤ k < M. Also set j ← 1, k ← 1, p ← 3, q ← 4.
(During this algorithm p = 2j + 1 and q = 2j + 2j2.)

S2. If X[j] = 0, go to S4. Otherwise output p, which is prime, and set k
← q.

S3. If k < M, then set X[k] ← 0, k ← k + p, and repeat this step.
S4. Set j ← j + 1, p ← p + 2, q ← q + 2p – 2. If j < M, return to S2.

A major part of this calculation could be made noticeably faster if q
(instead of j) were tested against M in step S4, and if a new loop were
appended that outputs 2j + 1 for all remaining X[j] that equal 1,
suppressing the manipulation of p and q.

Notes: The original sieve of Eratosthenes was described in Book 1,
Chapter 13 of Nicomachus’s Introduction to Arithmetic. It is well known
that ∑p prime[p ≤ N]/p = ln ln N + M + O((log N)−10000), where M = γ
+∑k≥2 μ(k) ln ζ(k)/k is Mertens’s constant 0.26149 72128 47642 78375
54268 38608 69585 90516–; see F. Mertens, Crelle 76 (1874), 46–62;
Greene and Knuth, Mathematics for the Analysis of Algorithms (Boston:
Birkhäuser, 1981), §4.2.3. In particular, the number of operations in the
original algorithm described by Nicomachus is N ln ln N + O(N).
Improvements in the efficiency of sieve methods for generating primes are
discussed in exercise 5.2.3–15 and in Section 7.1.3.
9. If p2 is a divisor of n for some prime p, then p is a divisor of λ(n), but

not of n − 1. If n = p1p2, where p1 < p2 are primes, then p2 – 1 is a divisor
of λ(n) and therefore p1p2 – 1 ≡ 0 (modulo p2 – 1). Since p2 ≡ 1, this means
p1 – 1 is a multiple of p2 – 1, contradicting the assumption p1 < p2. [Values
of n for which λ(n) properly divides n − 1 are called Carmichael numbers.
For example, here are some small Carmichael numbers with up to six prime
factors: 3 · 11 · 17, 5 · 13 · 17, 7 · 11 · 13 · 41, 5 · 7 · 17 · 19 · 73, 5 · 7 ·
17 · 73 · 89 · 107. There are 8241 Carmichael numbers less than 1012, and

there are at least Ω(N2/7) Carmichael numbers less than N; see W. R.
Alford, A. Granville, and C. Pomerance, Annals of Math. (2) 139 (1994),
703–722.]
10. Let kp be the order of xp modulo n, and let λ be the least common
multiple of all the kp’s. Then λ is a divisor of n − 1 but not of any (n −
1)/p, so λ = n − 1. Since mod n = 1, ϕ(n) is a multiple of kp for all p,
so ϕ(n) ≥ λ. But ϕ(n) < n − 1 when n is not prime. (Another way to carry
out the proof is to construct an element x of order n − 1 from the xp’s, by
the method of exercise 3.2.1.2–15.)
11.

The factorization 199·991 is evident from the first or last outputs. The
shortness of the cycle, and the appearance of the notorious number 1984,
are probably just coincidences.
12. The following algorithm makes use of an auxiliary (m + 1) × (m + 1)
matrix of integers Ejk, 0 ≤ j, k ≤ m; a single-precision vector (b0, b1, . . . ,
bm); and a multiple-precision vector (x0, x1, . . . , xm) with entries in the
range 0 ≤ xk < N.

F1. [Initialize.] Set bi ← –1 for 0 ≤ i ≤ m; then set j ← 0.

F2. [Next solution.] Get the next output (x, e0, e1, . . . , em) from
Algorithm E. (It is convenient to regard Algorithms E and F as
coroutines.) Set k ← m.

F3. [Search for odd.] If k < 0 go to step F5. Otherwise if ek is even, set
k ← k − 1 and repeat this step.

F4. [Linear dependence?] If bk ≥ 0, then set i ← bk, x ← (xix) mod N, er
← er + Eir for 0 ≤ r ≤ m; set k ← k − 1 and return to F3. Otherwise
set bk ← j, xj ← x, Ejr ← er for 0 ≤ r ≤ m; set j ← j + 1 and return to
F2. (In the latter case we have a new linearly independent solution,
modulo 2, whose first odd component is ek. The values Ejr are not
guaranteed to remain single-precision, but they tend to remain small
when k decreases from m to 0 as recommended by Morrison and
Brillhart.)

F5. [Try to factor.] (Now e0, e1, . . . , em are even.) Set

If x = y or if x + y = N, return to F2. Otherwise compute gcd(x – y,
N), which is a proper factor of N, and terminate the algorithm.

This algorithm finds a factor whenever it is possible to deduce one from
the given outputs of Algorithm E. [Proof. Let the outputs of Algorithm E be
(Xi, Ei0, . . . , Eim) for 1 ≤ i ≤ t, and suppose that we could find a
factorization N = N1N2 when and

 (modulo N), where ej = a1E1j + ... + atEtj is
even for all j. Then x ≡ ±y (modulo N1) and x ≡ ∓y (modulo N2). It is not
difficult to see that this solution can be transformed into a pair (x, y) that
appears in step F5, by a series of steps that systematically replace (x, y) by
(xx′, yy′) where x′ ≡ ±y′ (modulo N).]
13. There are 2d values of x having the same exponents (e0, . . . , em), since
we can choose the sign of x modulo arbitrarily when .
Exactly two of these 2d values will fail to yield a factor.
14. Since P2 ≡ kNQ2 (modulo p) for any prime divisor p of V, we get 1 ≡
P2(p−1)/2 ≡ (kNQ2)(p−1)/2 ≡ (kN)(p−1)/2 (modulo p), if P ≢ 0.
15. , where

. Then
; so Up ≡ D(p−1)/2 (modulo p) if p is

an odd prime. Similarly, if Vn = an + bn = Un+1 – QUn−1, then
, and Vp ≡ P p ≡ P . Thus if Up ≡ –1, we

find that Up+1 mod p = 0. If Up ≡ 1, we find that (QUp−1) mod p = 0; here if
Q is a multiple of p, Un ≡ P n−1 (modulo p) for n > 0, so Un is never a
multiple of p; if Q is not a multiple of p, Up−1 mod p = 0. Therefore as in
Theorem L, Ut mod N = 0 if , N ⊥ Q, and

. Under the assumptions of this exercise,
the rank of apparition of N is N + 1; hence N is prime to Q and t is a
multiple of N + 1. Also, the assumptions of this exercise imply that each pj
is odd and each ∊j is ±1, so ;
hence r = 1 and . Finally, therefore, e1 = 1 and ∊1 = 1.

Note: If this test for primality is to be any good, we must choose P and
Q in such a way that the test will probably work. Lehmer suggests taking
P = 1 so that D = 1 – 4Q, and choosing Q so that N ⊥ QD. (If the latter
condition fails, we know already that N is not prime, unless |QD| ≥ N.)
Furthermore, the derivation above shows that we will want ∊1 = 1, that is,
D(N−1)/2 ≡ –1 (modulo N). This is another condition that determines the
choice of Q. Furthermore, if D satisfies this condition, and if UN+1 mod N
≠ 0, we know that N is not prime.

Example: If P = 1 and Q = –1, we have the Fibonacci sequence, with D
= 5. Since 511 ≡ –1 (modulo 23), we might attempt to prove that 23 is
prime by using the Fibonacci sequence:

so 24 is the rank of apparition of 23 and the test works. However, the
Fibonacci sequence cannot be used in this way to prove the primality of 13
or 17, since F7 mod 13 = 0 and F9 mod 17 = 0. When p ≡ ±1 (modulo 10),
we have 5(p−1)/2 mod p = 1, so Fp−1 (not Fp+1) is divisible by p.
17. Let f(q) = 2 lg q − 1. When q = 2 or 3, the tree has at most f(q) nodes.
When q > 3 is prime, let q = 1 + q1 . . . qt where t ≥ 2 and q1, . . . , qt are
prime. The size of the tree is ≤ 1 + ∑ f(qk) = 2 + f(q − 1) – t < f(q).
[SICOMP 4 (1975), 214–220.]
18. x(G(α) – F(α)) is the number of n ≤ x whose second-largest prime
factor is ≤ xα and whose largest prime factor is > xα. Hence

The probability that is . [Curiously, it
can be shown that this also equals , the average value of
log pt/ log x, and it also equals the Dickman–Golomb constant .62433 of
exercises 1.3.3–23 and 3.1–13. The derivative G′(0) can be shown to
equal

The third-largest prime factor has
 and H′(0) = ∞. See P.

Billingsley, Period. Math. Hungar. 2 (1972), 283–289; J. Galambos, Acta
Arith. 31 (1976), 213–218; D. E. Knuth and L. Trabb Pardo, Theoretical
Comp. Sci. 3 (1976), 321–348; J. L. Hafner and K. S. McCurley, J.
Algorithms 10 (1989), 531–556.]
19. M = 2D − 1 is a multiple of all p for which the order of 2 modulo p
divides D. To extend this idea, let a1 = 2 and mod N, where

, pj is the j th prime, and ej = ⌊log 1000/log pj⌋; let A = a169. Now
compute bq = gcd(Aq − 1, N) for all primes q between 103 and 105. One
way to do this is to start with A1009 mod N and then to multiply alternately
by A4 mod N and A2 mod N. (A similar method was used in the 1920s by D.
N. Lehmer, but he didn’t publish it.) As with Algorithm B we can avoid
most of the gcds by batching; for example, since b30r–k = gcd(A30r – Ak, N),
we might try batches of 8, computing cr = (A30r – A29)(A30r – A23) . . . (A30r

– A) mod N, then gcd(cr, N) for 33 < r ≤ 3334.

20. See H. C. Williams, Math. Comp. 39 (1982), 225–234.
21. Some interesting theory relevant to this conjecture has been introduced
by Eric Bach, Information and Computation 90 (1991), 139–155.
22. Algorithm P fails only when the random number x does not reveal the
fact that n is nonprime. Say x is bad if xq mod n = 1 or if one of the
numbers x2jq is ≡ –1 (modulo n) for 0 ≤ j < k. Since 1 is bad, we have pn =
[n nonprime](bn – 1)/(n − 2) < [n nonprime]bn/(n − 1), where bn is the
number of bad x such that 1 ≤ x < n.

Every bad x satisfies xn−1 ≡ 1 (modulo n). When p is prime, the number
of solutions to the congruence xq ≡ 1 (modulo pe) for 1 ≤ x < pe is the
same as the number of solutions of qy ≡ 0 (modulo pe−1(p − 1)) for 0 ≤ y <
pe−1(p − 1), namely gcd(q, pe−1(p − 1)), since we may replace x by ay

where a is a primitive root.
Let , where the ni are distinct primes. According to the

Chinese remainder theorem, the number of solutions to the congruence
xn−1 ≡ 1 (modulo n) is , and this is at
most since ni is relatively prime to n − 1. If some ei > 1,
we have , hence the number of solutions is at most ; in
this case , since n ≥ 9.

Therefore we may assume that n is the product n1 . . . nr of distinct
primes. Let ni = 1 + 2ki qi, where k1 ≤ ... ≤ kr. Then gcd

, where = min(k, ki) and .
Modulo ni, the number of x such that xq ≡ 1 is ; and the number of x such
that x2jq ≡ –1 is for , otherwise 0. Since k ≥ k1, we have

.
To complete the proof, it suffices to show that

, since ϕ(n) < n − 1. We have

so the result follows unless r = 2 and k1 = k2. If r = 2, exercise 9 shows
that n − 1 is not a multiple of both n1 – 1 and n2 – 1. Thus if k1 = k2 we
cannot have both and ; it follows that and

 in this case.
[Reference: J. Number Theory 12 (1980), 128–138.] This proof shows

that pn is near in only two cases, when n is (1 + 2q1)(1 + 4q1) or a
Carmichael number of the special form (1 + 2q1)(1 + 2q2)(1 + 2q3). For
example, when n = 49939 · 99877 we have and
pn ≈ .24999; when n = 1667 · 2143 · 4523, we have

. See the next answer for
further remarks.]

23. (a) The proofs are simple except perhaps for the reciprocity law. Let p
= p1 . . . ps and q = q1 . . . qr, where the pi and qj are prime. Then

so we need only verify that ∑i,j (pi – 1)(qj – 1)/4 ≡ (p − 1)(q − 1)/4
(modulo 2). But ∑i,j (pi – 1)(qj – 1)/4 = (∑i(pi – 1)/2)(∑j (qj – 1)/2) is odd
if and only if an odd number of the pi and an odd number of the qj are ≡ 3
(modulo 4), and this holds if and only if (p − 1)(q − 1)/4 is odd. [C. G. J.
Jacobi, Bericht Königl. Preuß. Akad. Wiss. Berlin 2 (1837), 127–136; V.
A. Lebesgue, J. Math. Pures Appl. 12 (1847), 497–520, discussed the
efficiency.]

(b) As in exercise 22, we may assume that n = n1 . . . nr where the ni =
1 + 2ki qi are distinct primes, and k1 ≤ ... ≤ kr; we let gcd

 and we call x bad if it falsely makes n look
prime. Let be the number of solutions of
x(n−1)/2 ≡ 1. The number of bad x with is Πn, times an extra factor
of if k1 < k. (This factor is needed to ensure that for an
even number of the ni with ki < k.) The number of bad x with is
Πn if k1 = k, otherwise 0. [If x(n−1)/2 ≡ –1 (modulo ni), we have
if if ki > k, and a contradiction if ki < k. If k1 = k,
there are an odd number of ki equal to k.]

Notes: The probability of a bad guess is > only if n is a Carmichael
number with kr < k; for example, n = 7 · 13 · 19 = 1729, a number made
famous by Ramanujan in another context. Louis Monier has extended the
analyses above to obtain the following closed formulas for the number of
bad x in general:

Here is the number of bad x in this exercise, and δn is either 2 (if k1 =
k), or (if ki < k and ei is odd for some i), or 1 (otherwise).

(c) If xq mod n = 1, then . If x2jq ≡ –1 (modulo
n), then the order of x modulo ni must be an odd multiple of 2j+1 for all
prime divisors ni of n. Let and ; then

, so or –1 according as is even or odd.
Since (modulo 2j+2), the sum is odd if
and only if j + 1 = k. [Theoretical Comp. Sci. 12 (1980), 97–108.]
24. Let M1 be a matrix having one row for each nonprime odd number n in
the range 1 ≤ n ≤ N and having N –1 columns numbered from 2 to N; the
entry in row n column x is 1 if n fails the x test of Algorithm P, otherwise it
is zero. When N = qn + r and 0 ≤ r < n, we know that row n contains at
most

entries equal to 0, so at least half of the entries in the matrix are 1. Thus,
some column x1 of M1 has at least half of its entries equal to 1. Removing
column x1 and all rows in which this column contains 1 leaves a matrix M2
having similar properties; a repetition of this construction produces matrix
Mr with N – r columns and fewer than N/2r rows, and with at least

 entries per row equal to 1. [See FOCS 19 (1978), 78.]
[A similar proof implies the existence of a single infinite sequence x1 <

x2 < ... such that the number n > 1 is prime if and only if it passes the x test
of Algorithm P for x = x1, . . . , x = xm, where .
Does there exist a sequence x1 < x2 < ... having this property but with m =
O(log n)?]

25. This theorem was first proved rigorously by von Mangoldt [Crelle 114
(1895), 255–305], who showed in fact that the O(1) term is

, minus 1/2k if x is the kth power of a prime.
The constant C is li 2–ln 2 = γ+ln ln 2+∑n≥2(ln 2)n/nn! = 0.35201 65995
57547 47542 73567 67736 43656 84471+.

[For a summary of developments during the 100 years following von
Mangoldt’s paper, see A. A. Karatsuba, Complex Analysis in Number

Theory (CRC Press, 1995). See also Eric Bach and Jeffrey Shallit,
Algorithmic Number Theory 1 (MIT Press, 1996), Chapter 8, for an
excellent introduction to the connection between Riemann’s hypothesis
and concrete problems about integers.]

26. If N is not prime, it has a prime factor . By hypothesis, every
prime divisor p of f has an integer xp such that the order of xp modulo q is
a divisor of N − 1 but not of (N − 1)/p. Therefore if pk divides f, the order
of xp modulo q is a multiple of pk. Exercise 3.2.1.2–15 now tells us that
there is an element x of order f modulo q. But this is impossible, since it
implies that q2 ≥ (f + 1)2 ≥ (f + 1) r ≥ N, and equality cannot hold. [Proc.
Camb. Phil. Soc. 18 (1914), 29–30.]
27. If k is not divisible by 3 and if k ≤ 2n + 1, the number k·2n + 1 is prime
if and only if 32n−1k ≡ –1 (modulo k·2n + 1). For if this condition holds,
k·2n + 1 is prime by exercise 26; and if k·2n + 1 is prime, the number 3 is
a quadratic nonresidue mod k·2n + 1 by the law of quadratic reciprocity,
since (k·2n + 1) mod 12 = 5. [This test was stated without proof by Proth
in Comptes Rendus Acad. Sci. 87 (Paris, 1878), 926.]

To implement Proth’s test with the necessary efficiency, we need to be
able to compute x2 mod (k·2n + 1) with about the same speed as we can
compute the quantity x2 mod (2n − 1). Let x2 = A·2n + B; then x2 ≡ B –
⌊A/k⌋ + 2n (A mod k), so the remainder is easily obtained when k is small.
(See also exercise 4.3.2–14.)

[To test numbers of the form 3·2n + 1 for primality, the job is only
slightly more difficult; we first try random single-precision numbers until
finding one that is a quadratic nonresidue mod 3·2n + 1 by the law of
quadratic reciprocity, then use this number in place of “3” in the test
above. If n mod 4 ≠ 0, the number 5 can be used. It turns out that 3·2n + 1
is prime when n = 1, 2, 5, 6, 8, 12, 18, 30, 36, 41, 66, 189, 201, 209, 276,
353, 408, 438, 534, 2208, 2816, 3168, 3189, 3912, 20909, 34350, 42294,
42665, 44685, 48150, 55182, 59973, 80190, 157169, 213321, and no
other n ≤ 300000; and 5·2n + 1 is prime when n = 1, 3, 7, 13, 15, 25, 39,
55, 75, 85, 127, 1947, 3313, 4687, 5947, 13165, 23473, 26607, 125413,
209787, 240937, and no other n ≤ 300000. See R. M. Robinson, Proc.

Amer. Math. Soc. 9 (1958), 673–681; G. V. Cormack and H. C. Williams,
Math. Comp. 35 (1980), 1419–1421; H. Dubner and W. Keller, Math.
Comp. 64 (1995), 397–405; J. S. Young, Math. Comp. 67 (1998), 1735–
1738.]

28. f(p, p2d) = 2/(p + 1) + f(p, d)/p, since 1/(p + 1) is the probability that A
is a multiple of p. f(p, pd) = 1/(p + 1) when d mod p ≠ 0.

 since A2 –(4k +3)B2 cannot be a multiple of 4;
 since A2 –(8k +5)B2 cannot be a multiple of 8;

. f(p, d) = (2p/(p2 – 1), 0) if
d(p−1)/2 mod p = (1, p − 1), respectively, for odd p.
29. The number of solutions to the inequality x1 + ... + xm ≤ r in
nonnegative integers xi is , and each of these corresponds
to a unique integer . [For sharper estimates, in the special
case that pj is the j th prime for all j, see N. G. de Bruijn, Indag. Math. 28
(1966), 240–247; H. Halberstam, Proc. London Math. Soc. (3) 21 (1970),
102–107.]
30. If (modulo qi), we can find yi such that

 (modulo), hence by the Chinese remainder
theorem we obtain 2d values of X such that (modulo N).
Such (e1, . . . , em) correspond to at most pairs

 having the hinted properties. Now for each of the
2d binary numbers a = (a1 . . . ad)2, let na be the number of exponents

 such that (modulo qi); we
have proved that the required number of integers X is
. Since ∑a na is the number of ways to choose at most r/2 objects from a
set of m objects with repetitions permitted, namely , we have

. [See J. Algorithms 3
(1982), 101–127, where Schnorr presents many further refinements of
Theorem D.]
31. Set n = M, pM = 4m, and εM = 2m to show that Pr(X ≤ 2m) ≤ e−m/2.

32. Let , and let the places xi of each message be restricted to
the range 0 ≤ x < M3 – M2. If x ≥ M, encode it as x3 mod N as before, but if
x < M change the encoding to (x + yM)3 mod N, where y is a random
number in the range M2 – M ≤ y < M2. To decode, first take the cube root;
and if the result is M3 – M2 or more, take the remainder mod M.
34. Let P be the probability that xm mod p = 1 and let Q be the probability
that xm mod q = 1. The probability that gcd(xm−1, N) = p or q is P (1 – Q)
+ Q(1 – P) = P + Q – 2P Q. If or , this probability is ≥
2(10−6 – 10−12), so we have a good chance of finding a factor after about
106 log m arithmetic operations modulo N. On the other hand if and

 then P ≈ Q ≈ 1, since we have the general formula P = gcd(m, p –
1)/p; thus m is a multiple of lcm(p − 1, q − 1) in this case. Let m = 2kr
where r is odd, and form the sequence xr mod N, x2r mod N, . . . , x2kr mod
N; we find as in Algorithm P that the first appearance of 1 is preceded by a
value y other than N − 1 with probability , hence gcd(y − 1, N) = p or
q.
35. Let f = (pq−1 – qp−1) mod N. Since p mod 4 = q mod 4 = 3, we have

, and we also have
. Given a message x in the range ,

let = 4x + 2 or 8x + 4, whichever satisfies ; then transmit the
message mod N.

To decode this message, we first use a SQRT box to find the unique
number y such that mod N and and y is even. Then

, since the other square roots of are and mod N;
the first of these is odd, and the other two either have negative Jacobi
symbols or are simply and . The decoding is now completed by
setting x ← ⌊y/4⌋ if y mod 4 = 2, otherwise x ← ⌊y/8⌋.

Anybody who can decode such encodings can also find the factors of N,
because the decoding of a false message mod N when
reveals (±f) mod N, and ((±f) mod N) – 1 has a nontrivial gcd with N.
[Reference: IEEE Transactions IT-26 (1980), 726–729.]

36. The mth prime equals m ln m + m ln ln m – m + m ln ln m/ln m – 2m/ln
m + O(m(log log m)2(log m)−2), by (4), although for this problem we need
only the weaker estimate pm = m ln m + O(m log log m). (We will assume
that pm is the mth prime, since this corresponds to the assumption that V is
uniformly distributed.) If we choose ln , where
c = O(1), we find that

.
The estimated running time (22) now simplifies somewhat surprisingly to
exp , where we have f(c, N) = c
+ (1 – (1 + ln 2)/ln ln N)c−1. The value of c that minimizes f(c, N) is

, so we obtain the estimate

When N = 1050 this gives ε(N) ≈ .33, which is still much larger than the
observed behavior.

Note: The partial quotients of seem to behave according to the
distribution obtained for random real numbers in Section 4.5.3. For
example, the first million partial quotients of the square root of the number
1018 + 314159 include exactly (415236, 169719, 93180, 58606) cases
where An is respectively (1, 2, 3, 4). Moreover, we have

 by
exercise 4.5.3–12(c) and Eq. 4.5.3–(12). Therefore we can expect

 to behave essentially like the quantity θn(x) = qn |pn – xqn|,
where x is a random real number. The random variable θn is known to
have the approximate density min(1, θ−1 – 1)/ln 2 for 0 ≤ θ ≤ 1 [see
Bosma, Jager, and Wiedijk, Indag. Math. 45 (1983), 281–299], which is
uniform when θ ≤ 1/2. So something besides the size of Vn must account
for the unreasonable effectiveness of Algorithm E.

37. Apply exercise 4.5.3–12 to the number , to see that the
periodic part begins immediately, and run the period backwards to verify
the palindromic property. [It follows that the second half of the period
gives the same V’s as the first, and Algorithm E could be shut down earlier
by terminating it when U = U′ or V = V′ in step E5. However, the period is

generally so long, we never even get close to halfway through it, so there is
no point in making the algorithm more complicated.]
38. Let r = (1050 – 1)/9. Then P0 = 1049 + 9; P1 = r + 3 · 1046; P2 = 2r + 3 ·
1047 + 7; P3 = 3r + 2 · 1049; P4 = 4r + 2 · 1049 – 3; P5 = 5r + 3 · 1049 + 4;
P6 = 6r + 2 · 1048 + 3; P7 = 7r + 2 · 1025 (very pretty); P8 = 8r + 1038 – 7;
P9 = 9r – 8000.

39. Notice that it’s easy to prove the primality of q when q − 1 has just 2
and p as prime factors. The only successors of 2 are Fermat primes, and
the existence or nonexistence of a sixth Fermat prime is one of the most
famous unsolved problems of number theory. Thus we probably will never
know how to determine whether or not an arbitrary integer has any
successors. In some cases, however, this is possible; for example, John
Selfridge proved in 1962 that 78557 and 271129 have none [see AMM 70
(1963), 101–102], after W. Sierpiński had proved the existence of
infinitely many odd numbers without a successor [Elemente der Math. 15
(1960), 73–74]. Perhaps 78557 is the smallest of these, although 69 other
contenders for that honor still existed in 1983, according to G. Jaeschke
and W. Keller [Math. Comp. 40 (1983), 381–384, 661–673; 45 (1985),
637].

For information on the more traditional “Cunningham” form of prime
chain, in which the transitions are p → 2p±1, see Günter Löh, Math.
Comp. 53 (1989), 751–759. In particular, Löh found that 554688278430 ·
2k − 1 is prime for 0 ≤ k < 12.

40. [Inf. Proc. Letters 8 (1979), 28–31.] Notice that x mod y = x – y ⌊x/y⌋
can be computed easily on such a machine, and we can get simple
constants like 0 = x – x, 1 = ⌊x/x⌋, 2 = 1 + 1; we can test x > 0 by testing
whether x = 1 or ⌊x/(x − 1)⌋ ≠ 0.

(a) First compute l = ⌊lg n⌋ in O(log n) steps, by repeatedly dividing
by 2; at the same time compute k = 2l and A = 22l+1 in O(log n) steps by
repeatedly setting k ← 2k, A ← A2. For the main computation, suppose we
know that t = Am, u = (A + 1)m, and v = m!; then we can increase the value
of m by 1 by setting m ← m + 1, t ← At, u ← (A + 1)u, v ← vm; and we
can double the value of m by setting m ← 2m, u ← u2, v ← (⌊u/t⌋ mod

A)v2, t ← t2, provided that A is sufficiently large. (Consider the number u
in radix-A notation; A must be greater than .) Now if n = (al . . . a0)2,
let nj = (al . . . aj)2; if m = nj and k = 2j and j > 0 we can decrease j by 1 by
setting k ← ⌊k/2⌋, m ← 2m + (⌊n/k⌋ mod 2). Hence we can compute nj!
for j = l, l − 1, . . . , 0 in O(log n) steps. [Another solution, due to Julia
Robinson, is to compute when B > (2n)n+1; see AMM 80
(1973), 250–251, 266.]

(b) First compute A = 22l+2 as in (a), then find the least k ≥ 0 such that
2k+1! mod n = 0. If gcd(n, 2k!) ≠ 1, let f(n) be this value; note that this gcd
can be computed in O(log n) steps by Euclid’s algorithm. Otherwise we
will find the least integer m such that mod n = 0, and let f(n) =
gcd(m, n). (Note that in this case 2k < m ≤ 2k+1, hence ⌈m/2⌉ ≤ 2k and
⌈m/2⌉! is relatively prime to n; therefore mod n = 0 if and only if
m! mod n = 0. Furthermore n ≠ 4.)

To compute m with a bounded number of registers, we can use
Fibonacci numbers (see Algorithm 6.2.1F). Suppose we know that s = Fj,
s′ = Fj+1, t = AFj, t′ = AFj+1, u = (A + 1)2Fj, u′ = (A + 1)2Fj+1, v = Am, w =
(A + 1)2m, mod n ≠ 0, and mod n = 0. It is easy to reach this
state of affairs with m = Fj+1, for suitably large j, in O(log n) steps;
furthermore A will be larger than 22(m+s). If s = 1, we set f(n) = gcd(2m+1,
n) or gcd(2m+2, n), whichever is ≠ 1, and terminate the algorithm.
Otherwise we reduce j by 1 as follows: Set r ← s, s ← s′ – s, s′ ← r, r ←
t, t ← ⌊t′/t⌋, t′ ← r, r ← u, u ← ⌊u′/u⌋, u′ ← r; then if (⌊wu/vt⌋ mod A)
mod n ≠ 0, set m ← m+s, w ← wu, v ← vt.

[Can this problem be solved with fewer than O(log n) operations? Can
the smallest, or the largest, prime factor of n be computed in O(log n)
operations?]

41. (a) Clearly π(x) = π(m) + f1(x, m) = π(m) + f(x, m) – f0(x, m) – f2(x, m)
– f3(x, m) – ... when 1 ≤ m ≤ x. Set x = N3, m = N, and note that fk(N3, N) =
0 for k > 2.

(b) We have
,

where p and q range over primes. Hence
.

(c) The hinted identity says simply that a pj-survivor is a pj−1-survivor
that isn’t a multiple of pj. Clearly f(N3, N) = f(N3, pπ(N)). Apply the identity
until reaching terms f(x, pj) where either j = 0 or x ≤ N2; the result is

Now f(x, 1) = ⌊x⌋, so the first sum is 1000 – 500 – 333 – 200 + 166 – 142
= –9 when N = 10. The second sum is

.
Hence f(1000, 10) = –9 + 237 = 228, and π(1000) = 4 + 228 – 1 – 63 =
168.

(d) If N2 ≤ 2m we can construct an array in which a2m − 1+n = [n + 1
is a pj- survivor] for 1 ≤ n ≤ N2 represents a sieve after j passes, and an =
a2n + a2n+1 for 1 ≤ n < 2m. Then it is easy to compute f(x, pj) in O(m) steps
when x ≤ N2, and to remove multiples of p from the sieve in O(N2m/p)
steps. The total running time to compute f(N3, N) will come to O(N2 log N
log log N), because = O(log log N).

The storage requirement can be reduced from 2N2m to 2Nm if we break
the sieve into N parts of size N and work on each part separately.
Auxiliary tables of pj for 1 ≤ j ≤ π(N), and of μ(k) and the least prime
factor of k for 1 ≤ k ≤ N, are helpful and easily constructed before the
main computation begins.

[See Math. Comp. 44 (1985), 537–560. A similar procedure was first
introduced by D. F. E. Meissel, Math. Annalen 2 (1870), 636–642; 3
(1871), 523–525; 21 (1883), 304; 25 (1885), 251–257. D. H. Lehmer
made several refinements in Illinois J. Math. 3 (1959), 381–388. Neither
Meissel nor Lehmer had a stopping rule for the recurrence that was as
efficient as the method described above. Further refinements due to Marc
Deléglise, Joël Rivat, Xavier Gourdon, and Tomás Oliveira e Silva have
made it possible to deduce that π(1023) = 1925320391606803968923; see
Revista do DETUA 4 (2006), 759–768. Lagarias and Odlyzko also

developed a completely different approach whereby π(N) can be
evaluated in O(N1/2+ε) steps, using principles of analytic number theory;
see J. Algorithms 8 (1987), 173–191. But the constant in that O is
impracticably large.

42. L1. [Initialize.] Find such that (modulo s); then set
mod s, mod s, v ← s, mod s,

, (u1, u3) ← (1, u), (v1, v3) ← (0, v). (We want to find all
pairs of integers (λ, μ) such that (λs + r)(μs + r′) = N; this implies λu + μ ≡
w (modulo s) and . We will perform Algorithm 4.5.2X with t2,
u2, v2 suppressed; the relations

will remain invariant.)
L2. [Try for divisors.] If v1 = 0, output λs + r whenever λs + r divides

N and 0 ≤ λ ≤ θ/s. If v3 = 0, output N/(μs + r′) whenever μs + r′
divides N and 0 ≤ μ ≤ θ/s. Otherwise, for all k such that |wv1 + ks| ≤
θ if v1 < 0, or 0 < wv1 + ks ≤ 2θ if v1 > 0, and for σ = +1 and –1,
output λs + r if d = (wv1s + ks2 + v3r + v1r′)2 – 4v1v3N is a perfect
square and if the numbers

are positive integers. (These are the solutions to λv3 + μv1 = wv1 + ks,
(λs + r)(μs + r′) = N.)

L3. [Done?] If v3 = 0, the algorithm terminates.

L4. [Divide and subtract.] Set q ← ⌊u3/v3⌋. If u3 = qv3 and v1 < 0,
decrease q by 1. Then set

and return to step L2.
[See Math. Comp. 42 (1984), 331–340. The bounds in step L2 can be
sharpened, for example to ensure that d ≥ 0. Some factors may be output
more than once.]

43. (a) First make sure that the Jacobi symbol is +1. (If it’s 0, the task
is easy; if it’s –1, then y ∉ Qm.) Then choose random integers x1, . . . , xn in
[0 . . m) and let . If y ∊
Qm we have ; otherwise m – y ∊ Qm and .
Report that y ∊ Qm if . The probability of failure is

at most e−2ε2n, by exercise 1.2.10–21. Therefore we choose
.

(b) Find an x with Jacobi symbol , and set y ← x2 mod m.
Then the prime factors of m are gcd and , so our
task is to find when y ∊ Qm is given. If we can find τv for any
nonzero v, we are done, since mod m unless gcd(v, m) is a
factor of m.

Assume that ε = 2−e for some e ≥ 1. Choose random integers a and b in
[0 . . m), and assume that we know the binary fractions α0 and β0 such that

here α0 is an odd multiple of ε/64, while β0 is an odd multiple of ε3/64.
Assume also that we know λa and λb. Of course we don’t really know α0,
β0, λa, or λb, but we will try all 32ε−1 × 32ε−3 × 2 × 2 possibilities.
Spurious branches of the program, which operate under incorrect
assumptions, will cause no harm.

Define the numbers mod m and vtj =
2−t−1(a+jb) mod m. Both utj and vtj are uniformly distributed in [0 . . m),
because a and b were chosen at random. Furthermore, for fixed t, the
numbers utj for j0 ≤ j < j0 + l are pairwise independent, and so are the
numbers vtj for j0 ≤ j < j0 + l, as long as l does not exceed the smallest
prime factor of m. We will make use of utj and vtj only for –2rε−2≤ j <
2rε−2; if any of these values has a nonzero factor in common with m,
we’re done.

For all υ ┴ m we define χυ = +1 if υ ∊ Qm, χυ = –1 if –υ ∊ Qm, and χυ

= 0 if . Notice that χu(t+2)j = χutj, since utj = (22u(t+2)j) mod m.
Therefore we can determine χutj and χυtj for all t and j by applying
algorithm A to utj and vtj for 0 ≤ t ≤ 1 and –2r∊−2 ≤ j < –2r∊−2. Setting

 in that algorithm will ensure that all χ values are correct
with probability .

The algorithm works in at most r stages. At the beginning of stage t, for
0 ≤ t < r, we assume that we know λ2−ta, λ2−tb, and fractions αt, βt such
that

Define and ; this
preserves the inequalities. The next step is to find λ2−t−1b, which satisfies

Let n = 4 min(r, 2t) ε−2; then when we have

Therefore if χutj = 1 it is likely that λ2−t−1b = Gj, where
 mod 2.

More precisely, we will have

unless or . Let Yj = (2Gj – 1)χutj. If Yj =
+1, it is a vote for λ2−t−1b = 1; if Yj = –1, it is a vote for λ2−t−1b = 0; if Yj =
0, it is an abstention. We will be democratic and set

.

What is the probability that λ2−t−1b is correct? Let Zj = –1 if χutj ≠ 0
and (or or);
otherwise let Zj = |χutj|. Since Zj is a function of utj, the random variables
Zj are pairwise independent and have the same distribution. Let

; if Z > 0, the value of λ2−t−1b will be correct. The
probability that Zj = 0 is , and the probability that Zj = +1 is

; therefore E . Clearly var(Zj) . So the chance
of error, in the branch of the program that has the correct assumptions, is
at most

,
by Chebyshev’s inequality (exercise 3.5–42).

A similar method, with vtj in place of utj, can be used to determine
λ2−t−1a with error min(r, 2t)−1. Eventually we will have ε3/2t+6 <
1/(2m), so τ 2−tb will be the nearest integer to mβt. Then we can compute

 mod m; squaring this quantity will tell us if we are
correct.

The total chance of making a mistake is bounded by
in stages t < lg n, and by in subsequent stages. So the
total chance of error, including the possibility that the χ values were not
all correct, is at most . At least of all runs of the
program will succeed in finding ; hence the factors of m will be found
after repeating the process at most 10 times, on the average.

The total running time is dominated by O(rε−4 log(rε−2)T (G)) for the χ
computation, plus O(r2ε−2T (G)) for subsequent guessing, plus O(r2ε−6)
for the calculations of αt, βt, λ2−ta, and λ2−tb in all branches.

This procedure, which nicely illustrates many of the basic paradigms of
randomized algorithms, is due to R. Fischlin and C. P. Schnorr [J.
Cryptology 13 (2000), 221–244], who derived it from earlier approaches
by Alexi, Chor, Goldreich, and Schnorr [SICOMP 17 (1988), 194–209]
and by Ben-Or, Chor, and Shamir [STOC 15 (1983), 421–430]. When we
combine it with Lemma 3.5P4, we get a theorem analogous to Theorem
3.5P, but with the sequence 3.2.2–(16) instead of 3.2.2–(17). Fischlin and
Schnorr showed how to streamline the calculations so that their factoring
algorithm takes O(rε−4 log(rε−1)T (G)) steps; the resulting time bound for
“cracking” 3.2.2–(16) is T(F) = O(RN4ε−4 log(RNε−1)(T (G) + R2)). The
constant factor implied by this O is rather large, but not enormous. A

similar method finds x from the RSA function y = xa mod m when a ⊥
ϕ(m), if we can guess y1/a mod 2 with probability .

44. Suppose (modulo mi), gcd(ai0, ai1, . . . , ai(d−1), mi)
= 1, and |x| < mi for 1 ≤ i ≤ k = d(d − 1)/2 + 1, where mi ⊥ mj for 1 ≤ i < j ≤
k. Also assume that m = min{m1, . . . , mk} > nn/22n2/2dd, where n = d + k.
First find u1, . . . , uk such that uj mod mi = δij. Then set up the n × n matrix

where M = m1m2 . . . mk; all entries above the diagonal are zero, hence det
L = Mn−1mk−1d−k. Now let v = (t0, . . . , td−1, v1, . . . , vk) be a nonzero
integer vector with length(vL) . Since
M(n−1)/n < M/mk/n, we have length(vL) < M/d. Let

 and P (x) = c0 + c1x + ... + cd−1xd−1. Then P
(x) ≡ vi(ai0 + ai1x + ... + ai(d−1)xd−1) ≡ 0 (modulo mi), for 1 ≤ i ≤ k; hence P
(x) ≡ 0 (modulo M). Also |mjcj| < M/d; it follows that P (x) = 0. But P (x)
is not identically zero, because the conditions viaij ≡ 0 (modulo mi) and
gcd(ai0, . . . , ai(d−1), mi) = 1 imply vi ≡ 0 (modulo mi), while | viM/mid | <
M/d implies |vi| < mi; we cannot have v1 = ... = vk = 0. Thus we can find x
(more precisely, at most d − 1 possibilities for x), and the total running
time is polynomial in lg M. [Lecture Notes in Comp. Sci. 218 (1985),
403–408.]
45. Fact 1. A solution always exists. Suppose first that n is prime. If

, there is a solution with y = 0. If , let j > 0 be minimum
such that we have then and b ≡ –ja(y0)2 for
some x0 and y0 (modulo n), hence . Suppose next that
we have found a solution x2 – ay2 ≡ b (modulo n) and we want to extend

this to a solution modulo n2. We can always find c and d such that (x+cn)2

–a(y +dn)2 ≡ b (modulo n2), because (x+cn)2 –a(y +dn)2 ≡ x2 – ay2 + (2cx
– 2ayd)n and gcd(2x, 2ay) ⊥ n. Thus a solution always exists when n is a
power of an odd prime. (We need to assume that n is odd because, for
example, there is no solution to x2 ± y2 ≡ 3 (modulo 8).) Finally, a solution
exists for all odd n, by the Chinese remainder theorem.

Fact 2. The number of solutions, given a and n with a ⊥ n, is the same
for all b ⊥ n. This follows from the hinted identity and Fact 1, for if

 then (x1x2 – ay1y2, x1y2 + x2y1) runs through all solutions
of x2 – ay2 ≡ b as (x2, y2) runs through all solutions of x2 – ay2 ≡ 1. In
other words, (x2, y2) is uniquely determined by (x1, y1) and (x, y), when

.

Fact 3. Given integers (a, s, z) such that z2 ≡ a (modulo s), we can find
integers (x, y, m, t) with x2 –ay2 = m2st, where (x, y) ≠ (0, 0) and

. For if z2 = a+ms, let (u, v) be a nonzero pair of integers that
minimizes (zu + mv)2 + |a|u2. We can find (u, v) efficiently using the
methods of Section 3.3.4, and by
exercise 3.3.4–9. Therefore (zu + mv)2 – au2 = mt where . The
hinted identity now solves x2 – ay2 = (ms)(mt).

Fact 4. It is easy to solve x2 –y2 ≡ b (modulo n): Let x = (b+1)/2, y =
(b−1)/2.

Fact 5. It is not difficult to solve x2 + y2 ≡ b (modulo n), because the
method in exercise 3.3.4–11 solves x2 + y2 = p when p is prime and p mod
4 = 1; one of the numbers b, b + n, b + 2n, . . . will be such a prime.

Now to solve the stated problem when |a| > 1 we can proceed as
follows. Choose u and v at random between 1 and n − 1, then compute w
= (u2 – av2) mod n and d = gcd(w, n). If 1 < d < n or if gcd(v, n) > 1 we
can reduce n; the methods used to prove Fact 1 will lift solutions for
factors of n to solutions for n itself. If d = n and v ⊥ n, we have (u/v)2 ≡ a
(modulo n), hence we can reduce a to 1. Otherwise d = 1; let s = bw mod
n. This number s is uniformly distributed among the numbers prime to n,
by Fact 2. If , try to solve z2 ≡ a (modulo s), assuming that s is

prime (exercise 4.6.2–15). If unsuccessful, start over with another random
choice of u and v. If successful, let z2 = a + ms and compute d = gcd(ms,
n). If d > 1, reduce the problem as before. Otherwise use Fact 3 to find x2

– ay2 = m2st with ; this makes (x/m)2 – a(y/m)2 ≡ st (modulo n).
If t = 0, reduce a to 1. Otherwise apply the algorithm recursively to solve
X2 – tY2 ≡ a (modulo n). (Since t is much smaller than a, only O(log log n)
levels of recursion will be necessary.) If gcd(Y, n) > 1 we can reduce n or
a; otherwise (X/Y)2 – a(1/Y)2 ≡ t (modulo n). Finally the hinted identity
yields a solution to x′2 – ay′2 ≡ s (see Fact 2), which leads in turn to the
desired solution because u2 – av2 ≡ s/b.

In practice only O(log n) random trials are needed before the
assumptions about prime numbers made in this algorithm turn out to be
true. But a formal proof would require us to assume the Extended
Riemann Hypothesis [IEEE Trans. IT-33 (1987), 702–709]. Adleman,
Estes, and McCurley [Math. Comp. 48 (1987), 17–28] have developed a
slower and more complicated algorithm that does not rely on any
unproved hypotheses.

46. [FOCS 20 (1979), 55–60.] After finding ani mod for
enough ni, we can solve ∑i xijkeij + (p − 1)tjk = δjk in integers xijk, tjk for 1
≤ j, k ≤ m (for example, as in 4.5.2–(23)), thereby knowing the solutions Nj

= (∑i xijkejk) mod (p−1) to aNj mod p = pj. Then if ban′ mod
, we have (modulo p − 1).

[Improved algorithms are known; see, for example, Coppersmith, Odlyzko,
and Schroeppel, Algorithmica 1 (1986), 1–15.]
47. Earlier printings of this book had a 211-digit N, which was cracked in
2012 using the elliptic curve method and the general number field method
by Greg Childers and about 500 volunteers(!).

Section 4.6
1. 9x2 + 7x + 7; 5x3 + 7x2 + 2x + 6.
2. (a) True. (b) False if the algebraic system S contains zero divisors, that

is, nonzero numbers whose product is zero, as in exercise 1; otherwise true.

(c) True when m ≠ n, but false in general when m = n, since the leading
coefficients might cancel.

3. Assume that r ≤ s. For 0 ≤ k ≤ r the maximum is m1m2(k + 1); for r ≤ k
≤ s it is m1m2(r + 1); for s ≤ k ≤ r + s it is m1m2(r + s + 1 – k). The least
upper bound valid for all k is m1m2(r + 1). (The solver of this exercise will
know how to factor the polynomial x7 + 2x6 + 3x5 + 3x4 + 3x3 + 3x2 + 2x +
1.)

4. If one of the polynomials has fewer than 2t nonzero coefficients, the
product can be formed by putting exactly t − 1 zeros between each of the
coefficients, then multiplying in the binary number system, and finally using
a bitwise AND instruction (present on most binary computers, see
Algorithm 4.5.4D) to zero out the extra bits. For example, if t = 3, the
multiplication in the text would become (1001000001)2 × (1000001001)2 =
(1001001011001001001)2; the desired answer is obtained if we AND this
result with the constant (1001001 . . . 1001)2. A similar technique can be
used to multiply polynomials with nonnegative coefficients that are not too
large.

5. Polynomials of degree ≤ 2n can be written U1(x)xn + U0(x) where
deg(U1) ≤ n and deg(U0) ≤ n; and (U1(x)xn + U0(x))(V1(x)xn + V0(x)) =
U1(x)V1(x)(x2n + xn) + (U1(x) + U0(x))(V1(x) + V0(x))xn + U0(x)V0(x)(xn +
1). (This equation assumes that arithmetic is being done modulo 2.) Thus
Eqs. 4.3.3–(3) and 4.3.3–(5) hold.

Notes: S. A. Cook has shown that Algorithm 4.3.3T can be extended in
a similar way; and A. Schönhage [Acta Informatica 7 (1977), 395–398]
has explained how to multiply polynomials mod 2 with only O(n log n log
log n) bit operations. In fact, polynomials over any ring S can be
multiplied with only O(n log n log log n) algebraic operations, even when
S is an algebraic system in which multiplication need not be commutative
or associative [D. G. Cantor and E. Kaltofen, Acta Informatica 28
(1991), 693–701]. See also exercises 4.6.4–57 and 4.6.4–58. But these
ideas are not useful for sparse polynomials (having mostly zero
coefficients).

Section 4.6.1
1. q(x) = 1 · 23x3 + 0 · 22x2 – 2 · 2x + 8 = 8x3 – 4x + 8; r(x) = 28x2 + 4x +

8.
2. The monic sequence of polynomials produced during Euclid’s

algorithm has the coefficients (1, 5, 6, 6, 1, 6, 3), (1, 2, 5, 2, 2, 4, 5), (1, 5,
6, 2, 3, 4), (1, 3, 4, 6), 0. Hence the greatest common divisor is x3 + 3x2 +
4x + 6. (The greatest common divisor of a polynomial and its reverse is
always symmetric, in the sense that it is a unit multiple of its own reverse.)

3. The procedure of Algorithm 4.5.2X is valid, with polynomials over S
substituted for integers. When the algorithm terminates, we have U(x) =
u2(x), V (x) = u1(x). Let m = deg(u), n = deg(v). It is easy to prove by
induction that deg(u3) + deg(v1) = n, deg(u3) + deg(v2) = m, after step X3,
throughout the execution of the algorithm, provided that m ≥ n. Hence if m
and n are greater than d = deg(gcd(u, v)) we have deg(U) < m – d, deg(V) <
n – d; the exact degrees are m – d1 and n – d1, where d1 is the degree of the
next-to-last nonzero remainder. If d = min(m, n), say d = n, we have U(x) =
0 and V (x) = 1.

When u(x) = xm − 1 and v(x) = xn − 1, the identity (xm − 1) mod (xn − 1)
= xm mod n – 1 shows that all polynomials occurring during the calculation
are monic, with integer coefficients. When u(x) = x21 – 1 and v(x) = x13 –
1, we have V (x) = x11 + x8 + x6 + x3 + 1 and U(x) = –(x19 + x16 + x14 + x11

+ x8 + x6 + x3 + x). [See also Eq. 3.3.3–(29), which gives an alternative
formula for U(x) and V (x). See also exercise 4.3.2–6, with 2 replaced by
x.]
4. Since the quotient q(x) depends only on v(x) and the first m−n

coefficients of u(x), the remainder r(x) = u(x)–q(x)v(x) is uniformly
distributed and independent of v(x). Hence each step of the algorithm may
be regarded as independent of the others; this algorithm is much more well-
behaved than Euclid’s algorithm over the integers.

The probability that n1 = n – k is p1–k(1 – 1/p), and t = 0 with
probability p−n. Each succeeding step has essentially the same behavior;
hence we can see that any given sequence of degrees n, n1, . . . , nt, –∞
occurs with probability (p − 1)t/pn. To find the average value of f(n1, . . . ,

nt), let St be the sum of f(n1, . . . , nt) over all sequences n > n1 > ... > nt ≥
0 having a given value of t; then the average is ∑t St(p − 1)t/pn.

Let f(n1, . . . , nt) = t; then , so the average is n(1 – 1/p).
Similarly, if f(n1, . . . , nt) = n1 + ... + nt, then , and the
average is . Finally, if f(n1, . . . , nt) = (n – n1)n1 + ... + (nt−1
– nt)nt, then

and the average is
.

(The probability that nj+1 = nj – 1 for 1 ≤ j ≤ t = n is (1 – 1/p)n,
obtained by setting St = [t = n]; so this probability approaches 1 as p →
∞. As a consequence we have further evidence for the text’s claim that
Algorithm C almost always finds δ2 = δ3 = ... = 1, because any
polynomials that fail the latter condition will fail the former condition
modulo p for all p.)
5. Using the formulas developed in exercise 4, with f(n1, . . . , nt) = [nt =

0], we find that the probability is 1 – 1/p if n > 0, 1 if n = 0.
6. Assuming that the constant terms u(0) and v(0) are nonzero, imagine a

“rightto-left” division algorithm, u(x) = v(x)q(x) + xm–nr(x), where deg(r)
< deg(v). We obtain a gcd algorithm analogous to Algorithm 4.5.2B, which
is essentially Euclid’s algorithm applied to the “reverse” of the original
inputs (see exercise 2), afterwards reversing the answer and multiplying by
an appropriate power of x.

There is a similar algorithm analogous to the method of exercise 4.5.2–
40. The average number of iterations for both algorithms has been found
by G. H. Norton, SICOMP 18 (1989), 608–624; K. Ma and J. von zur
Gathen, J. Symbolic Comp. 9 (1990), 429–455.
7. The units of S (as polynomials of degree zero).
8. If u(x) = v(x)w(x), where u(x) has integer coefficients while v(x) and

w(x) have rational coefficients, there are nonzero integers m and n such that
m · v(x) and n · w(x) have integer coefficients. Now u(x) is primitive, so
Eq. (4) implies that

9. We can extend Algorithm E as follows: Let (u1(x), u2(x), u3, u4(x)) and
(v1(x), v2(x), v3, v4(x)) be quadruples that satisfy the relations
u1(x)u(x)+u2(x)v(x) = u3u4(x) and v1(x)u(x) + v2(x)v(x) = v3v4(x). The
extended algorithm starts with the quadruples (1, 0, cont(u), pp(u(x))) and
(0, 1, cont(v), pp(v(x))) and manipulates them in such a way as to preserve
the conditions above, where u4(x) and v4(x) run through the same sequence
as u(x) and v(x) do in Algorithm E. If au4(x) = q(x)v4(x) + br(x), we have
av3(u1(x), u2(x)) – q(x)u3(v1(x), v2(x)) = (r1(x), r2(x)), where r1(x)u(x) +
r2(x)v(x) = bu3v3r(x), so the extended algorithm can preserve the desired
relations. If u(x) and v(x) are relatively prime, the extended algorithm
eventually finds r(x) of degree zero, and we obtain U(x) = r2(x), V (x) =
r1(x) as desired. (In practice we would divide r1(x), r2(x), and bu3v3 by
gcd(cont(r1), cont(r2)).) Conversely, if such U(x) and V (x) exist, then u(x)
and v(x) have no common prime divisors, since they are primitive and have
no common divisors of positive degree.
10. By successively factoring reducible polynomials into polynomials of
smaller degree, we must obtain a finite factorization of any polynomial into
irreducibles. The factorization of the content is unique. To show that there
is at most one factorization of the primitive part, the key result is to prove
that if u(x) is an irreducible factor of v(x)w(x), but not a unit multiple of the
irreducible polynomial v(x), then u(x) is a factor of w(x). This can be
proved by observing that u(x) is a factor of v(x)w(x)U(x) = rw(x) –
w(x)u(x)V (x) by the result of exercise 9, where r is a nonzero constant.
11. The only row names needed would be A1, A0, B4, B3, B2, B1, B0, C1, C0,
D0. In general, let uj+2(x) = 0; then the rows needed for the proof are An2–nj
through A0, Bn1–nj through B0, Cn2–nj through C0, Dn3–nj through D0, etc.
12. If nk = 0, the text’s proof of (24) shows that the value of the determinant
is ±hk, and this equals . If the polynomials
have a factor of positive degree, we can artificially assume that the
polynomial zero has degree zero and use the same formula with ℓk = 0.

Notes: The value R(u, v) of Sylvester’s determinant is called the
resultant of u and v, and the quantity (–1)deg(u)(deg(u)–1)/2ℓ(u)−1R(u, u′) is

called the discriminant of u, where u′ is the derivative of u. If u(x) has
the factored form a(x – α1) . . . (x – αm), and if v(x) = b(x – β1) . . . (x –
βn), the resultant R(u, v) is

.
It follows that the polynomials of degree mn in y defined as the respective
resultants with v(x) of u(y – x), u(y + x), xmu(y/x), and u(yx) have as
respective roots the sums αi + βj, differences αi – βj, products αiβj, and
quotients αi/βj (when v(0) ≠ 0). This idea has been used by R. G. K. Loos
to construct algorithms for arithmetic on algebraic numbers [Computing,
Supplement 4 (1982), 173–187].

If we replace each row Ai in Sylvester’s matrix by

and then delete rows Bn2–1 through B0 and the last n2 columns, we obtain
an n1 × n1 determinant for the resultant instead of the original (n1 + n2) ×
(n1 + n2) determinant. In some cases the resultant can be evaluated
efficiently by means of this determinant; see CACM 12 (1969), 23–30,
302–303.

J. T. Schwartz has shown that it is possible to evaluate resultants and
Sturm sequences for polynomials of degree n with a total of O(n(log n)2)
arithmetic operations as n → ∞. [See JACM 27 (1980), 701–717.]

13. One can show by induction on j that the values of (uj+1(x), gj+1, hj) are
replaced respectively by (ℓ1+pj w(x)uj(x), ℓ2+pj gj, ℓpj hj) for j ≥ 2, where
pj = n1 + n2 – 2nj. [In spite of this growth, the bound (26) remains valid.]

14. Let p be a prime of the domain, and let j, k be maximum such that pk\vn

= ℓ(v), pj\vn–1. Let P = pk. By Algorithm R we may write q(x) = a0 + P a1x
+ ... + P sasxs, where s = m – n ≥ 2. Let us look at the coefficients of xn+1,
xn, and xn−1 in v(x)q(x), namely P a1vn + P2a2vn−1 + ..., a0vn + P a1vn−1 +
..., and a0vn−1 + P a1vn−2 + ..., each of which is a multiple of P3. We
conclude from the first that pj\a1, from the second that pmin(k,2j)\a0, then
from the third that P \a0. Hence P \r(x). [If m were only n + 1, the best we
could prove would be that p⌈k /2⌉ divides r(x); for example, consider u(x) =

x3 + 1, v(x) = 4x2 + 2x + 1, r(x) = 18. On the other hand, an argument based
on determinants of matrices like (21) and (22) can be used to show that
ℓ(r)deg(v)–deg(r)–1r(x) is always a multiple of ℓ(v)(deg(u)–deg(v))(deg(v)–deg(r)–

1).]
15. Let cij = ai1aj1 + ... + ainajn; we may assume that cii > 0 for all i. If cij ≠
0 for some i ≠ j, we can replace row i and column i by (ci1 – tcj1, . . . , cin
– tcjn), where t = cij/cjj; this does not change the value of det C, and it
decreases the value of the upper bound we wish to prove, since cii is
replaced by . Such replacements can be done in a systematic
way for increasing i and for j < i, until cij = 0 for all i ≠ j. [The latter
algorithm is called the Gram–Schmidt orthogonalization process: See
Crelle 94 (1883), 41–73; Math. Annalen 63 (1907), 442.] Then det(A)2 =
det(AAT) = c11 . . . cnn.
16. A univariate polynomial of degree d over any unique factorization
domain has at most d roots (see exercise 3.2.1.2–16(b)); so if n = 1 it is
clear that |r(S1)| ≤ d1. If n > 1 we have

where gk is nonzero for at least one k. Given (x2, . . . , xn), it follows that
f(x1, . . . , xn) is zero for at most d1 choices of x1, unless gk(x2, . . . , xn) =
0; hence |r(S1, . . . , Sn)| ≤ d1(|S2|–d2) . . . (|Sn|–dn)+|S1|(|S2| . . . |Sn|–(|S2|–d2)
. . . (|Sn|–dn)). [R. A. DeMillo and R. J. Lipton, Inf. Proc. Letters 7
(1978), 193–195.]

Notes: The stated upper bound is best possible, because equality
occurs for the polynomial f(x1, . . . , xn) = ∏{xj – sk | sk ∊ Sj, 1 ≤ k ≤ dj, 1
≤ j ≤ n}. But there is another sense in which the upper bound can be
significantly improved: Let f1(x1, . . . , xn) = f(x1, . . . , xn), and let
fj+1(xj+1, . . . , xn) be any nonzero coefficient of a power of xj in fj(xj, . . . ,
xn). Then we can let dj be the degree of xj in fj instead of the (often much
larger) degree of xj in f. For example, we could let d1 = 3 and d2 = 1 in
the polynomial . This observation ensures
that d1 + ... + dn ≤ d when each term of f has total degree ≤ d; hence the
probability in such cases is

when all sets Sj are equal. If this probability is , and if f(x1, . . . , xn)
turns out to be zero for 50 randomly selected vectors (x1, . . . , xn), then
f(x1, . . . , xn) is identically zero with probability at least 1 – 2−50.

Moreover, if fj(xj, . . . , xn) has the special form
 with ej > 0 we can take dj = 1, because xj must

then be 0 when fj+1(xj+1, . . . , xn) ≠ 0. A sparse polynomial with only m
nonzero terms will therefore have dj ≤ 1 for at least n – lg m values of j.

Applications of this inequality to gcd calculation and other operations
on sparse multivariate polynomials were introduced by R. Zippel, Lecture
Notes in Comp. Sci. 72 (1979), 216–226. J. T. Schwartz [JACM 27
(1980), 701–717] gave further extensions, including a way to avoid large
numbers by means of modular arithmetic: If the coefficients of f are
integers, if P is a set of prime numbers all ≥ q, and if |f(x1, . . . , xn)| ≤ L
whenever each xj ∊ Sj, then the number of solutions to f(x1, . . . , xn) ≡ 0
(modulo p) for p ∊ P is at most

17. (a) For convenience, let us describe the algorithm only for A = {a, b}.
The hypotheses imply that deg(Q1U) = deg(Q2V) ≥ 0, deg(Q1) ≤ deg(Q2). If
deg(Q1) = 0, then Q1 is just a nonzero rational number, so we set Q =
Q2/Q1. Otherwise we let Q1 = aQ11 + bQ12 + r1, Q2 = aQ21 + bQ22 + r2,
where r1 and r2 are rational numbers; it follows that

We must have either deg(Q11) = deg(Q1) – 1 or deg(Q12) = deg(Q1) – 1. In
the former case, deg(Q11U – Q21V) < deg(Q11U), by considering the terms
of highest degree that start with a; so we may replace Q1 by Q11, Q2 by
Q21, and repeat the process. Similarly in the latter case, we may replace
(Q1, Q2) by (Q12, Q22) and repeat the process.

(b) We may assume that deg(U) ≥ deg(V). If deg(R) ≥ deg(V), note that
Q1U – Q2V = Q1R−(Q2 – Q1Q)V has degree less than deg(V) ≤ deg(Q1R),

so we can repeat the process with U replaced by R; we obtain R = Q′V +
R′, U = (Q + Q′)V + R′, where deg(R′) < deg(R), so eventually a solution
will be obtained.

(c) The algorithm of (b) gives V1 = UV2 + R, deg(R) < deg(V2); by
homogeneity, R = 0 and U is homogeneous.

(d) We may assume that deg(V) ≤ deg(U). If deg(V) = 0, set W ← U;
otherwise use (c) to find U = QV, so that QV V = V QV, (QV – V Q)V = 0.
This implies that QV = V Q, so we can set U ← V, V ← Q and repeat the
process.

For further details about the subject of this exercise, see P. M. Cohn,
Proc. Cambridge Phil. Soc. 57 (1961), 18–30. The considerably more
difficult problem of characterizing all string polynomials such that UV = V
U has been solved by G. M. Bergman [Ph.D. thesis, Harvard University,
1967].

18. [P. M. Cohn, Transactions of the Amer. Math. Soc. 109 (1963), 332–
356.]

S1. Set
.

S2. (At this point the identities given in the exercise hold, and u1v1 =
u2v2; v2 = 0 if and only if u1 = 0.) If v2 = 0, the algorithm terminates
with gcrd(V1, V2) = v1, lclm . (Also, by
symmetry, we have gcld(U1, U2) = u2 and lcrm(U1, U2) = U1w1 = –
U2w2.)

S3. Find Q and R such that v1 = Qv2 + R, where deg(R) < deg(v2). (We
have u1(Qv2 + R) = u2v2, so u1R = (u2 – u1Q)v2 = R′v2.)

S4. Set
and n ← n + 1. Go back to S2.

This extension of Euclid’s algorithm includes most of the features we
have seen in previous extensions, all at the same time, so it provides new
insight into the special cases already considered. To prove that it is valid,
note first that deg(v2) decreases in step S4, so the algorithm certainly
terminates. At the conclusion of the algorithm, v1 is a common right

divisor of V1 and V2, since w1v1 = (–1)nV1 and –w2v1 = (–1)nV2; also if d
is any common right divisor of V1 and V2, it is a right divisor of z1V1 +
z2V2 = v1. Hence v1 = gcrd(V1, V2). Also if m is any common left multiple
of V1 and V2, we may assume without loss of generality that m = U1V1 =
U2V2, since the sequence of values of Q does not depend on U1 and U2.
Hence is a multiple of .

In practice, if we just want to calculate gcrd(V1, V2), we may suppress
the computation of . These additional
quantities were added to the algorithm primarily to make its validity more
readily established.

Note: Nontrivial factorizations of string polynomials, such as the
example given with this exercise, can be found from matrix identities such
as

since these identities hold even when multiplication is not commutative.
For example,

(Compare this with the continuant polynomials of Section 4.5.3.)
19. [See Eugène Cahen, Théorie des Nombres 1 (Paris: 1914), 336–338.]
If such an algorithm exists, D is a gcrd by the argument in exercise 18. Let
us regard A and B as a single 2n × n matrix C whose first n rows are those
of A, and whose second n rows are those of B. Similarly, P and Q can be
combined into a 2n × n matrix R; X and Y can be combined into an n × 2n
matrix Z. The desired conditions now reduce to two equations C = RD, D
= ZC. If we can find a 2n × 2n integer matrix U with determinant ±1 such
that the last n rows of U−1C are all zero, then R = (first n columns of U), D
= (first n rows of U−1C), Z = (first n rows of U−1) solves the desired
conditions. Hence, for example, the following algorithm may be used (with
m = 2n):
Algorithm T (Triangularization). Let C be an m × n matrix of integers.
This algorithm finds m × m integer matrices U and V such that UV = I and
V C is upper triangular. (This means that the entry in row i and column j
of V C is zero if i > j.)

T1. [Initialize.] Set U ← V ← I, the m × m identity matrix; and set T ←
C. (Throughout the algorithm we will have T = V C and UV = I.)

T2. [Iterate on j.] Do step T3 for j = 1, 2, . . . , min(m, n), then terminate
the algorithm.

T3. [Zero out column j.] Perform the following actions zero or more
times until Tij is zero for all i > j: Let Tkj be a nonzero element of
{Tij, T(i+1)j, . . . , Tmj} having the smallest absolute value. Interchange
rows k and j of T and of V ; interchange columns k and j of U. Then
subtract ⌊Tij/Tjj⌋ times row j from row i, in matrices T and V, and
add the same multiple of column i to column j in matrix U, for j < i ≤
m.

For the stated example, the algorithm yields ,
, . (Actually

any matrix with determinant ±1 would be a gcrd in this particular case.)
20. See V. Y. Pan, Information and Computation 167 (2001), 71–85.
21. To get an upper bound, we may assume that Algorithm R is used only
when m – n ≤ 1; furthermore, the coefficients are bounded by (26) with m
= n. [The stated formula is, in fact, the execution time observed in practice,
not merely an upper bound. For more detailed information see G. E.
Collins, Proc. 1968 Summer Inst. on Symbolic Mathematical
Computation, edited by Robert G. Tobey (IBM Federal Systems Center:
June 1969), 195–231.]
22. A sequence of signs cannot contain two consecutive zeros, since
uk+1(x) is a nonzero constant in (29). Moreover we cannot have “+, 0, +”
or “–, 0, –” as subsequences. The formula V (u, a) – V (u, b) is clearly
valid when b = a, so we must only verify it as b increases. The
polynomials uj(x) have finitely many roots, and V (u, b) changes only when
b encounters or passes such roots. Let x be a root of some (possibly
several) uj. When b increases from x – ε to x, the sign sequence near j goes
from “+, ±, –” to “+, 0, –” or from “–, ±, +” to “–, 0, +” if j > 0; and from
“+, –” to “0, –” or from “–, +” to “0, +” if j = 0. (Since u′(x) is the
derivative, u′(x) is negative when u(x) is decreasing.) Thus the net change
in V is –δj0. When b increases from x to x + ε, a similar argument shows
that V remains unchanged.

[L. E. Heindel, JACM 18 (1971), 533–548, has applied these ideas to
construct algorithms for isolating the real zeros of a given polynomial
u(x), in time bounded by a polynomial in deg(u) and log N, where all
coefficients yj are integers with |uj| ≤ N, and all operations are guaranteed
to be exact.]

23. If v has n−1 real roots occurring between the n real roots of u, then (by
considering sign changes) u(x) mod v(x) has n – 2 real roots lying between
the n − 1 roots of v.
24. First show that .
Then show that the exponent of g2 on the left-hand side of (18) has the form
δ2 + δ1x, where x = δ2 + ... + δj−1 + 1 – δ2(δ3 + ... + δj−1 + 1) – δ3(1 – δ2)
(δ4 + ... + δj−1 + 1) – ... – δj−1(1 – δ2) . . . (1 – δj−2)(1). But x = 1, since it
is seen to be independent of δj−1 and we can set δj−1 = 0, etc. A similar
derivation works for g3, g4, . . . , and a simpler derivation works for (23).
25. Each coefficient of uj(x) can be expressed as a determinant in which
one column contains only ℓ(u), ℓ(v), and zeros. To use this fact, modify
Algorithm C as follows: In step C1, set g ← gcd(ℓ(u), ℓ(v)) and h ← 0. In
step C3, if h = 0, set u(x) ← v(x), v(x) ← r(x)/g, h ← ℓ(u)δ/g, g ← ℓ(u),
and return to C2; otherwise proceed as in the unmodified algorithm. The
effect of this new initialization is simply to replace uj(x) by uj(x)/gcd(ℓ(u),
ℓ(v)) for all j ≥ 3; thus, ℓ2j−4 will become ℓ2j−5 in (28).
26. In fact, even more is true. Note that the algorithm in exercise 3
computes ±pn(x) and ∓qn(x) for n ≥ –1. Let en = deg(qn) and dn =
deg(pnu–qnv); we observed in exercise 3 that dn−1+en = deg(u) for n ≥ 0.
We shall prove that the conditions deg(q) < en and deg(pu–qv) < dn−2
imply that p(x) = c(x)pn−1(x) and q(x) = c(x)qn−1(x): Given such p and q,
we can find c(x) and d(x) such that p(x) = c(x)pn−1(x) + d(x)pn(x) and q(x)
= c(x)qn−1(x) + d(x)qn(x), since pn−1(x)qn(x) – pn(x)qn−1(x) = ±1. Hence
pu – qv = c(pn−1u – qn−1v) + d(pnu – qnv). If d(x) ≠ 0, we must have deg(c)
+ en−1 = deg(d) + en, since deg(q) < deg(qn); it follows that deg(c) + dn−1
> deg(d) + dn, since this is surely true if dn = –∞ and otherwise we have
dn−1+en = dn+en+1 > dn+en−1. Therefore deg(pu – qv) = deg(c) + dn−1. But

we have assumed that deg(pu – qv) < dn−2 = dn−1 + en – en−1; so deg(c) <
en – en−1 and deg(d) < 0, a contradiction.

[This result is essentially due to L. Kronecker, Monatsberichte Königl.
preuß. Akad. Wiss. (Berlin: 1881), 535–600. It implies the following
theorem: “Let u(x) and v(x) be relatively prime polynomials over a field
and let d ≤ deg(v) < deg(u). If q(x) is a polynomial of least degree such
that there exist polynomials p(x) and r(x) with p(x)u(x)–q(x)v(x) = r(x)
and deg(r) = d, then p(x)/q(x) = pn(x)/qn(x) for some n.” For if dn−2 > d ≥
dn–1, there are solutions q(x) with deg(q) = en−1 + d – dn−1 < en, and we
have proved that all solutions of such low degree have the stated
property.]

27. The ideas of answer 4.3.1–40 apply, but in simpler fashion because
polynomial arithmetic is carry-free; right-to-left division uses 4.7–(3).
Alternatively, with large values of n, we could divide Fourier transforms
of the coefficients, using exercise 4.6.4–57 in reverse.

Section 4.6.2
1. For any choice of k ≤ n distinct roots, there are pn−k monic polynomials

having those roots at least once. Therefore by the principle of inclusion and
exclusion (Section 1.3.3), the number of polynomials without linear factors
is , and it is alternately ≤ and ≥ the partial sums of
this series. The stated bounds correspond to k ≤ 2 and k ≤ 3. When n ≥ p
the probability of at least one linear factor is 1 – (1 – 1/p)p. The average
number of linear factors is p times the average number of times x divides
u(x), so it is .

[In a similar way, we find that there is an irreducible factor of degree 2
with probability ; this probability lies
between and when n ≥ 2 and it approaches

 as n → ∞. The average number of such
factors is

Note: Let u(x) be a fixed polynomial with integer coefficients. Peter
Weinberger has observed that, if u(x) is irreducible over the integers, the
average number of linear factors of u(x) modulo p approaches 1 as p →
∞, because the Galois group of u(x) is transitive and the average number

of 1-cycles in a randomly chosen element of any transitive permutation
group is 1. Thus, the average number of linear factors of u(x) modulo p
is the number of irreducible factors of u(x) over the integers, as p → ∞.
[See the remarks in the answer to exercise 37, and Proc. Symp. Pure
Math. 24 (Amer. Math. Soc., 1972), 321–332.]
2. (a) We know that u(x) has a representation as a product of irreducible

polynomials; and the leading coefficients of these polynomials must be
units, since they divide the leading coefficient of u(x). Therefore we may
assume that u(x) has a representation as a product of monic irreducible
polynomials p1(x)e1. . . pr(x)er, where p1(x), . . . , pr(x) are distinct. This
representation is unique, except for the order of the factors, so the
conditions on u(x), v(x), w(x) are satisfied if and only if

(b) The generating function for the number of monic polynomials of
degree n is 1+pz+p2z2+... = 1/(1–pz). The generating function for the
number of polynomials of degree n having the form v(x)2, where v(x) is
monic, is 1+pz2+p2z4+... = 1/(1–pz2). If the generating function for the
number of monic squarefree polynomials of degree n is g(z), then we must
have 1/(1 – pz) = g(z)/(1 – pz2) by part (a). Hence g(z) = (1 – pz2)/(1 – pz)
= 1 + pz + (p2 – p)z2 + (p3 – p2)z3 + The answer is pn – pn−1 for n ≥ 2.
[Curiously, this proves that u(x) ⊥ u′(x) with probability 1 – 1/p; it is the
same as the probability that u(x) ⊥ v(x) when u(x) and v(x) are
independent, by exercise 4.6.1–5.]

Note: By a similar argument, every u(x) has a unique representation
v(x)w(x)r, where v(x) is not divisible by the rth power of any irreducible;
the number of such monic polynomials v(x) is pn – pn−r+1 for n ≥ r.
3. Let u(x) = u1(x) . . . ur(x). There is at most one such v(x), by the

argument of Theorem 4.3.2C. There is at least one if, for each j, we can
solve the system with wj(x) = 1 and wk(x) = 0 for k ≠ j. A solution to the
latter is v1(x) ∏k≠j uk(x), where v1(x) and v2(x) can be found satisfying

by the extension of Euclid’s algorithm (exercise 4.6.1–3).

Over the integers we cannot make v(x) ≡ 1 (modulo x) and v(x) ≡ 0
(modulo x−2) when deg(v) < 2.

4. By unique factorization, we have (1 – pz)−1 = ∏n≥1(1 – zn)−anp; after
taking logarithms, this can be rewritten

The stated identity now yields the answer Gp(z) = ∑m≥1 μ(m)m−1 ln(1/(1 –
pzm)), from which we obtain anp = ∑d\n μ(n/d)pd/n; thus limp→∞ anp/pn =
1/n.

To prove the stated identity, note that

[The numbers anp were first found by Gauss; see his Werke 2, 219–222.]
5. Let anpr be the number of monic polynomials of degree n modulo p

having exactly r irreducible factors. Then Gp(z, w) = ∑n,r≥0 anprz
nwr =

exp(∑k≥1 Gp(zk)wk/k) = exp(∑m≥1 amw ln(1/(1 – pz−m))); see Eq. 1.2.9–
(38). We have

hence Anp = Hn +1/2p+O(p−2) for n ≥ 2. The average value of 2r is [zn]
Gp(z/p, 2) = n + 1 + (n − 1)/p + O(np−2). (The variance is of order n3,
however: Set w = 4.)
6. For 0 ≤ s < p, x−s is a factor of xp –x (modulo p) by Fermat’s theorem.

So xp –x is a multiple of lcm .
[Note: Therefore the Stirling numbers are multiples of p except when k
= 1 or k = p. Equation 1.2.6–(45) shows that the same statement is valid for
Stirling numbers of the other kind.]

7. The factors on the right are relatively prime, and each is a divisor of
u(x), so their product divides u(x). On the other hand, u(x) divides

so it divides the right-hand side by exercise 4.5.2–2.

8. The vector (18) is the only output whose kth component is nonzero.
9. For example, start with x ← 1 and y ← 1; then repeatedly set R[x] ←

y, x ← 2x mod 101, y ← 51y mod 101, one hundred times.
10. The matrix Q – I below has a null space generated by the two vectors
v[1] = (1, 0, 0, 0, 0, 0, 0, 0), v[2] = (0, 1, 1, 0, 0, 1, 1, 1). The factorization
is

11. Removing the trivial factor x, the matrix Q – I above has a null space
generated by (1, 0, 0, 0, 0, 0, 0) and (0, 3, 1, 4, 1, 2, 1). The factorization
is

12. If p = 2, (x + 1)4 = x4 + 1. If p = 8k + 1, Q – I is the zero matrix, so
there are four factors. For other values of p we have

Here Q–I has rank 2, so there are 4–2 = 2 factors. [But it is easy to prove
that x4 +1 is irreducible over the integers, since it has no linear factors and
the coefficient of x in any factor of degree two must be less than or equal to
2 in absolute value by exercise 20. (See also exercise 32, since x4 + 1 =
Ψ8(x).) For all k ≥ 2, H. P. F. Swinnerton-Dyer has exhibited polynomials
of degree 2k that are irreducible over the integers, but they split completely
into linear and quadratic factors modulo every prime. For degree 8, his

example is x8 –16x6 +88x4 +192x2 +144, having roots ± ± ±i [see
Math. Comp. 24 (1970), 733–734]. According to the theorem of Frobenius
cited in exercise 37, any irreducible polynomial of degree n whose Galois
group contains no n-cycles will have factors modulo almost all primes.]
13. Case

.
Case . Case

. Case
. The factorization for p =

8k + 7 also holds over the field of real numbers.
14. Algorithm N can be adapted to find the coefficients of w: Let A be the
(r + 1) × n matrix whose kth row contains the coefficients of v(x)k mod
u(x), for 0 ≤ k ≤ r. Apply the method of Algorithm N until the first
dependence is found in step N3; then the algorithm terminates with w(x) =
v0 + v1x + ... + vkxk, where vj is defined in (18). At this point 2 ≤ k ≤ r; it
is not necessary to know r in advance, since we can check for dependency
after generating each row of A.
15. We may assume that u ≠ 0 and that p is odd. Berlekamp’s method
applied to the polynomial x2 – u tells us that a square root exists if and
only if Q – I = O if and only if u(p−1)/2 mod p = 1; but we already knew
that. The method of Cantor and Zassenhaus suggests that gcd(x2 – u, (sx + t)
(p−1)/2 – 1) will often be a nontrivial factor; and indeed one can show that
(p − 1)/2 + (0, 1, or 2) values of s will succeed. In practice, sequential
choices seem to work just as well as random choices, so we obtain the
following algorithm: “Evaluate gcd(x2 – u, x(p−1)/2 – 1), gcd(x2 – u, (x + 1)
(p−1)/2 – 1), gcd(x2 – u, (x + 2)(p−1)/2 – 1), . . . , until finding the first case
where the gcd has the form x + v. Then = ±v.” The expected running
time (with random s) will be O(log p)3 for large p.

A closer look shows that the first step of this algorithm succeeds if and
only if p mod 4 = 3. For if p = 2q + 1 where q is odd, we have xq mod (x2

– u) = u(q−1)/2x, and gcd(x2 – u, xq − 1) ≡ x – u(q+1)/2 since uq ≡ 1 (modulo
p). In fact, we see that the formula = ±u(p+1)/4 mod p gives the square
root directly whenever p mod 4 = 3.

But when p mod 4 = 1, we will have x(p−1)/2 mod (x2 – u) = u(p−1)/4, and
the gcd will be 1. The algorithm above should therefore be used only
when p mod 4 = 1, and the first gcd should then be omitted.

A direct method that works nicely when p mod 8 = 5 was discovered in
the 1990s by A. O. L. Atkin, based on the fact that 2(p−1)/2 ≡ –1 in that
case: Set v ← (2u)(p−5)/8 mod p and i ← (2uv2) mod p; then = ±(uv(i
− 1)) mod p, and we also have = ±i. [Computational Perspectives
on Number Theory (Cambridge, Mass.: International Press, 1998), 1–11;
see also H. C. Pocklington, Proc. Camb. Phil. Soc. 19 (1917), 57–59.]

When p mod 8 = 1, a trial-and-error method seems to be necessary. The
following procedure due to Daniel Shanks often outperforms all other
known algorithms in such cases: Suppose p = 2eq + 1 where e ≥ 3.

S1. Choose x at random in the range 1 < x < p, and set z = xq mod p. If
z2e–1 mod p = 1, repeat this step. (The average number of repetitions
will be less than 2. Random numbers will not be needed in steps S2
and S3. In practice we can save time by trying small odd prime
numbers x, and stopping with z = xq mod p when p(x−1)/2 mod x = x −
1; see exercise 1.2.4–47.)

S2. Set y ← z, r ← e, x ← u(q−1)/2 mod p, v ← ux mod p, w ← ux2 mod
p.

S3. If w = 1, stop; v is the answer. Otherwise find the smallest k such
that w2k mod p is equal to 1. If k = r, stop (there is no answer);
otherwise set (y, r, v, w) ← (y2r–k, k, vy2r−k−1, wy2r – k) and repeat step
S3.

The validity of this algorithm follows from the invariant congruences
uw ≡ v2, y2r−1≡ −1, w2r−1 ≡ 1 (modulo p). When w = 1, step S3 performs r
+ 2 multiplications mod p; hence the maximum number of multiplications
in that step is less than , and the average number is less than .
Thus the running time is O(log p)3 for steps S1 and S2 plus order e2(log
p)2 for step S3, compared to just O(log p)3 for the randomized method
based on (21). But the constant factors in Shanks’s method are small.
[Congressus Numerantium 7(1972), 58–62. A related but less efficient
method was published by A. Tonelli, Göttinger Nachrichten (1891),

344–346. The first person to discover a square root algorithm with
expected running time O(log p)3 was M. Cipolla, Rendiconti Accad. Sci.
Fis. Mat. Napoli 9 (1903), 154–163.]

16. (a) Substitute polynomials modulo p for integers, in the proof for n = 1.
(b) The proof for n = 1 carries over to any finite field. (c) Since x = ξk for
some k, xpn = x in the field defined by f (x). Furthermore, the elements y
that satisfy the equation ypm = y in the field are closed under addition, and
closed under multiplication; so if xpm = x, then ξ (being a polynomial in x
with integer coefficients) satisfies ξpm = ξ.
17. If ξ is a primitive root, each nonzero element is some power of ξ.
Hence the order must be a divisor of 132 − 1 = 23 · 3 · 7, and φ(f) elements
have order f .

18. (a) pp(p1 (unx)) . . . pp(pr(unx)), by Gauss’s lemma. For example, let

then pp(36x2 + 12) = 3x2 + 1, pp(6x − 3) = 2x − 1. (This is a modern
version of a fourteenth-century trick used for many years to help solve
algebraic equations.)

(b) Let , where c
is the content of w(unx) as a polynomial in x. Then

, hence ; since is a
divisor of un, c is a multiple of .

19. If u(x) = v(x) w(x) with deg(v) deg(w) ≥ 1, then unxn ≡ v(x) w(x)
(modulo p). By unique factorization modulo p, all but the leading
coefficients of v and w are multiples of p, and p2 divides v0 w0 = u0 .
20. (a)

. (b)

We may assume that u0 ≠ 0. Let min(1,|αj|) = |u0|/M(u).
Whenever |αj| < 1, change the factor x − αj to in u(x); this doesn’t
affect ∥u∥, but it changes |u0| to M(u). (c) uj = ±un Σ αi1 . . . αin−j, an
elementary symmetric function, hence |uj| ≤ |un| Σ βi1 . . . βin−j where βi =
max(1, |αi |). We complete the proof by showing that when x1 ≥ 1, . . ., xn ≥
1, and x1 . . . xn = M, the elementary symmetric function

, is the value assumed when x1
= ... = xn−1 = 1 and xn = M. (For if x1 ≤ ... ≤ xn < M, the transformation xn
← xn−1xn, xn−1 ← 1 increases σnk by σ(n−2)(k−1)(xn – 1)(xn−1 – 1), which is
positive.) (d)

 since
M(v) ≤ M(u) and |vm| ≤ |un|. [M. Mignotte, Math. Comp. 28 (1974), 1153–
1157.]

Notes: This solution shows that is an upper
bound, so we would like to have a better estimate of M(u). Several
methods are known [W. Specht, Math. Zeit. 53 (1950), 357–363;
Cerlienco, Mignotte, and Piras, J. Symbolic Comp. 4 (1987), 21–33]. The
simplest and most rapidly convergent is perhaps the following procedure
[see C. H. Graeffe, Auflösung der höheren numerischen Gleichungen
(Zürich: 1837)]: Assuming that u(x) = un(x – α1) . . . (x – αn), let

. Then M(u)2

= M(û) ≤ ||û||. Hence we may set c ← ||u||, v ← u/c, t ← 0, and then
repeatedly set t ← t + 1, c ← || ||1/2t c, v ← /|| ||. The invariant relations
M(u) = cM(v)1/2t and ||v|| = 1 guarantee that M(u) ≤ c at each step of the
iteration. Notice that when v(x) = v0(x2) + xv1(x2), we have (x) = v0(x)2 –
xv1(x)2. It can be shown that if each |αj| is ≤ ρ or ≥ 1/ρ, then M(u) = ||u||(1

+ O(ρ)); hence c will be M(u)(1 + O(ρ2t)) after t steps.
For example, if u(x) is the polynomial of (22), the successive values of

c for t = 0, 1, 2, . . . turn out to be 10.63, 12.42, 6.85, 6.64, 6.65, 6.6228,
6.62246, 6.62246, In this example ρ ≈ .90982. Notice that
convergence is not monotonic. Eventually v(x) will converge to the
monomial xm, where m is the number of roots with |αj| < 1, assuming that |

αj| ≠ 1 for all j; in general, if there are k roots with |αj| = 1, the coefficients
of xm and xm+k will not approach zero, while the coefficients of higher
and lower powers of x will.

A famous formula due to Jensen [Acta Math. 22 (1899), 359–364]
proves that M(u) is the geometric mean of |u(x)| on the unit circle, namely
exp . Exercise 21(a) will show, similarly, that ||u||
is the root-mean-square of |u(x)| on the unit circle. The inequality M(u) ≤
||u||, which goes back to E. Landau [Bull. Soc. Math. de France 33
(1905), 251–261], can therefore be understood as a relation between
mean values. The number M(u) is often called the Mahler measure of a
polynomial, because Kurt Mahler used it in Mathematika 7 (1960), 98–
100. Incidentally, Jensen also proved that

 when
m > 0.

21. (a) The coefficient of apbqcrds is zero on both sides unless p + s = q +
r. And when this condition holds, the coefficient on the right is (p + s)!; on
the left it is

[B. Beauzamy and J. Dégot, Trans. Amer. Math. Soc. 345 (1995), 2607–
2619; D. Zeilberger, AMM 101 (1994), 894–896.]

(b) Let ap = vp, bq = wq, cr = r, ds = s. Then the right side of (a) is
B(u), and the left side is a sum of nonnegative terms for each j and k. If we
consider only the terms where Σ j is the degree of v, the terms vp/(p – j)!
vanish except when p = j. Those terms therefore reduce to

[B. Beauzamy, E. Bombieri, P. Enflo, and H. Montgomery, J. Number
Theory 36 (1990), 219–245.]

(c) Adding a new variable, if needed to make everything
homogeneous, does not change the relation u = vw. Thus if v and w have

total degrees m and n, respectively, we have (m + n)! [u]2 ≥ m! [v]2 n!
[w]2; in other words, .

Incidentally, one nice way to think of the Bombieri norm is to imagine
that the variables are noncommutative. For example, instead of 3xy3 –
z2w2 we could write

.
Then the Bombieri norm is the || || norm on the new coefficients. Another
interesting formula, when u is homogeneous of degree n, is

(d) The one-variable case corresponds to t = 2. Suppose u = vw where
v is homogeneous of degree m in t variables. Then |vk|2 k!/m! ≤ [v]2 for all
k, and k! ≥ (m/t)!t since log Γ(x) is convex for x > 0; therefore |vk|2 ≤ m!
[v]2/(m/t)!t. We can assume that m! [v]2/(m/t)!t ≤ m′! [w]2/(m′/t)!t, where m′
= n – m is the degree of w. Then

(A better bound is obtained if we maximize the next-to-last expression
over all degrees m for which a factor has not been ruled out.) The quantity
n!1/4/(n/2t)!t/2 is , where ct = 21/8Π − (2t –

1)/8tt/4 is ≈ 1.004 when t = 2.
Notice that we have not demonstrated the existence of an irreducible

factor with such small coefficients; further splitting may be needed. See
exercise 41.

(e)
.

If v(x) = (x − 1)n and w(x) = (x + 1)n, we have [v]2 = [w]2 = 2n; hence the
inequality of (c) is an equality in this case.

(f) Let u and v be homogeneous of degree m and n. Then

by Cauchy’s inequality. [B. Beauzamy, J. Symbolic Comp. 13 (1992), 465–
472, Proposition 5.]

(g) By exercise 20,
.

The upper inequality also follows from (f), for if
 we have

.
22. More generally, assume that u(x) ≡ v(x)w(x) (modulo q),
a(x)v(x)+b(x)w(x) ≡ 1 (modulo p), c · ℓ(v) ≡ 1 (modulo r), deg(a) <
deg(w), deg(b) < deg(v), and deg(u) = deg(v) + deg(w), where r = gcd(p,
q) and p, q needn’t be prime. We shall construct polynomials V (x) ≡ v(x)
and W (x) ≡ w(x) (modulo q) such that u(x) ≡ V (x)W (x) (modulo qr), ℓ(V)
= ℓ(v), deg(V) = deg(v), deg(W) = deg(w); furthermore, if r is prime, the
results will be unique modulo qr.

The problem asks us to find (x) and with
;

and the other condition

is equivalent to v(x) + (x)w(x) ≡ f(x) (modulo r), where f(x)
satisfies u(x) ≡ v(x)w(x) + qf(x) (modulo qr). We have

for all t(x). Since ℓ(v) has an inverse modulo r, we can find a quotient t(x)
by Algorithm 4.6.1D such that deg(bf –tv) < deg(v); for this t(x), deg(af
+tw) ≤ deg(w), since we have deg(f) ≤ deg(u) = deg(v) + deg(w). Thus the
desired solution is (x) = b(x)f(x) – t(x)v(x) = b(x)f(x) mod v(x), =
a(x)f(x) + t(x)w(x). If is another solution, we have

 (modulo r). Thus if r is
prime, v(x) must divide ; but deg , so

 and .
If p divides q, so that r = p, our choices of V (x) and W (x) also satisfy

a(x)V (x) + b(x)W (x) ≡ 1 (modulo p), as required by Hensel’s Lemma.
For p = 2, the factorization proceeds as follows (writing only the

coefficients, and using bars for negative digits): Exercise 10 says that
 in one-bit two’s complement

notation. Euclid’s extended algorithm yields a(x) = (1 0 0 0 0 1), b(x) = (1
0). The factor v(x) = x2 + c1x + c0 must have

, by exercise 20. Three
applications of Hensel’s lemma yield

. Thus c1 ≡ 3 and c0 ≡ –1
(modulo 16); the only possible quadratic factor of u(x) is x2 + 3x − 1.
Division fails, so u(x) is irreducible. (Since we have now proved the
irreducibility of this beloved polynomial by four separate methods, it is
unlikely that it has any factors.)

Hans Zassenhaus has observed that we can often speed up such
calculations by increasing p as well as q: When r = p in the notation
above, we can find A(x), B(x) such that A(x)V (x) + B(x)W (x) ≡ 1
(modulo p2), namely by taking A(x) = a(x) + pā(x), B(x) = b(x) + p b(x),
where ā(x)V (x) + b(x)W (x) ≡ g(x) (modulo p), a(x)V (x) + b(x)W (x) ≡
1–pg(x) (modulo p2). We can also find C with ℓ(V)C ≡ 1 (modulo p2). In
this way we can lift a squarefree factorization u(x) ≡ v(x)w(x) (modulo p)
to its unique extensions modulo p2, p4, p8, p16, etc. However, this
“accelerated” procedure reaches a point of diminishing returns in
practice, as soon as we get to double-precision moduli, since the time for
multiplying multiprecision numbers in practical ranges outweighs the
advantage of squaring the modulus directly. From a computational
standpoint it seems best to work with the successive moduli p, p2, p4, p8, .
. . , pE, pE+e, pE+2e, pE+3e, . . . , where E is the smallest power of 2 with pE

greater than single precision and e is the largest integer such that pe has
single precision.

“Hensel’s Lemma” was actually invented by C. F. Gauss about 1799, in
the draft of an unfinished book called Analysis Residuorum, §373–374.
Gauss incorporated most of the material from that manuscript into his
Disquisitiones Arithmeticæ (1801), but his ideas about polynomial
factorization were not published until after his death [see his Werke 2
(Göttingen, 1863), 238]. Meanwhile T. Schönemann had independently
discovered the lemma and proved uniqueness [Crelle 32 (1846), 93–105,
§59]. Hensel’s name was attached to the method because it is basic to the
theory of p-adic numbers (see exercise 4.1–31). The lemma can be
generalized in several ways. First, if there are more factors, say u(x) ≡
v1(x)v2(x)v3(x) (modulo p), we can find a1(x), a2(x), a3(x) such that
a1(x)v2(x)v3(x) + a2(x)v1(x)v3(x) + a3(x)v1(x)v2(x) ≡ 1 (modulo p) and

deg(ai) < deg(vi). (In essence, 1/u(x) is expanded in partial fractions as
∑ai(x)/vi(x).) An exactly analogous construction now allows us to lift the
factorization without changing the leading coefficients of v1 and v2; we
take 1(x) = a1(x)f(x) mod v1(x), 2(x) = a2(x)f(x) mod v2(x), etc. Another
important generalization is to several simultaneous moduli, of the
respective forms pe, (x2 –a2)n2, . . . , (xt – at)nt, when performing
multivariate gcds and factorizations. See D. Y. Y. Yun, Ph.D. Thesis
(M.I.T., 1974).

23. The discriminant of pp(u(x)) is a nonzero integer (see exercise 4.6.1–
12), and there are multiple factors modulo p if and only if p divides the
discriminant. [The factorization of (22) modulo 3 is (x + 1)(x2 – x − 1)2(x3

+ x2 – x + 1); squared factors for this polynomial occur only for p = 3, 23,
233, and 121702457. It is not difficult to prove that the smallest prime that
is not unlucky is at most O(n log Nn), if n = deg(u) and if N bounds the
coefficients of u(x).]
24. Multiply a monic polynomial with rational coefficients by a suitable
nonzero integer, to get a primitive polynomial over the integers. Factor this
polynomial over the integers, and then convert the factors back to monic.
(No factorizations are lost in this way; see exercise 4.6.1–8.)
25. Consideration of the constant term shows there are no factors of degree
1, so if the polynomial is reducible, it must have one factor of degree 2 and
one of degree 3. Modulo 2 the factors are x(x + 1)2(x2 + x + 1); this is not
much help. Modulo 3 the factors are (x + 2)2(x3 + 2x + 2). Modulo 5 they
are (x2 + x + 1)(x3 + 4x + 2). So we see that the answer is (x2 + x + 1)(x3 –
x + 2).
26. Begin with D ← (0 . . . 01), representing the set {0}. Then for 1 ≤ j ≤ r,
set D ← D| (D ≪ dj), where| denotes bitwise “or” and D ≪ d denotes D
shifted left d bit positions. (Actually we need only work with a bit vector
of length ⌈(n + 1)/2⌉, since n – m is in the set if and only if m is.)
27. Exercise 4 says that a random polynomial of degree n is irreducible
modulo p with rather low probability, about 1/n. But the Chinese
remainder theorem implies that a random monic polynomial of degree n
over the integers will be reducible with respect to each of k distinct primes
with probability about (1–1/n)k, and this approaches zero as k → ∞.

Hence almost all polynomials over the integers are irreducible with
respect to infinitely many primes; and almost all primitive polynomials
over the integers are irreducible. [Another proof has been given by W. S.
Brown, AMM 70 (1963), 965–969.]
28. See exercise 4; the probability is [zn] (1+a1pz/p)(1+a2pz2/p2)
(1+a3pz3/p3) . . . , which has the limiting value

 For 1 ≤ n ≤ 10 the answers are
1, , , , , , , , , . [Let f(y) = ln(1 + y) – y = O(y2). We
have

and it can be shown that the limiting probability is h(1) = exp(∑n≥1 f(1/n))
= e−γ ≈ .56146 as n → ∞. Indeed, N. G. de Bruijn has established the
asymptotic formula limp→∞ anp = e−γ + e−γ/n + O(n−2 log n). [See D. H.
Lehmer, Acta Arith. 21 (1972), 379–388; D. H. Greene and D. E. Knuth,
Math. for the Analysis of Algorithms (Boston: Birkhäuser, 1981), §4.1.6.]
On the other hand the answers for 1 ≤ n ≤ 10 when p = 2 are smaller: 1, ,
, , , , , , , . A. Knopfmacher and R. Warlimont [Trans.

Amer. Math. Soc. 347 (1995), 2235–2243] have shown that for fixed p the
probability is cp +O(1/n), where cp = ∏m≥1 e−1/m(1+amp/pm), c2 ≈ .397.]

29. Let q1(x) and q2(x) be any two of the irreducible divisors of g(x). By
the Chinese remainder theorem (exercise 3), choosing a random
polynomial t(x) of degree < 2d is equivalent to choosing two random
polynomials t1(x) and t2(x) of degrees < d, where ti(x) = t(x) mod qi(x).
The gcd will be a proper factor if t1(x)(pd–1)/2 mod q1(x) = 1 and t2(x)
(pd–1)/2 mod q1(x) ≠ 1, or vice versa, and this condition holds for exactly
2((pd − 1)/2)((pd + 1)/2) = (p2d – 1)/2 choices of t1(x) and t2(x).

Notes: We are considering here only the behavior with respect to two
irreducible factors, but the true behavior is probably much better. Suppose
that each irreducible factor qi(x) has probability of dividing t(x)(pd–
1)/2 – 1 for each t(x), independent of the behavior for other qj(x) and t(x);
and assume that g(x) has r irreducible factors in all. Then if we encode

each qi(x) by a sequence of 0s and 1s according as qi(x) does or doesn’t

divide t(x)(pd−1)/2 – 1 for the successive t’s tried, we obtain a random
binary trie with r lieves (see Section 6.3). The cost associated with an
internal node of this trie, having m lieves as descendants, is O(m2(log p));
and the solution to the recurrence

, by exercise 5.2.2–36.
Hence the sum of costs in the given random trie—representing the
expected time to factor g(x) completely—is O(r2(log p)3) under this
plausible assumption. The plausible assumption becomes rigorously true
if we choose t(x) at random of degree < rd instead of restricting it to
degree < 2d.

30. Let T(x) = x + xp + ... + xpd−1 be the trace of x and let v(x) = T(t(x))
mod q(x). Since t(x)pd = t(x) in the field of polynomial remainders modulo
q(x), we have v(x)p = v(x) in that field; in other words, v(x) is one of the p
roots of the equation yp – y = 0. Hence v(x) is an integer.

It follows that , T(t(x)) – s) = gd(x). In particular,
when p = 2 we can argue as in exercise 29 that gcd(gd(x), T(t(x))) will be
a proper factor of gd(x) with probability ≥ when gd(x) has at least two
irreducible factors and t(x) is a random binary polynomial of degree < 2d.

[Note that T(t(x)) mod g(x) can be computed by starting with u(x) ←
t(x) and setting u(x) ← (t(x) + u(x)p) mod g(x) repeatedly, d − 1 times.
The method of this exercise is based on the polynomial factorization

, which holds for any p, while formula

(21) is based on the polynomial factorization xpd – x = x(x(pd−1)/2 + 1)
(x(pd−1)/2 – 1) for odd p.]

The trace was introduced by Richard Dedekind, Abhandlungen der
Königl. Gesellschaft der Wissenschaften zu Göttingen 29 (1882), 1–56.
The technique of calculating gcd(f(x), T(x) – s) to find factors of f(x) can
be traced to A. Arwin, Arkiv för Mat., Astr. och Fys. 14, 7 (1918), 1–46;
but his method was incomplete because he did not consider T(t(x)) for
t(x) ≠ x. A complete factorization algorithm using traces was devised
later by R. J. McEliece, Math. Comp. 23 (1969), 861–867; see also von

zur Gathen and Shoup, Computational Complexity 2 (1992), 187–224,
Algorithm 3.6, for asymptotically fast results.

Henri Cohen has observed that for p = 2 it suffices to test at most d
special cases t(x) = x, x3, . . . , x2d−1 when applying this method. One of
these choices of t(x) is guaranteed to split gd(x) whenever gd is reducible,
because we can obtain the effects of all polynomials t(x) of degree < 2d
from these special cases using the facts that T(t(x)p) ≡ T(t(x)) and
T(u(x)+t(x)) ≡ T(u(x))+T (t(x)) (modulo gd(x)). [A Course in
Computational Algebraic Number Theory (Springer, 1993), Algorithm
3.4.8.]

31. If α is an element of the field of pd elements, let d(α) be the degree of
α, namely the smallest exponent e such that αpe = α. Then consider the
polynomial

where qα(x) is an irreducible polynomial of degree d(α). As α runs through
all elements of the field, the corresponding qα(x) runs through every
irreducible polynomial of degree e dividing d, where every such
irreducible occurs exactly e times. We have (x + t)(pd−1)/2 mod qα(x) = 1 if

and only if (α + t)(pd−1)/2 = 1 in the field. If t is an integer, we have d(α + t)
= d(α), hence n(p, d) is d−1 times the number of elements α of degree d
such that α(pd−1)/2 = 1. Similarly, if t1 ≠ t2 we want to count the number of

elements of degree d such that (α + t1)(pd−1)/2 = (α + t2)(pd−1)/2, or

equivalently ((α + t1)/(α + t2))(pd−1)/2 = 1. As α runs through all the
elements of degree d, so does the quantity (α + t1)/(α + t2) = 1 + (t1 – t2)/(α
+ t2).

[We have , which
is about half the total number of irreducibles—exactly half, in fact, when
d is odd. This proves that gcd(gd(x), (x + t)(pd−1)/2 – 1) has a good chance
of finding factors of gd(x) when t is fixed and gd(x) is chosen at random;

but a randomized algorithm is supposed to work with guaranteed
probability for fixed gd(x) and random t, as in exercise 29.]

32. (a) Clearly xn − 1 = Πd\nΨd(x), since every complex nth root of unity is
a primitive dth root for some unique d\n. The second identity follows from
the first; and Ψn(x) has integer coefficients since it is expressed in terms of
products and quotients of monic polynomials with integer coefficients.

(b) The condition in the hint suffices to prove that f(x) = Ψn(x), so we
shall take the hint. When p does not divide n, we have xn − 1 ⊥ nxn−1

modulo p, hence xn − 1 is squarefree modulo p. Given f(x) and ζ as in the
hint, let g(x) be the irreducible factor of Ψn(x) such that g(ζ p) = 0. If g(x)
≠ f(x) then f(x) and g(x) are distinct factors of Ψn(x), hence they are
distinct factors of xn –1, hence they have no irreducible factors in common
modulo p. However, ζ is a root of g(xp), so gcd(f(x), g(xp)) ≠ 1 over the
integers, hence f(x) is a divisor of g(xp). By (5), f(x) is a divisor of g(x)p,
modulo p, contradicting the assumption that f(x) and g(x) have no
irreducible factors in common. Therefore f(x) = g(x). [The irreducibility of
Ψn(x) was first proved for prime n by C. F. Gauss in Disquisitiones
Arithmeticæ (Leipzig: 1801), Art. 341, and for general n by L. Kronecker,
J. de Math. Pures et Appliquées 19 (1854), 177–192.]

(c) Ψ1(x) = x − 1; and when p is prime, Ψp(x) = 1 + x + ... + xp−1. If n
> 1 is odd, it is not difficult to prove that Ψ2n(x) = Ψn(–x). If p divides n,
the second identity in (a) shows that Ψpn(x) = Ψn(xp). If p does not divide
n, we have Ψpn(x) = Ψn(xp)/Ψn(x). For nonprime n ≤ 15 we have Ψ4(x) =
x2 + 1, Ψ6(x) = x2 – x + 1, Ψ8(x) = x4 + 1, Ψ9(x) = x6 + x3 + 1, Ψ10(x) = x4 –
x3 + x2 – x + 1, Ψ12(x) = x4 – x2 + 1, Ψ14(x) = x6 – x5 + x4 – x3 + x2 – x + 1,
Ψ15(x) = x8 – x7 + x5 – x4 + x3 – x + 1. [The formula Ψpq(x) = (1 + xp + ... +
x(q−1)p)(x − 1)/(xq − 1) can be used to show that Ψpq(x) has all coefficients
±1 or 0 when p and q are prime; but the coefficients of Ψpqr(x) can be
arbitrarily large.]
33. False; we lose all pj with ej divisible by p. True if p > deg(u). [See
exercise 36.]

34. [D. Y. Y. Yun, Proc. ACM Symp. Symbolic and Algebraic Comp.
(1976), 26–35.] Set (t(x), v1(x), w1(x)) ← GCD(u(x), u′(x)). If t(x) = 1, set
e ← 1; otherwise set

 for i = 1, 2,
. . . , e − 1, until finding . Finally set ue(x) ← ve(x).

To prove the validity of this algorithm, we observe that it computes the
polynomials t(x) = u2(x)u3(x)2u4(x)3. . . , vi(x) = ui(x)ui+1(x)ui+2(x) . . . ,
and

We have t(x) ⊥ w1(x), since an irreducible factor of ui(x) divides all but
the ith term of w1(x), and it is relatively prime to that term. Furthermore we
clearly have ui(x) ⊥ vi+1(x).

[Although exercise 2(b) proves that most polynomials are squarefree,
nonsquarefree polynomials actually occur often in practice; hence this
method turns out to be quite important. See Paul S. Wang and Barry M.
Trager, SICOMP 8 (1979), 300–305, for suggestions on how to improve
the efficiency. Squarefree factorization modulo p is discussed by Bach
and Shallit, Algorithmic Number Theory 1 (MIT Press, 1996), answer to
exercise 7.27.]

35. We have , where

[Yun notes that the running time for squarefree factorization by the method
of exercise 34 is at most about twice the running time to calculate
gcd(u(x), u′(x)). Furthermore if we are given an arbitrary method for
discovering squarefree factorization, the method of this exercise leads to a
gcd procedure. (When u(x) and v(x) are squarefree, their gcd is simply
w2(x) where w(x) = u(x)v(x) = w1(x)w2(x)2; the polynomials uj(x), vj(x),

, and are all squarefree.) Hence the problem of converting a
primitive polynomial of degree n to its squarefree representation is
computationally equivalent to the problem of calculating the gcd of two
nth degree polynomials, in the sense of asymptotic worst-case running
time.]

36. Let Uj(x) be the value computed for “uj(x)” by the procedure of
exercise 34. If deg(U1) + 2 deg(U2) + ... = deg(u), then uj(x) = Uj(x) for all
j. But in general we will have e < p and Uj(x) = Πk≥0uj+pk(x) for 1 ≤ j < p.
To separate these factors further, we can calculate t(x)/(U2(x)U3(x)2. . .
Up−1(x)p−2) = Πj≥p uj(x)p⌊j/p⌋ = z(xp). After recursively finding the
squarefree representation of z(x) = (z1(x), z2(x), . . .), we will have zk(x) =
Π0≤j<p uj+pk(x), so we can calculate the individual ui(x) by the formula
gcd(Uj(x), zk(x)) = uj+pk(x) for 1 ≤ j < p. The polynomial upk(x) will be
left when the other factors of zk(x) have been removed.

Note: This procedure is fairly simple but the program is lengthy. If
one’s goal is to have a short program for complete factorization modulo p,
rather than an extremely efficient one, it is probably easiest to modify the
distinct-degree factorization routine so that it casts out gcd(xpd – x, u(x))
several times for the same value of d until the gcd is 1. In this case you
needn’t begin by calculating gcd(u(x), u′(x)) and removing multiple
factors as suggested in the text, since the polynomial xpd – x is squarefree.

37. The exact probability is Πj≥1(ajp/pj)k j/kj!, where kj is the number of di

that are equal to j. Since ajp/pj ≈ 1/j by exercise 4, we get the formula of
exercise 1.3.3–21.

Notes: This exercise says that if we fix the prime p and let the
polynomial u(x) be random, it will have a certain probability of splitting
in a given way modulo p. A much harder problem is to fix the polynomial
u(x) and to let p be “random”; it turns out that the same asymptotic result
holds for almost all u(x). G. Frobenius proved in 1880 that the integer
polynomial u(x) splits modulo p into factors of degrees d1, . . . , dr, when
p is a large prime chosen at random, with probability equal to the number
of permutations in the Galois group G of u(x) having cycle lengths {d1, . .
. , dr} divided by the total number of permutations in G. [If u(x) has
rational coefficients and distinct roots ξ1, . . . , ξn over the complex
numbers, its Galois group is the (unique) group G of permutations such
that the polynomial Πp(1)...p(n)∊G(z + ξp(1)y1 + ... + ξp(n)yn) = U(z, y1, . . . ,
yn) has rational coefficients and is irreducible over the rationals; see G.

Frobenius, Sitzungsberichte Königl. preuß. Akad. Wiss. (Berlin: 1896),
689–703. The linear mapping x ↦ xp is traditionally called the Frobenius
automorphism because of this famous paper.] Furthermore B. L. van der
Waerden proved in 1934 that almost all polynomials of degree n have the
set of all n! permutations as their Galois group [Math. Annalen 109
(1934), 13–16]. Therefore almost all fixed irreducible polynomials u(x)
will factor as we might expect them to, with respect to randomly chosen
large primes p. See also N. Chebotarev, Math. Annalen 95 (1926), for a
generalization of Frobenius’s theorem to conjugacy classes of the Galois
group.

38. The conditions imply that when |z| = 1 we have either |un−2zn− 2 + ... +
u0| < |un–1| – 1 ≤ |zn + un−1zn−1| or |un−3zn−3 + · · · + u0 | < un−2 − 1 ≤ |zn +
un−2zn−2|. Therefore by Rouché’s theorem [J. École Polytechnique 21, 37
(1858), 1–34], u(z) has at least n − 1 or n − 2 roots inside the circle |z| = 1.
If u(z) is reducible, it can be written v(z) w(z) where v and w are monic
integer polynomials. The products of the roots of v and of w are nonzero
integers, so each factor has a root of absolute value ≥ 1. Hence the only
possibility is that v and w both have exactly one such root and that un−1 = 0.
These roots must be real, since the complex conjugates are roots; hence
u(z) has a real root z0 with |z0| ≥ 1. But this cannot be, for if r = 1/z0 we
have 0 = |1 + un−2r2 + · · · + u0rn| ≥ 1 + un−2r2 − |un−3|r3 − · · · − |u0|rn > 1.
[O. Perron, Crelle 132 (1907), 288–307; for generalizations, see A.
Brauer, Amer. J. Math. 70 (1948), 423–432, 73 (1951), 717–720.]
39. First we prove the hint: Let u(x) = a(x − α1) . . . (x − αn) have integer
coefficients. The resultant of u(x) with the polynomial y −t(x) is a
determinant, so it is a polynomial rt(y) = adeg(t)(y − t(α1)) . . . (y − t(αn))
with integer coefficients (see exercise 4.6.1–12). If u(x) divides v(t(x))
then v(t(α1)) = 0, hence rt (y) has a factor in common with v(y). So if v is
irreducible, we have deg(u) = deg(rt) ≥ deg(v).

Given an irreducible polynomial u(x) for which a short proof of
irreducibility is desired, we may assume that u(x) is monic, by exercise
18, and that deg(u) ≥ 3. The idea is to show the existence of a polynomial
t(x) such that v(y) = rt(y) is irreducible by the criterion of exercise 38.

Then all factors of u(x) divide the polynomial v(t(x)), and this will prove
that u(x) is irreducible. The proof will be succinct if the coefficients of
t(x) are suitably small.

The polynomial v(y) = (y − β1) . . . (y − βn) can be shown to satisfy the
criterion of exercise 38 if n ≥ 3 and β1 . . . βn ≠ 0, and if the following
“smallness condition” holds: |βj | ≤ 1/(4n) except when j = n or when

 and |ℜβj | ≤ 1/(4n). The calculations are straightforward, using
the fact that |v0| + · · · + |vn | ≤ (1 + |β1|) . . . (1 + |βn|).

Let α1, . . ., αr be real and αr+1, . . ., αr+s be complex, where n = r + 2s
and for 1 ≤ j ≤ s. Consider the linear expressions Sj (a0, .
. .,an−1) defined to be for 1 ≤ j ≤ r + s and

 for r + s < j ≤ n. If 0 ≤ ai < b and
, we have |Sj (a1, . . .,an − 1| < bB. Thus if we

choose b > (16nB)n−1, there must be distinct vectors (a0, . . ., an′1) and
 such that

 for 1 ≤ j < n, since
there are bn vectors but at most (16nbB)n−1 < bn possible (n − 1)-tuples of
values. Let and βj = t(αj).
Then the smallness condition is satisfied. Furthermore βj ≠ 0; otherwise
t(x) would divide u(x). [J. Algorithms 2 (1981), 385–392.]

40. Given a candidate factor v(x) = xd + ad−1xd−1 + ... + a0, change each aj

to a rational fraction (modulo pe), with numerators and denominators ≤ B.
Then multiply by the least common denominator, and see if the resulting
polynomial divides u(x) over the integers. If not, no factor of u(x) with
coefficients bounded by B is congruent modulo pe to a multiple of v(x).
41. David Boyd notes that 4x8 + 4x6 + x4 + 4x2 + 4 = (2x4 + 4x3 + 5x2 + 4x
+ 2) × (2x4 – 4x3 + 5x2 – 4x + 2), and he has found examples of higher
degree to prove that c must be > 2 if it exists.

Section 4.6.3

1. xm, where m = 2⌊lg n⌋ is the highest power of 2 less than or equal to n.
2. Assume that x is input in register A, and n in location NN; the output is

in register X.

The running time is 21L + 16K + 8, where L = λ(n) is one less than the
number of bits in the binary representation of n, and K = ν(n) is the number
of 1-bits in that representation.

For the serial program, we may assume that n is small enough to fit in
an index register; otherwise serial exponentiation is out of the question.
The following program leaves the output in register A:

The running time for this program is 14N – 7; it is faster than the previous
program when n ≤ 7, slower when n ≥ 8.
3. The sequences of exponents are: (a) 1, 2, 3, 6, 7, 14, 15, 30, 60, 120,

121, 242, 243, 486, 487, 974, 975 [16 multiplications]; (b) 1, 2, 3, 4, 8, 12,
24, 36, 72, 108, 216, 324, 325, 650, 975 [14 multiplications]; (c) 1, 2, 3, 6,
12, 15, 30, 60, 120, 240, 243, 486, 972, 975 [13 multiplications]; (d) 1, 2,
3, 6, 12, 15, 30, 60, 75, 150, 300, 600, 900, 975 [13 multiplications]. [The
smallest possible number of multiplications is 12; this is obtainable by
combining the factor method with the binary method, since 975 = 15 · (26 +
1).]
4. (777777)8 = 218 – 1.
5.
T1. [Initialize.] Set LINKU[j] ← 0 for 0 ≤ j ≤ 2r, and set k ← 0,

LINKR[0] ← 1, LINKR[1] ← 0.
T2. [Change level.] (Now level k of the tree has been linked together

from left to right, starting at LINKR[0].) If k = r, the algorithm
terminates. Otherwise set n ← LINKR[0], m ← 0.

T3. [Prepare for n.] (Now n is a node on level k, and m points to the
rightmost node currently on level k + 1.) Set q ← 0, s ← n.

T4. [Already in tree?] (Now s is a node in the path from the root to n.)
If LINKU[n + s] ≠ 0, go to T6 (the value n + s is already in the tree).

T5. [Insert below n.] If q = 0, set m′ ← n + s. Then set LINKR[n + s]
← q, LINKU[n + s] ← n, q ← n + s.

T6. [Move up.] Set s ← LINKU[s]. If s ≠ 0, return to T4.
T7. [Attach group.] If q ≠ 0, set LINKR[m] ← q, m ← m′.
T8. [Move n.] Set n ← LINKR[n]. If n ≠ 0, return to T3.

T9. [End of level.] Set LINKR[m] ← 0, k ← k + 1, and return to T2.
6. Prove by induction that the path to the number 2e0 + 2e1 + ... + 2et, if e0

> e1 > ... > et ≥ 0, is 1, 2, 22, . . . , 2e0, 2e0 + 2e1, . . . , 2e0 + 2e1 + ... + 2et;
furthermore, the sequences of exponents on each level are in decreasing
lexicographic order.
7. The binary and factor methods require one more step to compute x2n

than xn; the power tree method requires at most one more step. Hence (a)
15 · 2k; (b) 33 · 2k; (c) 23 · 2k; k = 0, 1, 2, 3,
8. The power tree always includes the node 2m at one level below m,

unless it occurs at the same level or an earlier level; and it always includes
the node 2m + 1 at one level below 2m, unless it occurs at the same level
or an earlier level. [It is not true that 2m is a child of m in the power tree
for all m; the smallest example where this fails is m = 2138, which appears
on level 15, while 4276 appears elsewhere on level 16. In fact, 2m
sometimes occurs on the same level as m; the smallest example is m =
6029.]
9. Start with N ← n, Z ← x, and Yq ← 1 for 1 ≤ q < m, q odd; in general

we will have as the algorithm proceeds.
Assuming that N > 0, set k ← N mod m, N ← ⌊N/m⌋. Then if k = 0, set Z ←
Zm and repeat; otherwise if k = 2pq where q is odd, set Z ← Z2p, Yq ← Yq ·

Z, and if N > 0 set Z ← Z2e−p and repeat. Finally set Yk ← Yk · Yk+2 for k =
m – 3, m – 5, . . . , 1; the answer is Y1(Y3Y5 . . . Ym−1)2. (About m/2 of the
multiplications are by 1.)
10. By using the “PARENT” representation discussed in Section 2.3.3:
Make use of a table p[j], 1 ≤ j ≤ 100, such that p[1] = 0 and p[j] is the
number of the node just above j for j ≥ 2. (The fact that each node of this
tree has degree at most two has no effect on the efficiency of this
representation; it just makes the tree look prettier as an illustration.)
11. 1, 2, 3, 5, 10, 20, (23 or 40), 43; 1, 2, 4, 8, 9, 17, (26 or 34), 43; 1, 2,
4, 8, 9, 17, 34, (43 or 68), 77; 1, 2, 4, 5, 9, 18, 36, (41 or 72), 77. If either
of the last two paths were in the tree we would have no possibility for n =
43, since the tree must contain either 1, 2, 3, 5 or 1, 2, 4, 8, 9.
12. No such infinite tree can exist, since l(n) ≠ l*(n) for some n.

13. For Case 1, use a Type-1 chain followed by 2A+C + 2B+C + 2A + 2B; or
use the factor method. For Case 2, use a Type-2 chain followed by 2A+C+1

+ 2B+C + 2A + 2B. For Case 3, use a Type-5 chain followed by addition of
2A + 2A−1, or use the factor method. For Case 4, n = 135 · 2D, so we may
use the factor method.
14. (a) It is easy to verify that steps r − 1 and r – 2 are not both small, so
let us assume that step r − 1 is small and step r – 2 is not. If c = 1, then
λ(ar−1) = λ(ar–k), so k = 2; and since 4 ≤ ν(ar) = ν(ar−1) + ν(ar–k) – 1 ≤
ν(ar−1) + 1, we have ν(ar−1) ≥ 3, making r − 1 a star step (lest a0, a1, . . . ,
ar−3, ar−1 include only one small step). Then ar−1 = ar−2 + ar–q for some q,
and if we replace ar−2, ar−1, ar by ar−2, 2ar−2, 2ar−2 + ar–q = ar, we obtain
another counterexample chain in which step r is small; but this is
impossible. On the other hand, if c ≥ 2, then 4 ≤ ν(ar) ≤ ν(ar−1) + ν(ar–k) –
2 ≤ ν(ar−1); hence ν(ar−1) = 4, ν(ar–k) = 2, and c = 2. This leads readily to
an impossible situation by a consideration of the six types in the proof of
Theorem B.

(b) If λ(ar–k) < m − 1, we have c ≥ 3, so ν(ar–k) + ν(ar−1) ≥ 7 by (22);
therefore both ν(ar–k) and ν(ar−1) are ≥ 3. All small steps must be ≤ r – k,
and λ(ar–k) = m – k + 1. If k ≥ 4, we must have c = 4, k = 4, ν(ar−1) =
ν(ar−4) = 4; thus ar−1 ≥ 2m + 2m– 1 + 2m−2, and ar−1 must equal 2m + 2m−1 +
2m−2 + 2m−3; but ar−4 ≥ ar−1 now implies that ar−1 = 8ar−4. Thus k = 3 and
ar−1 > 2m + 2m−1. Since ar−2 < 2m and ar−3 < 2m−1, step r − 1 must be a
doubling; but step r – 2 is a nondoubling, since ar−1 ≠ 4ar−3. Furthermore,
since ν(ar−3) ≥ 3, r – 3 is a star step; and ar−2 = ar−3 + ar−5 would imply
that ar−5 = 2m−2, hence we must have ar−2 = ar−3 + ar−4. As in a similar
case treated in the text, the only possibility is now seen to be ar−4 = 2m−2 +
2m−3, ar−3 = 2m−2 + 2m−3 + 2d+1 + 2d, ar−1 = 2m + 2m−1 + 2d+2 + 2d+1, and
even this possibility is impossible.
15. Achim Flammenkamp [Diplomarbeit in Mathematics (Bielefeld
University, 1991), Part 1] has shown that the numbers n with λ(n) + 3 =
l(n) < l*(n) all have the form 2A + 2B + 2C + 2D + 2E where A > B > C > D
> E and B + E = C + D; moreover, they are described precisely by not

matching any of the following eight patterns where |ε| ≤ 1: 2A + 2A−3 + 2C +
2C−1 + 22C+2–A, 2A + 2A−1 + 2C + 2D + 2C+D+1–A, 2A + 2B + 22B–A+3 +
22B+2–A + 23B+5–2A, 2A + 2B + 22B–A+ε + 2D + 2B+D+ε–A, 2A + 2B + 2B−1 + 2D

+ 2D−1, 2A + 2B + 2B−2 + 2D + 2D−2 (A > B + 1), 2A + 2B + 2C + 22B+ε–A +
2B+C+ε–A, 2A + 2B + 2C + 2B+C+ε–A + 22C+ε–A.
16. lB(n) = λ(n) + ν(n) – 1; so if n = 2k, lB(n)/λ(n) = 1, but if n = 2k+1 – 1,
lB(n)/λ(n) = 2.
17. Let i1 < ... < it. Delete any intervals Ik that can be removed without
affecting the union I1 ∪ ... ∪ It. (The interval (jk . . ik] may be dropped out
if either jk+1 ≤ jk or j1 < j2 < ... and jk+1 ≤ ik−1.) Now combine overlapping
intervals (j1 . . i1], . . . , (jd . . id] into an interval (j′ . . i′] = (j1 . . id] and
note that

since each point of (j′ . . i′] is covered at most twice in (j1 . . i1] ∪ ... ∪ (jd .
. id].
18. Call f(m) a “nice” function if (log f(m))/m → 0 as m → ∞. A
polynomial in m is nice. The product of nice functions is nice. If g(m) → 0
and c is a positive constant, then cmg(m) is nice; also is nice, for by
Stirling’s approximation this is equivalent to saying that g(m) log(1/g(m))
→ 0.

Now replace each term of the summation by the maximum term that is
attained for any s, t, v. The total number of terms is nice, and so are

, and β2v, because (t + v)/m → 0. Finally,
, where (4e)t is nice. Replacing t by

its upper bound (1 – ε/2)m/λ(m) shows that (m2/t)t ≤ 2m(1–ε/2)f(m), where
f(m) is nice. Hence the entire sum is less than αm for large m if α = 21–η,

where .

19. (a) M ∩ N, M ∪ N, M ⊎ N, respectively; see Eqs. 4.5.2–(6), 4.5.2–(7).
(b) f(z)g(z), lcm(f(z), g(z)), gcd(f(z), g(z)). (For the same reasons as

(a), because the monic irreducible polynomials over the complex numbers
are precisely the polynomials z – ζ.)

(c) Commutative laws A ⊎ B = B ⊎ A, A ∪ B = B ∪ A, A ∩ B = B ∩ A.
Associative laws A ⊎ (B ⊎ C) = (A ⊎ B) ⊎ C, A ∪ (B ∪ C) = (A ∪ B) ∪ C, A
∩ (B ∩ C) = (A ∩ B) ∩ C. Distributive laws A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪
C), A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C), A ⊎ (B ∪ C) = (A ⊎ B) ∪ (A ⊎ C), A ⊎
(B ∩ C) = (A ⊎ B) ∩ (A ⊎ C). Idempotent laws A ∪ A = A, A ∩ A = A.
Absorption laws A ∪ (A ∩ B) = A, A ∩ (A ∪ B) = A, A ∩ (A ⊎ B) = A, A ∪ (A
⊎ B) = A ⊎ B. Identity and zero laws ⊎ A = A, ∪ A = A, ∩ A = , where
 is the empty multiset. Counting law A ⊎ B = (A ∪ B) ⊎ (A ∩ B). Further

properties analogous to those of sets come from the partial ordering
defined by the rule A ⊆ B if and only if A ∩ B = A (if and only if A ∪ B =
B).

Notes: Other common applications of multisets are zeros and poles of
meromorphic functions, invariants of matrices in canonical form,
invariants of finite Abelian groups, etc.; multisets can be useful in
combinatorial counting arguments and in the development of measure
theory. The terminal strings of a noncircular context-free grammar form a
multiset that is a set if and only if the grammar is unambiguous. The
author’s paper in Theoretical Studies in Computer Science, edited by J.
D. Ullman (Academic Press, 1992), 1–13, discusses further applications
to context-free grammars, and introduces the operation A B, where each
element that occurs a times in A and b times in B occurs ab times in A B.

Although multisets appear frequently in mathematics, they often must be
treated rather clumsily because there is currently no standard way to treat
sets with repeated elements. Several mathematicians have voiced their
belief that the lack of adequate terminology and notation for this common
concept has been a definite handicap to the development of mathematics.
(A multiset is, of course, formally equivalent to a mapping from a set into
the nonnegative integers, but this formal equivalence is of little or no
practical value for creative mathematical reasoning.) The author
discussed this matter with many people during the 1960s in an attempt to
find a good remedy. Some of the names suggested for the concept were
list, bunch, bag, heap, sample, weighted set, collection, suite; but these
words either conflicted with present terminology, had an improper
connotation, or were too much of a mouthful to say and to write
conveniently. Finally it became clear that such an important concept

deserves a name of its own, and the word “multiset” was coined by N. G.
de Bruijn. His suggestion was widely adopted during the 1970s, and it is
now standard terminology.

The notation “A⊎B” has been selected by the author to avoid conflict
with existing notations and to stress the analogy with set union. It would
not be as desirable to use “A+B” for this purpose, since algebraists have
found that A+B is a good notation for the multiset {α + β | α ∊ A and β ∊
B}. If A is a multiset of nonnegative integers, let G(z) = ∑n∊A zn be a
generating function corresponding to A. (Generating functions with
nonnegative integer coefficients obviously correspond one-to-one with
multisets of nonnegative integers.) If G(z) corresponds to A and H(z) to B,
then G(z) + H(z) corresponds to A ⊎ B and G(z)H(z) corresponds to A +
B. If we form “Dirichlet” generating functions g(z) = ∑n∊A 1/nz, h(z) =
∑n∊B 1/nz, then the product g(z)h(z) corresponds to the multiset product
AB.
20. Type 3: (S0, . . . , Sr) = (M00, . . . , Mr0) = ({0}, . . . , {A}, {A−1, A},
{A−1, A, A}, {A − 1, A − 1, A, A, A}, . . . , {A + C – 3, A + C – 3, A + C – 2,
A + C – 2, A + C – 2}). Type 5: (M00, . . . , Mr0) = ({0}, . . . , {A}, {A − 1,
A}, . . . , {A + C − 1, A + C}, {A + C − 1, A + C − 1, A + C}, . . . , {A + C +
D − 1, A + C + D − 1, A + C + D}); (M01, . . . , Mr1) = (, . . . , , , . . . , ,
{A+C –2}, . . . , {A+C +D−2}), Si = Mi0 ⊎ Mi1.

21. For example, let u = 28q+5, x = (2(q+1)u – 1)/(2u – 1) = 2qu + ... + 2u +
1, y = 2(q+1)u + 1. Then xy = (22(q+1)u – 1)/(2u – 1). If n = 24(q+1)u + xy, we
have l(n) ≤ 4(q + 1)u + q + 2 by Theorem F, but l*(n) = 4(q + 1)u + 2q + 2
by Theorem H.
22. Underline everything except the u − 1 insertions used in the calculation
of x.
23. Theorem G (everything underlined).
24. Use the numbers (Bai – 1)/(B − 1), 0 ≤ i ≤ r, underlined when ai is
underlined; and ckBi−1(Bbj – 1)/(B − 1) for 0 ≤ j < t, 0 < i ≤ bj+1 –bj, 1 ≤ k
≤ l0(B), underlined when ck is underlined, where c0, c1, . . . is a minimum
length l0-chain for B. To prove the second inequality, let B = 2m and use

(3). (The second inequality is rarely, if ever, an improvement on Theorem
G.)
25. We may assume that dk = 1. Use the rule R Ak−1 . . . A1, where Aj =
“XR” if dj = 1, Aj = “R” otherwise, and where “R” means take the square
root, “X” means multiply by x. For example, if y = (.1101101)2, the rule is
R R XR XR R XR XR. (There exist binary square-root extraction
algorithms suitable for computer hardware, requiring an execution time
comparable to that of division; computers with such hardware could
therefore calculate more general fractional powers using the technique in
this exercise.)
26. If we know the pair (Fk, Fk–1), then we have (Fk+1, Fk) = (Fk + Fk−1,
Fk) and ; so a binary method
can be used to calculate (Fn, Fn–1), using O(log n) arithmetic operations.
Perhaps better is to use the pair of values (Fk, Lk), where Lk = Fk−1 + Fk+1
(see exercise 4.5.4–15); then we have (Fk+1, Lk+1) = ((Fk + Lk), (5Fk +
Lk)), .

For the general linear recurrence xn = a1xn−1 + ... + adxn–d, we can
compute xn in O(d3 log n) arithmetic operations by computing the nth
power of an appropriate d × d matrix. [This observation is due to J. C. P.
Miller and D. J. Spencer Brown, Comp. J. 9 (1966), 188–190.] In fact, as
Richard Brent has observed, the number of operations can be reduced to
O(d2 log n), or even to O(d log d log n) using exercise 4.7–6, if we first
compute xn mod (xd – a1xd−1 – ... – ad) and then replace xj by xj.

27. The smallest n requiring s small steps must be c(r) for some r. For if
c(r) < n < c(r +1) we have l(n)–λ(n) ≤ r –λ(c(r)) = l(c(r))–λ(c(r)). The
answers for 1 ≤ s ≤ 8 are therefore 3, 7, 29, 127, 1903, 65131, 4169527,
994660991.
28. (a) x▽y = x | y | (x + y), where “|” is bitwise “or”, see exercise 4.6.2–
26; clearly ν(x▽y) ≤ ν(x | y) + ν(x & y) = ν(x) + ν(y). (b) Note first that
Ai−1/2di−1 ⊆ Ai/2di for 1 ≤ i ≤ r. Secondly, note that dj = di−1 in a
nondoubling; for otherwise ai−1 ≥ 2aj ≥ aj + ak = ai. Hence Aj ⊆ Ai–1 and
Ak ⊆ Ai–1/2dj–dk. (c) An easy induction on i, except that close steps need

closer attention. Let us say that m has property P (α) if the 1s in its binary
representation all appear in consecutive blocks of ≥ α in a row. If m and m′
have P (α), so does m▽m′; if m has P (α) then ρ(m) has P (α + δ). Hence Bi
has P (1 + δci). Finally if m has P (α) then ν(ρ(m)) ≤ (α + δ)ν(m)/α; for
ν(m) = ν1 + ... +νq, where each block size νj is ≥ α, hence ν(ρ(m)) ≤ (ν1
+δ)+ ... +(νq +δ) ≤ (1+δ/α)ν1 + ... +(1+δ/α)νq. (d) Let f = br +cr be the
number of nondoublings and s the number of small steps. If f ≥ 3.271 lg
ν(n) we have s ≥ lg ν(n) as desired, by (16). Otherwise we have ai ≤ (1 +

2−δ)bi 2
ci+di for 0 ≤ i ≤ r, hence n ≤ ((1 + 2−δ)/2)br 2r, and r ≥ lg n + br – br

lg(1 + 2−δ) ≥ lg n + lg ν(n) – lg(1 + δcr) – br lg(1 + 2−δ). Let δ = ⌈lg(f +
1)⌉; then ln(1 + 2−δ) ≤ ln(1 + 1/(f + 1)) ≤ 1/(f + 1) ≤ δ/(1 + δf), and it
follows that lg(1 + δx) + (f – x) lg(1 + 2−δ) ≤ lg(1 + δf) for 0 ≤ x ≤ f.
Hence finally l(n) ≥ lg n + lg ν(n) – lg(1 + (3.271 lg ν(n))⌈lg(1 + 3.271 lg
ν(n))⌉). [Theoretical Comp. Sci. 1 (1975), 1–12.]
29. [Canadian J. Math. 21 (1969), 675–683. Schönhage refined the
method of exercise 28 to prove that l(n) ≥ lg n + lg ν(n) – 2.13. Can the
remaining gap be closed?]
30. n = 31 is the smallest example; l(31) = 7, but 1, 2, 4, 8, 16, 32, 31 is an
addition-subtraction chain of length 6. [After proving Theorem E, Erd s
stated that the same result holds also for addition-subtraction chains.
Schönhage has extended the lower bound of exercise 28 to addition-
subtraction chains, with ν(n) replaced by (n) as defined in exercise 4.1–
34. A generalized right-to-left binary method for exponentiation, which
uses λ(n)+ (n)–1 multiplications when both x and x− 1 are given, can be
based on the representation αn of that exercise.]
32. See Discrete Math. 23 (1978), 115–119. [This cost model corresponds
to multiplication of large numbers by a classical method like Algorithm
4.3.1M. Empirical results with a more general model in which the cost is
(ajak)β/2 have been obtained by D. P. McCarthy, Math. Comp. 46 (1986),
603–608; this model comes closer to the “fast multiplication” methods of
Section 4.3.3, when two n-bit numbers are multiplied in O(nβ) steps, but
the cost function would actually be more appropriate (see exercise
4.3.3–13). H. Zantema has analyzed the analogous problem when the cost

of step i is aj + ak instead of ajak; see J. Algorithms 12 (1991), 281–307.
In this case the optimum chains have total cost . Furthermore
the optimum additive cost when n is odd is at least , with equality
if and only if n can be written as a product of numbers of the form 2k + 1.]
33. Eight; there are four ways to compute 39 = 12 + 12 + 12 + 3 and two
ways to compute 79 = 39 + 39 + 1.
34. The statement is true. The labels in the reduced graph of the binary
chain are ⌊n/2k⌋ for k = e0, . . . , 0; they are 1, 2, . . . , 2e0, n in the dual
graph. [Similarly, the right-to-left m-ary method of exercise 9 is the dual of
the left-to-right method.]
35. 2t are equivalent to the binary chain; it would be 2t−1 if e0 = e1 + 1. The
number of chains equivalent to the scheme of Algorithm A is the number of
ways to compute the sum of t + 2 numbers of which two are identical. This
is , where fm is the number of ways to compute the sum of m +
1 distinct numbers. When we take commutativity into account, we see that
fm is 2−m times (m + 1)! times the number of binary trees on m nodes, so fm
= (2m − 1)(2m – 3) . . . 1.
36. First form the 2m – m − 1 products , for all sequences of
exponents such that 0 ≤ ek ≤ 1 and e1 + ... + em ≥ 2. Let nk = (dkλ . . .
dk1dk0)2; to complete the calculation, take , then square and
multiply by , for i = λ – 1, . . . , 1, 0. [Straus showed in AMM
71 (1964), 807–808, that 2λ(n) may be replaced by (1+∊)λ(n) for any ∊ >
0, by generalizing this binary method to 2k-ary as in Theorem D.]
37. (Solution by D. J. Bernstein.) Let n = nm. First compute 2e for 1 ≤ e ≤
λ(n), then compute each nj in λ(n)/λλ(n) + O(λ(n)λλλ(n)/λλ(n)2) further
steps by the following variant of the 2k-ary method, where k = ⌊lg lg n – 2
lg lg lg n⌋: For all odd q < 2k, compute yq = ∑{2kt +e | dt = 2eq} where nj
= (. . . d1d0)2k, in at most steps; then use the method in the final
stages of answer 9 to compute nj = ∑qyq with at most 2k – 1 further
additions.

[A generalization of Theorem E gives the corresponding lower bound.
Reference: SICOMP 5 (1976), 100–103.]
38. The following construction due to D. J. Newman provides the best
upper bound currently known: Let k = p1 . . . pr be the product of the first r
primes. Compute k and all quadratic residues mod k in O(2−r k log k) steps
(because there are approximately 2−r k quadratic residues). Also compute
all multiples of k that are ≤ m2, in about m2/k further steps. Now m
additions suffice to compute 12, 22, . . . , m2. We have k = exp(pr +
O(pr/(log pr)1000)) where pr is given by the formula in the answer to
exercise 4.5.4–36; see, for example, Greene and Knuth, Math. for the
Analysis of Algorithms (Boston: Birkhäuser, 1981), §4.1.6. So by choosing

it follows that l(12, . . . , m2) = m + O(m · exp(–(ln 2 – ∊) ln m/ln ln m)).

On the other hand, D. Dobkin and R. Lipton have shown that, for any ∊
> 0, l(12, . . . , m2) > m + m2/3–∊ when m is sufficiently large [SICOMP 9
(1980), 121–125].
39. The quantity l([n1, n2, . . . , nm]) is the minimum of arcs–vertices+m
taken over all directed graphs having m vertices sj whose in-degree is zero
and one vertex t whose out-degree is zero, where there are exactly nj
oriented paths from sj to t for 1 ≤ j ≤ m. The quantity l(n1, n2, . . . , nm) is
the minimum of arcs – vertices + 1 taken over all directed graphs having
one vertex s whose in-degree is zero and m vertices tj whose out-degree is
zero, where there are exactly nj oriented paths from s to tj for 1 ≤ j ≤ m.
These problems are dual to each other, if we change the direction of all the
arcs. [See J. Algorithms 2 (1981), 13–21.]

Note: C. H. Papadimitriou has observed that this is a special case of a
much more general theorem. Let N = (nij) be an m × p matrix of
nonnegative integers having no row or column entirely zero. We can
define l(N) to be the minimum number of multiplications needed to
compute the set of monomials . Now l(N)
is also the minimum of arcs – vertices + m taken over all directed graphs
having m vertices si whose in-degree is zero and p vertices tj whose out-

degree is zero, where there are exactly nij oriented paths from si to tj for
each i and j. By duality we have l(N) = l(NT) + m – p. [Bulletin of the
EATCS 13 (February 1981), 2–3.]

N. Pippenger has considerably extended the results of exercises 36 and
37. For example, if L(m, p, n) is the maximum of l(N) taken over all m × p
matrices N of nonnegative integers nij ≤ n, he showed that L(m, p, n) =
min(m, p) lg n + H/ lg H + O(m + p + H(log log H)1/2(log H)−3/2), where
H = mp lg(n + 1). [See SICOMP 9 (1980), 230–250.]
40. By exercise 39, it suffices to show that l(m1n1 + ... + mtnt) ≤ l(m1, . . . ,
mt) + l([n1, . . . , nt]). But this is clear, since we can first form {xm1 , . . . ,
xmt} and then compute the monomial (xm1)n1. . . (xmt)nt.

Note: One strong way to state Olivos’s theorem is that if a0, . . . , ar and
b0, . . . , bs are any addition chains, then l(∑cijaibj) ≤ r + s + ∑ cij – 1 for
any (r + 1) × (s + 1) matrix of nonnegative integers cij.

41. [SICOMP 10 (1981), 638–646.] The stated formula can be proved
whenever A ≥ 9m2. Since this is a polynomial in m, and since the problem
of finding a minimum vertex cover is NP-hard (see Section 7.9), the
problem of computing l(n1, . . . , nm) is NP-complete. [It is unknown
whether or not the problem of computing l(n) is NP-complete. But it seems
plausible that an optimum chain for, say, would entail an
optimum chain for {n1, . . . , nm}, when A is sufficiently large.]

42. The condition fails at 128 (and in the dual 1, 2, . . . , 16384, 16385,
16401, 32768, . . . at 32768). Only two reduced digraphs of cost 27 exist;
hence l0(5784689) = 28. Furthermore, Clift’s programs proved that l0(n) =
l(n) for all smaller values of n.

Section 4.6.4
1. Set y ← x2, then compute ((. . . (u2n+1y + u2n−1)y + ...)y + u1)x.
2. Replacing x in (2) by the polynomial x + x0 leads to the following

procedure:
G1. Do step G2 for k = n, n − 1, . . . , 0 (in this order), and stop.

G2. Set vk ← uk, and then set vj ← vj + x0vj+1 for j = k, k + 1, . . . , n −
1. (When k = n, this step simply sets vn ← un.)

The computations turn out to be identical to those in H1 and H2, but
performed in a different order. (This process was Newton’s original
motivation for using scheme (2).)
3. The coefficient of xk is a polynomial in y that may be evaluated by

Horner’s rule: (. . . (un,0x+(un−1,1y +un−1,0))x+ ...)x+((. . . (u0,ny +u0,n–1)y
+...)y +u0,0). [For a “homogeneous” polynomial, such as unxn +un−1xn−1y +
... + u1xyn−1 +u0yn, another scheme is more efficient: If 0 < |x| ≤ |y|, first
divide x by y, evaluate a polynomial in x/y, then multiply by yn.]
4. Rule (2) involves 4n or 3n real multiplications and 4n or 7n real

additions; (3) is worse, it takes 4n + 2 or 4n + 1 multiplications, 4n + 2 or
4n + 5 additions.
5. One multiplication to compute x2; ⌊n/2⌋ multiplications and ⌊n/2⌋

additions to evaluate the first line; ⌈n/2⌉ multiplications and ⌈n/2⌉ – 1
additions to evaluate the second line; and one addition to add the two lines
together. Total: n+1 multiplications and n additions.
6. J1. Compute and store the values .
J2. Set for 0 ≤ j ≤ n.
J3. For k = 0, 1, . . . , n − 1, set vj ← vj + vj+1 for j = n − 1, . . . , k + 1,

k.
J4. Set for 0 ≤ j ≤ n.

There are (n2 +n)/2 additions, n+⌈n/2⌉–1 multiplications, n divisions.
Another multiplication and division can be saved by treating vn and v0 as
special cases. Reference: SIGACT News 7, 3 (Summer 1975), 32–34.
7. Let xj = x0 + jh, and consider (42) and (44). Set yj ← u(xj) for 0 ≤ j ≤

n. For k = 1, 2, . . . , n (in this order), set yj ← yj – yj–1 for j = n, n − 1, . . .
, k (in this order). Now set βj ← yj for all j.

However, rounding errors will accumulate as explained in the text,
even if the operations of (5) are done with perfect accuracy. A better way

to do the initialization, when (5) is performed with fixed point arithmetic,
is to choose β0, . . . , βn so that

where |∊0|, |∊1|, . . . , |∊n| are as small as possible. [H. Hassler, Proc. 12th
Spring Conf. Computer Graphics (Bratislava: Comenius University,
1996), 55–66.]
8. See (43).
9. [Combinatorial Mathematics (Buffalo: Math. Assoc. of America,

1963), 26–28.] This formula can be regarded as an application of the
principle of inclusion and exclusion (Section 1.3.3), since the sum of the
terms for n – ∊1 – ... – ∊n = k is the sum of all x1j1x2j2 . . . xnjn for which k
values of the ji do not appear. A direct proof can be given by observing that
the coefficient of x1j1 . . . xnjn is

if the j’s are distinct, this equals unity, but if j1, . . . , jn ≠ k then it is zero,
since the terms for ∊k = 0 cancel the terms for ∊k = 1.

To evaluate the sum efficiently, we can start with ∊1 = 1, ∊2 = ... = ∊n =
0, and we can then proceed through all combinations of the ∊’s in such a
way that only one ∊ changes from one term to the next. (See “Gray binary
code” in Section 7.2.1.1.) The first term costs n − 1 multiplications; the
subsequent 2n – 2 terms each involve n additions, then n − 1
multiplications, then one more addition. Total: (2n – 1)(n − 1)
multiplications, and (2n – 2)(n + 1) additions. Only n + 1 temporary
storage locations are needed, one for the main partial sum and one for
each factor of the current product.
10. multiplications and

 additions. This is approximately

half as many arithmetic operations as the method of exercise 9, although it
requires a more complicated program to control the sequence.
Approximately temporary storage locations must be
used, and this grows exponentially large (on the order of).

The method in this exercise is equivalent to the unusual matrix
factorization of the permanent function given by Jurkat and Ryser in J.
Algebra 3 (1966), 1–27. It may also be regarded as an application of (39)
and (40), in an appropriate sense.
11. Efficient methods are known for computing an approximate value, if the
matrix is sufficiently dense; see A. Sinclair, Algorithms for Random
Generation and Counting (Boston: Birkhäuser, 1993). But this problem
asks for the exact value. There may be a way to evaluate the permanent
with O(cn) operations for some c < 2.
12. Here is a brief summary of progress on this famous research problem:
J. Hopcroft and L. R. Kerr proved, among other things, that seven
multiplications are necessary in 2 × 2 matrix multiplication modulo 2
[SIAM J. Appl. Math. 20 (1971), 30–36]. R. L. Probert showed that all 7-
multiplication schemes, in which each multiplication takes a linear
combination of elements from one matrix and multiplies by a linear
combination of elements from the other, must have at least 15 additions
[SICOMP 5 (1976), 187–203]. The tensor rank of 2 × 2 matrix
multiplication is 7 over every field [V. Y. Pan, J. Algorithms 2 (1981),
301–310]; the rank of T(2, 3, 2), the tensor for the product of a 2 × 3 matrix
by a 3 × 2 matrix, is 11 [V. B. Alekseyev, J. Algorithms 6 (1985), 71–85].
For n × n matrix multiplication, the best upper bound known when n = 3 is
due to J. D. Laderman [Bull. Amer. Math. Soc. 82 (1976), 126–128], who
showed that 23 noncommutative multiplications suffice. His construction
has been generalized by Ondrej Sýkora, who exhibited a method requiring
n3 – (n − 1)2 noncommutative multiplications and n3 – n2 + 11(n − 1)2

additions; this result also reduces to (36) when n = 2 [Lecture Notes in
Comp. Sci. 53 (1977), 504–512]. For n = 5, the current record is 100
noncommutative multiplications [O. M. Makarov, USSR Comp. Math. and
Math. Phys. 27, 1 (1987), 205–207]. The best lower bound known so far
is due to Markus Bläser, who showed that 2n2 + n – 3 nonscalar
multiplications are necessary for n ≥ 2, and mn + ns + m – n + s – 3 in the

m × n × s case for n ≥ 2 and s ≥ 2 [Computational Complexity 8 (1999),
203–226]. If all calculations must be done without division, slightly better
lower bounds were obtained by N. H. Bshouty [SICOMP 18 (1989), 759–
765], who proved that m × n by n × s matrix multiplication mod 2 requires
at least
mod j multiplications when n ≥ s ≥ j ≥ 1; setting m = n = s and j ≈ lg n
gives .

The best upper bounds known for large n are discussed in the text,
following (36).
13. By summing geometric series, we find that F(t1, . . . , tn) equals

The inverse transform times m1 . . . mn can be found by doing a regular
transform and interchanging tj with mj – tj when tj ≠ 0; see exercise 4.3.3–
9.

[If we regard F(t1, . . . , tn) as the coefficient of in a
multivariate polynomial, the discrete Fourier transform amounts to
evaluation of this polynomial at roots of unity, and the inverse transform
amounts to finding the interpolating polynomial.]
14. Let m1 = ... = mn = 2, F(t1, t2, . . . , tn) = F(2n− 1tn + ... + 2t2 + t1), and
f(s1, s2, . . . , sn) = f(2n−1s1 + 2n−2s2 + ... + sn); note the reversal between
t’s and s’s. Also let gk(sk, . . . , sn, tk) be ω raised to the 2k−1tk(sn + 2sn−1 +
... + 2n–ksk) power. Replace fk(sn−k+1, . . . , sn, t1, . . . , tn–k) by fk(t1, . . . ,
tn–k, sn–k+1, . . . , sn) in (40) if you prefer to work in situ.

At each iteration we essentially take 2n−1 pairs of complex numbers (α,
β) and replace them by (α+ζβ, α–ζβ), where ζ is a suitable power of ω,
hence ζ = cos θ+i sin θ for some θ. If we take advantage of simplifications
when ζ = ±1 or ±i, the total work comes to ((n − 3) · 2n−1 + 2) complex
multiplications and n · 2n complex additions; the techniques of exercise
41 can be used to reduce the real multiplications and additions used to
implement these complex operations.

The number of complex multiplications can be reduced about 25
percent without changing the number of additions by combining passes k

and k + 1 for k = 1, 3, . . . ; this means that 2n−2 quadruples (α, β, γ, δ) are
being replaced by

The total number of complex multiplications when n is even is thereby
reduced to (3n – 2)2n−3 − 3 ⌊2n−1/3⌋.

These calculations assume that the given numbers F(t) are complex. If
the F(t) are real, then f(s) is the complex conjugate of f(2n−s), so we can
avoid the redundancy by computing only the 2n independent real numbers
f(0), ℜf(1), . . .,ℜf(2n−1 − 1), f(2n−1), ℑf(1), . . ., ℑf(2n−1 − 1). The entire
calculation in this case can be done by working with 2n real values, using
the fact that fk(sn−k+1, . . ., sn, t1, . . ., tn−k) will be the complex conjugate
of when (s1. . . sn)2 +

 (modulo 2n). About half as many multiplications and
additions are needed as in the complex case.

[The fast Fourier transform algorithm was discovered by C. F. Gauss in
1805 and independently rediscovered many times since, most notably by
J. W. Cooley and J. W. Tukey, Math. Comp. 19 (1965), 297–301. Its
interesting history has been traced by J. W. Cooley, P. A. W. Lewis, and P.
D. Welch, Proc. IEEE 55 (1967), 1675–1677; M. T. Heideman, D. H.
Johnson, and C. S. Burrus, IEEE ASSP Magazine 1, 4 (October 1984),
14–21. Details concerning its use have been discussed by hundreds of
authors, admirably summarized by Charles Van Loan, Computational
Frameworks for the Fast Fourier Transform (Philadelphia: SIAM,
1992). For a survey of fast Fourier transforms on finite groups, see M.
Clausen and U. Baum, Fast Fourier Transforms (Mannheim:
Bibliographisches Institut Wissenschaftsverlag, 1993).]
15. (a) The hint follows by integration and induction. Let f(n)(θ) take on all
values between A and B inclusive, as θ varies from min(x0, . . . , xn) to
max(x0, . . . , xn). Replacing f(n) by each of these bounds, in the stated
integral, yields A/n! ≤ f(x0, . . . , xn) ≤ B/n!. (b) It suffices to prove this for
j = n. Let f be Newton’s interpolation polynomial, then f(n) is the constant
n! αn. [See The Mathematical Papers of Isaac Newton, edited by D. T.
Whiteside, 4 (1971), 36–51, 70–73.]

16. Carry out the multiplications and additions of (43) as operations on
polynomials. (The special case x0 = x1 = ... = xn is considered in exercise
2. We have used this method in step T8 of Algorithm 4.3.3T.)
17. For example, when n = 5 we have

independent of the value of h.
18. α0 = (u3/u4 + 1), β = u2/u4 – α0(α0 – 1), α1 = α0β – u1/u4, α2 = β – 2α1,
α3 = u0/u4 – α1(α1 + α2), α4 = u4.

19. Since α5 is the leading coefficient, we may assume without loss of
generality that u(x) is monic (namely that u5 = 1). Then α0 is a root of the
equation 40z3 – 24u4z2 + ; this equation
always has at least one real root, and it may have three. Once α0 is
determined, we have ,

,
.

For the given polynomial we are to solve the cubic equation 40z3 –
120z2 + 80z = 0; this leads to three solutions (α0, α1, α2, α3, α4, α5) = (0, –
10, 13, 5, –5, 1), (1, –20, 68, 1, 11, 1), (2, –10, 13, –3, 27, 1).
20.

21. z = (x + 1)x – 2, w = (x + 5)z + 9, u(x) = (w + z – 8)w – 8; or z = (x +
9)x + 26, w = (x − 3)z + 73, u(x) = (w + z – 24)w − 12.
22. α6 = 1, α0 = –1, α1 = 1, β1 = –2, β2 = –2, β3 = –2, β4 = 1, α3 = –4, α2 =
0, α4 = 4, α5 = –2. We form z = (x−1)x+1, w = z+x, and u(x) =
((z−x−4)w+4)z−2. Here one of the seven additions can be saved if we
compute w = x2 + 1, z = w – x.

23. (a) We may use induction on n; the result is trivial if n < 2. If f(0) = 0,
then the result is true for the polynomial f(z)/z, so it holds for f(z). If f(iy) =
0 for some real y ≠ 0, then g(±iy) = h(±iy) = 0; since the result is true for
f(z)/(z2 + y2), it holds also for f(z). Therefore we may assume that f(z) has
no roots whose real part is zero. Now the net number of times the given
path circles the origin is the number of roots of f(z) inside the region,
which is at most 1. When R is large, the path f(Reit) for π/2 ≤ t ≤ 3π/2 will
circle the origin clockwise approximately n/2 times; so the path f(it) for –
R ≤ t ≤ R must go counterclockwise around the origin at least n/2 – 1
times. For n even, this implies that f(it) crosses the imaginary axis at least
n−2 times, and the real axis at least n – 3 times; for n odd, f(it) crosses the
real axis at least n – 2 times and the imaginary axis at least n – 3 times.
These are roots respectively of g(it) = 0, h(it) = 0.

(b) If not, g or h would have a root of the form a + bi with a ≠ 0 and b
≠ 0. But this would imply the existence of at least three other such roots,
namely a – bi and –a ± bi, while g(z) and h(z) have at most n roots.
24. The roots of u are –7, –3 ± i, –2 ± i, and –1; permissible values of c
are 2 and 4 (but not 3, since c = 3 makes the sum of the roots equal to
zero). Case 1: c = 2. Then p(x) = (x + 5)(x2 + 2x + 2)(x2 + 1)(x − 1) = x6 +
6x5 + 6x4 + 4x3 – 5x2 – 2x − 10; q(x) = 6x2 + 4x – 2 = 6(x + 1) . Let
α2 = – 1, ; p1(x) = x4 + 6x3 + 5x2 – 2x − 10 =

; α0 = 6, , . Case 2: c
= 4. A similar analysis gives α2 = 9, α1 = –3, α0 = –6, β0 = 12, β1 = –26.
25. β1 = α2, β2 = 2α1, β3 = α7, β4 = α6, β5 = β6 = 0, β7 = α1, β8 = 0, β9 = 2α1–
α8.

26. (a) λ1 = α1 × λ0, λ2 = α2 + λ1, λ3 = λ2 × λ0, λ4 = α3 + λ3, λ5 = λ4 × λ0, λ6
= α4 + λ5. (b) κ1 = 1 + β1x, κ2 = 1 + β2κ1x, κ3 = 1 + β3κ2x, u(x) = β4κ3 =
β1β2β3β4x3 + β2β3β4x2 + β3β4x + β4. (c) If any coefficient is zero, the
coefficient of x3 must also be zero in (b), while (a) yields an arbitrary
polynomial α1x3 +α2x2 +α3x+α4 of degree ≤ 3.
27. Otherwise there would be a nonzero polynomial f(qn, . . . , q1, q0) with
integer coefficients such that qn · f(qn, . . . , q1, q0) = 0 for all sets (qn, . . . ,

q0) of real numbers. This cannot happen, since it is easy to prove by
induction on n that a nonzero polynomial always takes on some nonzero
value. (See exercise 4.6.1–16. However, this result is false for finite fields
in place of the real numbers.)
28. The indeterminate quantities α1, . . . , αs form an algebraic basis for the
polynomial domain Q[α1, . . . , αs], where Q is the field of rational
numbers. Since s + 1 is greater than the number of elements in a basis, the
polynomials fj(α1, . . . , αs) are algebraically dependent; this means that
there is a nonzero polynomial g with rational coefficients such that g(f0(α1,
. . . , αs), . . . , fs(α1, . . . , αs)) is identically zero.

29. Given j0, . . . , jt ∊ {0, 1, . . . , n}, there are nonzero polynomials with
integer coefficients such that gj(qj0, . . . , qjt) = 0 for all (qn, . . . , q0) in Rj,
1 ≤ j ≤ m. The product g1g2 . . . gm is therefore zero for all (qn, . . . , q0) in
R1 ∪ ... ∪ Rm.
30. Starting with the construction in Theorem M, we will prove that mp +
(1–δ0mc

) of the β’s may effectively be eliminated: If μi corresponds to a
parameter multiplication, we have μi = β2i−1 × (T2i + β2i); add cβ2i−1β2i to
each βj for which cμi occurs in Tj, and replace β2i by zero. This removes
one parameter for each parameter multiplication. If μi is the first chain
multiplication, then μi = (γ1x + θ1 + β2i−1) × (γ2x + θ2 + β2i), where γ1, γ2,
θ1, θ2 are polynomials in β1, . . . , β2i−2 with integer coefficients. Here θ1
and θ2 can be “absorbed” into β2i−1 and β2i, respectively, so we may
assume that θ1 = θ2 = 0. Now add cβ2i−1β2i to each βj for which cμi occurs
in Tj; add β2i−1γ2/γ1 to β2i; and set β2i−1 to zero. The result set is unchanged
by this elimination of β2i−1, except for the values of α1, . . . , αs such that γ1
is zero. [This proof is essentially due to V. Y. Pan, Uspekhi Mat. Nauk 21,
1 (January–February 1966), 103–134.] The latter case can be handled as in
the proof of Theorem A, since the polynomials with γ1 = 0 can be
evaluated by eliminating β2i (as in the first construction, where μi
corresponds to a parameter multiplication).
31. Otherwise we could add one parameter multiplication as a final step,
and violate Theorem C. (The exercise is an improvement over Theorem A,

in this special case, since there are only n degrees of freedom in the
coefficients of a monic polynomial of degree n.)
32. λ1 = λ0 × λ0, λ2 = α1 × λ1, λ3 = α2 + λ2, λ4 = λ3 × λ1, λ5 = α3 + λ4. We
need at least three multiplications to compute u4x4 (see Section 4.6.3), and
at least two additions by Theorem A.
33. We must have n + 1 ≤ 2mc + mp + δ0mc

, and mc + mp = (n + 1)/2; so
there are no parameter multiplications. Now the first λi whose leading
coefficient (as a polynomial in x) is not an integer must be obtained by a
chain addition; and there must be at least n + 1 parameters, so there are at
least n + 1 parameter additions.
34. Transform the given chain step by step, and also define the “content” ci
of λi, as follows: (Intuitively, ci is the leading coefficient of λi.) Define c0
= 1. (a) If the step has the form λi = αj + λk, replace it by λi = βj + λk,
where βj = αj/ck; and define ci = ck. (b) If the step has the form λi = αj – λk,
replace it by λi = βj + λk, where βj = –αj/ck; and define ci = –ck. (c) If the
step has the form λi = αj × λk, replace it by λi = λk (the step will be deleted
later); and define ci = αjck. (d) If the step has the form λi = λj × λk, leave it
unchanged; and define ci = cjck.

After this process is finished, delete all steps of the form λi = λk,
replacing λi by λk in each future step that uses λi. Then add a final step
λr+1 = β × λr, where β = cr. This is the desired scheme, since it is easy to
verify that the new λi are just the old ones divided by the factor ci. The β’s
are given functions of the α’s; division by zero is no problem, because if
any ck = 0 we must have cr = 0 (hence the coefficient of xn is zero), or
else λk never contributes to the final result.

35. Since there are at least five parameter steps, the result is trivial unless
there is at least one parameter multiplication; considering the ways in
which three multiplications can form u4x4, we see that there must be one
parameter multiplication and two chain multiplications. Therefore the four
addition-subtractions must each be parameter steps, and exercise 34
applies. We can now assume that only additions are used, and that we have
a chain to compute a general monic fourth-degree polynomial with two

chain multiplications and four parameter additions. The only possible
scheme of this type that calculates a fourth-degree polynomial has the form

Actually this chain has one addition too many, but any correct scheme can
be put into this form if we restrict some of the α’s to be functions of the
others. Now λ7 has the form (x2 + Ax + B)(x2 + Ax + C) + D = x4 + 2Ax3 +
(E + A2)x2 + EAx + F, where A = α1 + α2, B = α1α2 + α3, C = α1α2 + α4, D =
α6, E = B + C, F = BC + D; and since this involves only three independent
parameters it cannot represent a general monic fourth-degree polynomial.
36. As in the solution to exercise 35, we may assume that the chain
computes a general monic polynomial of degree six, using only three chain
multiplications and six parameter additions. The computation must take one
of two general forms

where, as in exercise 35, an extra addition has been inserted to cover a
more general case. Neither of these schemes can calculate a general sixth-
degree monic polynomial, since the first case is a polynomial of the form

and the second case is a polynomial of the form

both of these involve only five independent parameters.
37. Let p0(x) = unxn + un−1xn − 1 + ... + u0 and q0(x) = xn + vn−1xn−1 + ... +
v0. For 1 ≤ j ≤ n, divide pj−1(x) by the monic polynomial qj−1(x), obtaining
pj−1(x) = αjqj–1(x) + βjqj(x). Assume that a monic polynomial qj(x) of
degree n – j exists satisfying this relation; this will be true for almost all
rational functions. Let pj(x) = qj−1(x) – xvqj(x). These definitions imply
that deg(pn) < 1, so we may let αn+1 = pn(x).

For the given rational function we have

so u(x)/v(x) = p0(x)/q0(x) = 1 + 2/(x + 3 + 4/(x + 5)).
Notes: A general rational function of the stated form has 2n + 1

“degrees of freedom,” in the sense that it can be shown to have 2n + 1
essentially independent parameters. If we generalize polynomial chains to
quolynomial chains, which allow division operations as well as addition,
subtraction, and multiplication (see exercise 71), we can obtain the
following results with slight modifications to the proofs of Theorems A
and M: A quolynomial chain with q addition-subtraction steps has at
most q + 1 degrees of freedom. A quolynomial chain with m
multiplication-division steps has at most 2m + 1 degrees of freedom.
Therefore a quolynomial chain that computes almost all rational functions
of the stated form must have at least 2n addition-subtractions, and n
multiplication-divisions; the method in this exercise is optimal.
38. The theorem is certainly true if n = 0. Assume that n is positive, and
that a polynomial chain computing P (x; u0, . . . , un) is given, where each
of the parameters αj has been replaced by a real number. Let λi = λj × λk be
the first chain multiplication step that involves one of u0, . . . , un; such a
step must exist because of the rank of A. Without loss of generality, we may
assume that λj involves un; thus, λj has the form h0u0 + ... + hnun + f(x),
where h0, . . . , hn are real, hn ≠ 0, and f(x) is a polynomial with real

coefficients. (The h’s and the coefficients of f(x) are derived from the
values assigned to the α’s.)

Now change step i to λi = α × λk, where α is an arbitrary real number.
(We could take α = 0; general α is used here merely to show that there is a
certain amount of flexibility available in the proof.) Add further steps to
calculate

these new steps involve only additions and parameter multiplications (by
suitable new parameters). Finally, replace λ–n−1 = un everywhere in the
chain by this new element λ. The result is a chain that calculates

and this chain has one less chain multiplication. The proof will be
complete if we can show that Q satisfies the hypotheses. The quantity (α –
f(x))/hn leads to a possibly increased value of m, and a new vector B′. If
the columns of A are A0, A1, . . . , An (these vectors being linearly
independent over the reals), the new matrix A′ corresponding to Q has the
column vectors

plus perhaps a few rows of zeros to account for an increased value of m,
and these columns are clearly also linearly independent. By induction, the
chain that computes Q has at least n − 1 chain multiplications, so the
original chain has at least n.

[Pan showed also that the use of division would give no improvement;
see Problemy Kibernetiki 7 (1962), 21–30. Generalizations to the
computation of several polynomials in several variables, with and without
various kinds of preconditioning, have been given by S. Winograd, Comm.
Pure and Applied Math. 23 (1970), 165–179.]
39. By induction on m. Let wm(x) = x2m + u2m−1x2m − 1 + ... + u0, wm−1(x) =
x2m−2 + v2m−3x2m−3 + ... + v0, a = α1 + γm, b = αm, and let

It follows that vr = f(r + 2) for r ≥ 0, and δm = f(1). If δm = 0 and a is
given, we have a polynomial of degree m − 1 in b, with leading coefficient
±(u2m−1 – ma) = ±(γ2 + ... + γm – mγm).

In Motzkin’s unpublished notes he arranged to make δk = 0 almost
always, by choosing γ’s so that this leading coefficient is ≠ 0 when m is
even and = 0 when m is odd; then we can almost always let b be a (real)
root of an odd-degree polynomial.
40. No; S. Winograd found a way to compute all polynomials of degree 13
with only 7 (possibly complex) multiplications [Comm. Pure and Applied
Math. 25 (1972), 455–457]. L. Revah found schemes that evaluate almost
all polynomials of degree n ≥ 9 with ⌊n/2⌋ + 1 (possibly complex)
multiplications [SICOMP 4 (1975), 381–392]; she also showed that when
n = 9 it is possible to achieve ⌊n/2⌋+1 multiplications only with at least n
+ 3 additions. By appending sufficiently many additions (see exercise 39),
the “almost all” and “possibly complex” provisos disappear. V. Y. Pan
[STOC 10 (1978), 162–172; IBM Research Report RC7754 (1979)] found
schemes with ⌊n/2⌋ + 1 (complex) multiplications and the minimum
number n+2+δn9 of (complex) additions, for all odd n ≥ 9; his method for n
= 9 is

The minimum number of real additions necessary, when the minimum
number of (real) multiplications is achieved, remains unknown for n ≥ 9.
41. a(c + d) – (a + b)d + i(a(c + d) + (b – a)c). [Beware of numerical
instability. Three multiplications are necessary, since complex
multiplication is a special case of (71) with p(u) = u2 + 1. Without the
restriction on additions there are other possibilities. For example, the
symmetric formula ac – bd + i((a + b)(c + d) – ac – bd) was suggested by
Peter Ungar in 1963; Eq. 4.3.3–(2) is similar, with 2n in the role of i. See I.
Munro, STOC 3 (1971), 40–44; S. Winograd, Linear Algebra and Its
Applications 4 (1971), 381–388.]

Alternatively, if a2+b2 = 1 and t = (1–a)/b = b/(1+a), the algorithm “w
= c–td, v = d + bw, u = w – tv” for calculating the product (a + bi)(c + di)
= u + iv has been suggested by Oscar Buneman [J. Comp. Phys. 12

(1973), 127–128]. In this method if a = cos θ and b = sin θ, we have t =
tan(θ/2).

Helmut Alt and Jan van Leeuwen [Computing 27 (1981), 205–215]
have shown that four real multiplications or divisions are necessary for
computing 1/(a + bi), and four are sufficient for computing

Six multiplication-division operations and three addition-subtractions are
necessary and sufficient to compute (a + bi)/(c + di). [T. Lickteig,
SICOMP 16 (1987), 278–311].

In spite of these lower bounds, one should remember that complex
arithmetic need not be implemented in terms of real arithmetic. For
example, the time needed to multiply two n-place complex numbers is
asymptotically only about twice the time to multiply two n-place real
numbers, using fast Fourier transforms.
42. (a) Let π1, . . . , πm be the λi’s that correspond to chain multiplications;
then πi = P2i−1 × P2i and u(x) = P2m+1, where each Pj has the form βj + βj0x
+ βj1π1 + ...+βjr(j)πr(j), where r(j) ≤ ⌈j/2⌉–1 and each of the βj and βjk is a
polynomial in the α’s with integer coefficients. We can systematically
modify the chain (see exercise 30) so that βj = 0 and βjr(j) = 1, for 1 ≤ j ≤
2m; furthermore we can assume that β30 = 0. The result set now has at most

 degrees of freedom.

(b) Any such polynomial chain with at most m chain multiplications
can be simulated by one with the form considered in (a), except that now
we let r(j) = ⌈j/2⌉–1 for 1 ≤ j ≤ 2m + 1, and we do not assume that β30 = 0
or that βjr(j) = 1 for j ≥ 3. This single canonical form involves m2 + 2m
parameters. As the α’s run through all integers and as we run through all
chains, the β’s run through at most 2m2+2m sets of values mod 2, hence the
result set does also. In order to obtain all 2n polynomials of degree n with
0–1 coefficients, we need m2 + 2m ≥ n.

(c) Set and compute x2, x3, . . . , xm. Let u(x) =
um+1(x)x(m+1) m + ... + u1(x)xm + u0(x), where each uj(x) is a polynomial

of degree ≤ m with integer coefficients (hence it can be evaluated without
any more multiplications). Now evaluate u(x) by rule (2) as a polynomial
in xm with known coefficients. (The number of additions used is
approximately the sum of the absolute values of the coefficients, so this
algorithm is efficient on 0–1 polynomials. Paterson and Stockmeyer also
gave another algorithm that uses about multiplications.)

References: SICOMP 2 (1973), 60–66; see also J. E. Savage, SICOMP
3 (1974), 150–158; J. Ganz, SICOMP 24 (1995), 473–483. For analogous
results about additions, see Borodin and Cook, SICOMP 5 (1976), 146–
157; Rivest and Van de Wiele, Inf. Proc. Letters 8 (1979), 178–180.
43. When ai = aj + ak is a step in some optimal addition chain for n + 1,
compute xi = xjxk and pi = pkxj + pj, where pi = xi−1 + ... + x + 1; omit the
final calculation of xn+1. We save one multiplication whenever ak = 1, in
particular when i = 1. (See exercise 4.6.3–31 with .)

44. Let l = ⌊lg n⌋, and suppose x, x2, x4, . . . , x2l have been precomputed. If
u(x) is monic of degree n = 2m + 1, we can write u(x) = (xm+1 + α)v(x) +
w(x), where v(x) and w(x) are monic of degree m. This yields a method for
n = 2l+1 – 1 ≥ 3 that requires 2l − 1 further multiplications and 2l+1 + 2l−1 – 2
additions. If n = 2l we can apply Horner’s rule to reduce n by 1. And if m
= 2l < n < 2l+1 – 1, we can write u(x) = xmv(x) + w(x) where v and w are
monic of degrees n – m and m, respectively; by induction on l, this requires
at most n + l − 1 multiplications and n additions, after the
precomputation. [See S. Winograd, IBM Tech. Disclosure Bull. 13 (1970),
1133–1135.]

Note: It is also possible to evaluate u(x) with
multiplications and n + O() additions, under the same ground rules, if
our goal is to minimize multiplications + additions. The generic
polynomial

“covers” the coefficients of exponents {j, j + k, j + k + (k − 1), . . . , j + k +
(k − 1) + ... + (j + 1), m′ – k, m′ – k + 1, . . . , m′ – j}, where

By adding together such polynomials p1km1
(x), p2km2

(x), . . . , pkkmk (x) for
, we obtain an arbitrary monic polynomial of

degree k2 + k + 1. [Rabin Winograd, Comm. on Pure and Applied Math.
25 (1972), 433–458, §2; this paper also proves that constructions with n
+ O(log n) multiplications and ≤ (1 + ∊)n additions are possible for all ∊
> 0, if n is large enough.]
45. It suffices to show that (Tijk)’s rank is at most that of (tijk), since we
can obtain (tijk) back from (Tijk) by transforming it in the same way with
F−1, G−1, H−1. If then it follows immediately that

[H. F. de Groote has proved that all normal schemes that yield 2 × 2
matrix products with seven chain multiplications are equivalent, in the
sense that they can be obtained from each other by nonsingular matrix
multiplication as in this exercise. In this sense Strassen’s algorithm is
unique. See Theor. Comp. Sci. 7 (1978), 127–148.]
46. By exercise 45 we can add any multiple of a row, column, or plane to
another one without changing the rank; we can also multiply a row, column,
or plane by a nonzero constant, or transpose the tensor. A sequence of such
operations can always be found to reduce a given 2×2×2 tensor to one of
the forms . The last
tensor has rank 3 or 2 according as the polynomial u2 – ru – q has one or
two irreducible factors in the field of interest, by Theorem W (see (74)).
47. A general m × n × s tensor has mns degrees of freedom. By exercise 28
it is impossible to express all m × n × s tensors in terms of the (m + n + s)r
elements of a realization (A, B, C) unless (m + n + s)r ≥ mns. On the other
hand, assume that m ≥ n ≥ s. The rank of an m × n matrix is at most n, so
we can realize any tensor in ns chain multiplications by realizing each
matrix plane separately. [Exercise 46 shows that this lower bound on the
maximum tensor rank is not best possible, nor is the upper bound. Thomas
D. Howell (Ph.D. thesis, Cornell Univ., 1976) has shown that there are
tensors of rank ≥ ⌈mns/(m + n + s – 2)⌉ over the complex numbers.]

48. If (A, B, C) and (A′, B′, C′) are realizations of (tijk) and of
respective lengths r and r′, then A″ = A⊕A′, B″ = B⊕B′, C″ = C⊕C′, and A″
′ = A⊗A′, B″′ = B⊕B′, C″′ = C ⊗ C′, are realizations of and of
respective lengths r + r′ and r · r′.

Note: Many people have made the natural conjecture that
, but the constructions

in exercise 60(b) and exercise 65 make this seem much less plausible than
it once was.
49. By Lemma T, rank(tijk) ≥ rank(ti(jk)). Conversely if M is a matrix of
rank r we can transform it by row and column operations, finding
nonsingular matrices F and G such that F MG has all entries 0 except for r
diagonal elements that are 1; see Algorithm 4.6.2N. The tensor rank of F
MG is therefore ≤ r; and it is the same as the tensor rank of M, by exercise
45.
50. Let i = 〈i′, i″〉 where 1 ≤ i′ ≤ m and 1 ≤ i″ ≤ n; then t〈i′,i″〉jk = δi″j
δi′k, and it is clear that rank(ti(jk)) = mn since (ti(jk)) is a permutation
matrix. By Lemma L, rank(tijk) ≥ mn. Conversely, since (tijk) has only mn
nonzero entries, its rank is clearly ≤ mn. (There is consequently no normal
scheme requiring fewer than the mn obvious multiplications. There is no
such abnormal scheme either [Comm. Pure and Appl. Math. 3 (1970),
165–179]. But some savings can be achieved if the same matrix is used
with s > 1 different column vectors, since this is equivalent to (m × n)
times (n × s) matrix multiplication.)
51. (a) s1 = y0 + y1, s2 = y0 – y1; ,

; w0 = m1 + m2, w1 = m1 – m2. (b) Here are some
intermediate steps, using the methodology in the text: ((x0 – x2) + (x1 –
x2)u)((y0 – y2) + (y1 – y2)u) mod (u2 + u + 1) = ((x0 – x2)(y0 – y2) – (x1 –
x2)(y1 – y2)) + ((x0 – x2)(y0 – y2) – (x1 – x0)(y1 – y0))u. The first realization
is

The second realization is

The resulting algorithm computes s1 = y0 + y1, s2 = y0 – y1, s3 = y2 – y0, s4
= y2 – y1, s5 = s1 +y2; m1 = (x0 +x1 +x2)s5, m2 = (x0 +x1 –2x2)s2, m3 =
(x0 –2x1 +x2)s3, m4 = (–2x0 + x1 + x2)s4; t1 = m1 + m2, t2 = m1 – m2, t3 =
m1 + m3, w0 = t1 – m3, w1 = t3 + m4, w2 = t2 – m4.

52. Let k = 〈k′, k″〉 when k mod n′ = k′ and k mod n″ = k″. Then we wish
to compute w〈k ′,k″〉 = ∑ x〈i′,i″〉y〈j′,j″〉 summed for i′ + j′ ≡ k′ (modulo
n′) and i″ + j″ ≡ k″ (modulo n″). This can be done by applying the n′
algorithm to the 2n′ vectors Xi′ and Yj′ of length n″, obtaining the n′ vectors
Wk ′. Each vector addition becomes n″ additions, each parameter
multiplication becomes n″ parameter multiplications, and each chain
multiplication of vectors is replaced by a cyclic convolution of degree n″.
[If the subalgorithms use the minimum number of chain multiplications over
the rationals, this algorithm uses 2(n′ – d(n′))(n″ – d(n″)) more than the
minimum, where d(n) is the number of divisors of n, because of exercise
4.6.2–32 and Theorem W.]
53. (a) Let n(k) = (p − 1)pe−k−1 = ϕ(pe−k) for 0 ≤ k < e, and n(k) = 1 for k ≥
e. Represent the numbers {1, . . . , m} in the form aipk (modulo m), where
0 ≤ k ≤ e and 0 ≤ i < n(k), and a is a fixed primitive element modulo pe.
For example, when m = 9 we can let a = 2; the values are {2030, 2130,
2031, 2230, 2530, 2131, 2430, 2330, 2032}. Then f(aipk) = ∑0≤l≤e ∑0≤j<n(l)

ωg(i,j,k,l)F (ajpl) where g(i, j, k, l) = ai+j pk+l.
We shall compute fikl = ∑0≤j<n(l) ωg(i,j,k,l)F (ajpl) for 0 ≤ i < n(k) and

for each k and l. This is a cyclic convolution of degree n(k + l) on the
values xi = ωaipk +l and ys = ∑0≤j<n(l)[s + j ≡ 0 (modulo n(k + l))] F(ajpl),
since fikl is ∑ xrys summed over r +s ≡ i (modulo n(k +l)). The Fourier
transform is obtained by summing appropriate fikl’s. [Note: When linear
combinations of the xi are formed, for example as in (69), the result will
be purely real or purely imaginary, when the cyclic convolution algorithm
has been constructed by using rule (59) with un(k) – 1 = (un(k)/2 – 1)(un(k)/2

+ 1). The reason is that reduction mod (un(k)/2 – 1) produces a polynomial
with real coefficients ωj + ω−j while reduction mod (un(k)/2 + 1) produces
a polynomial with imaginary coefficients ωj – ω−j.]

When p = 2 an analogous construction applies, using the representation
(–1)iaj2k (modulo m), where 0 ≤ k ≤ e and 0 ≤ i ≤ min(e – k, 1) and 0 ≤ j
< 2e−k−2. In this case we use the construction of exercise 52 with n′ = 2
and n″ = 2e−k−2; although these numbers are not relatively prime, the
construction does yield the desired direct product of cyclic convolutions.

(b) Let a′m′ + a″m″ = 1; and let ω′ = ωa″m″, ω″ = ωa′m′. Define s′ = s
mod m′, s″ = s mod m″, t′ = t mod m′, t″ = t mod m″, so that ωst = (ω′)s′t′

(ω″)s″t″. It follows that
; in other words,

the one-dimensional Fourier transform on m elements is actually a two-
dimensional Fourier transform on m′ × m″ elements, in slight disguise.

We shall deal with “normal” algorithms consisting of (i) a number of
sums si of the F’s and s’s; followed by (ii) a number of products mj, each
of which is obtained by multiplying one of the F’s or S’s by a real or
imaginary number αj; followed by (iii) a number of further sums tk, each
of which is formed from m’s or t’s (not F’s or s’s). The final values must
be m’s or t’s. For example, the “normal” Fourier transform scheme for m
= 5 constructed from (69) and the method of part (a) is as follows: s1 =
F(1) + F(4), s2 = F(3) + F(2), s3 = s1 + s2, s4 = s1 – s2, s5 = F(1) – F(4),
s6 = F(2)–F (3), s7 = s5 –s6; m1 = (ω+ω2 +ω4 +ω3)s3, m2 = (ω–ω2 +ω4

–ω3)s4, m3 = (ω + ω2 – ω4 – ω3)s5, m4 = (–ω + ω2 + ω4 – ω3)s6, m5 =
(ω3 – ω2)s7, m6 = 1 · F(5), m7 = 1 · s3; t0 = m1 + m6, t1 = t0 + m2, t2 = m3 +
m5, t3 = t0 – m2, t4 = m4 – m5, t5 = t1 + t2, t6 = t3 + t4, t7 = t1 – t2, t8 = t3 –
t4, t9 = m6 + m7. Note the multiplication by 1 shown in m6 and m7; this is
required by our conventions, and it is important to include such cases for
use in recursive constructions (although the multiplications need not really
be done). Here m6 = f001, m7 = f010, t5 = f000 + f001 = f(20), t6 = f100 + f101 =
f(21), etc. We can improve the scheme by introducing s8 = s3 + F(5),
replacing m1 by ((ω + ω2 + ω4 + ω3) – 1)s3 [this is – s3], replacing m6

by 1·s8, and deleting m7 and t9; this saves one of the trivial multiplications
by 1, and it will be advantageous when the scheme is used to build larger
ones. In the improved scheme, f(5) = m6, f(1) = t5, f(2) = t6, f(3) = t8, f(4)
= t7.

Now suppose we have normal one-dimensional schemes for m′ and m″,
using respectively (a′, a″) complex additions, (t′, t″) trivial
multiplications by ±1 or ±i, and a total of (c′, c″) complex multiplications
including the trivial ones. (The nontrivial complex multiplications are all
“simple” since they involve only two real multiplications and no real
additions.) We can construct a normal scheme for the two-dimensional m′
× m″ case by applying the m′ scheme to vectors F(t′, *) of length m″. Each
si step becomes m″ additions; each mj becomes a Fourier transform on m″
elements, but with all of the α’s in this algorithm multiplied by αj; and
each tk becomes m″ additions. Thus the new algorithm has (a′m″ + c′a″)
complex additions, t′t″ trivial multiplications, and a total of c′c″ complex
multiplications.

Using these techniques, Winograd has found normal one-dimensional
schemes for the following small values of m with the following costs (a, t,
c):

By combining these schemes as described above, we obtain methods that
use fewer arithmetic operations than the “fast Fourier transform” (FFT)
discussed in exercise 14. For example, when m = 1008 = 7·9·16, the costs
come to (17946, 8, 1944), so we can do a Fourier transform on 1008
complex numbers with 3872 real multiplications and 35892 real additions.
It is possible to improve on Winograd’s method for combining relatively
prime moduli by using multidimensional convolutions, as shown by
Nussbaumer and Quandalle in IBM J. Res. and Devel. 22 (1978), 134–
144; their ingenious approach reduces the amount of computation needed
for 1008-point complex Fourier transforms to 3084 real multiplications
and 34668 real additions. By contrast, the FFT on 1024 complex numbers
involves 14344 real multiplications and 27652 real additions. If the two-

passes-at-once improvement in the answer to exercise 14 is used,
however, the FFT on 1024 complex numbers needs only 10936 real
multiplications and 25948 additions, and it is not difficult to implement.
Therefore the subtler methods are faster only on machines that take
significantly longer to multiply than to add.

[References: Proc. Nat. Acad. Sci. USA 73 (1976), 1005–1006; Math.
Comp. 32 (1978), 175–199; Advances in Math. 32 (1979), 83–117; IEEE
Trans. ASSP-27 (1979), 169–181.]
54. max(2e1deg(p1) – 1, . . . , 2eqdeg(pq) – 1, q + 1).
55. 2n′ – q′, where n′ is the degree of the minimum polynomial of P (the
monic polynomial μ of least degree such that μ(P) is the zero matrix) and q′
is the number of distinct irreducible factors it has. (Reduce P by similarity
transformations.)
56. Let tijk + tjik = τijk + τjik, for all i, j, k. If (A, B, C) is a realization of
(tijk) of rank r, then

 for all k.
Conversely, let the lth chain multiplication of a polynomial chain, for 1 ≤ l
≤ r, be the product (αl + ∑i αil xi)(βl + ∑j βjlxj), where αl and βl denote
possible constant terms and/or nonlinear terms. All terms of degree 2
appearing at any step of the chain can be expressed as a linear combination

 hence the chain defines a tensor (tijk) of rank
≤ r such that tijk +tjik = τijk +τjik. This establishes the hint. Now rank(τijk +
τjik) = rank(tijk + tjik) ≤ rank(tijk) + rank(tjik) = 2 rank(tijk).

A bilinear form in x1, . . . , xm, y1, . . . , yn is a quadratic form in m + n
variables, where τijk = ti,j–m,k for i ≤ m and j > m, otherwise τijk = 0. Now
rank(τijk) + rank(τjik) ≥ rank(tijk), since we obtain a realization of (tijk) by
suppressing the last n rows of A and the first m rows of B in a realization
(A, B, C) of (τijk + τjik).

57. Let N be the smallest power of 2 that exceeds 2n, and let un+1 = ... =
uN−1 = vn+1 = ... = vN−1 = 0. If and for
0 ≤ s < N, where ω = e2πi/N, then , where the
latter sum is taken over all t1 and t2 with 0 ≤ t1, t2 < N, t1 + t2 ≡ t (modulo

N). The terms vanish unless t1 ≤ n and t2 ≤ n, so t1 + t2 < N; thus the sum is
the coefficient of zt in the product u(z)v(z). If we use the method of
exercise 14 to compute the Fourier transforms and the inverse transforms,
the number of complex operations is O(N log N)+O(N log N)+ O(N) + O(N
log N); and N ≤ 4n. [See Section 4.3.3C and the paper by J. M. Pollard,
Math. Comp. 25 (1971), 365–374.]

When multiplying integer polynomials, it is possible to use an integer
number ω that is of order 2t modulo a prime p, and to determine the results
modulo sufficiently many primes. Useful primes in this regard, together
with their least primitive roots r (from which we take ω = r(p−1)/2t mod
p when p mod 2t = 1), can be found as described in Section 4.5.4. For t =
9, the ten largest cases < 235 are p = 235 – 512a + 1, where (a, r) = (28,
7), (31, 10), (34, 13), (56, 3), (58, 10), (76, 5), (80, 3), (85, 11), (91, 5),
(101, 3); the ten largest cases < 231 are p = 231 – 512a + 1, where (a, r) =
(1, 10), (11, 3), (19, 11), (20, 3), (29, 3), (35, 3), (55, 19), (65, 6), (95,
3), (121, 10). For larger t, all primes p of the form 2tq + 1 where q < 32
is odd and 224 < p < 236 are given by (p − 1, r) = (11 · 221, 3), (25 · 220,
3), (27 · 220, 5), (25 · 222, 3), (27 · 222, 7), (5 · 225, 3), (7 · 226, 3), (27 ·
226, 13), (15 · 227, 31), (17 · 227, 3), (3 · 230, 5), (13 · 228, 3), (29 · 227,
3), (23 · 229, 5). Some of the latter primes can be used with ω = 2e for
appropriate small e. For a discussion of such primes, see R. M. Robinson,
Proc. Amer. Math. Soc. 9 (1958), 673–681; S. W. Golomb, Math. Comp.
30 (1976), 657–663. Additional all-integer methods are cited in the
answer to exercise 4.6–5.

However, the method of exercise 59 will almost always be preferable
in practice.
58. (a) In general if (A, B, C) realizes (tijk), then ((x1, . . . , xm)A, B, C) is a
realization of the 1 × n × s matrix whose entry in row j, column k is ∑
xitijk. So there must be at least as many nonzero elements in (x1, . . . , xm)A
as the rank of this matrix. In the case of the m × n × (m + n − 1) tensor
corresponding to polynomial multiplication of degree m − 1 by degree n −
1, the corresponding matrix has rank n whenever (x1, . . . , xm) ≠ (0, . . . ,
0). A similar statement holds with A ↔ B and m ↔ n.

Notes: In particular, if we work over the field of 2 elements, this says
that the rows of A modulo 2 form a “linear code” of m vectors having
distance at least n, whenever (A, B, C) is a realization consisting entirely
of integers. This observation, due to R. W. Brockett and D. Dobkin
[Linear Algebra and Its Applications 19 (1978), 207–235, Theorem 14;
see also Lempel and Winograd, IEEE Trans. IT-23 (1977), 503–508;
Lempel, Seroussi, and Winograd, Theoretical Comp. Sci. 22 (1983), 285–
296], can be used to obtain nontrivial lower bounds on the rank over the
integers. For example, M. R. Brown and D. Dobkin [IEEE Trans. C-29
(1980), 337–340] have used it to show that realizations of n × n
polynomial multiplication over the integers must have rank ≥ αn for all
sufficiently large n, when α is any real number less than

here αmin = 1/H(sin2 θ, cos2 θ), where H(p, q) = p lg(1/p) + q lg(1/q) is the
binary entropy function and θ ≈ 1.34686 is the root of sin2(θ – π/4) =
H(sin2 θ, cos2 θ). An all-integer realization of rank O(n log n), based on
cyclotomic polynomials, has been constructed by M. Kaminski [J.
Algorithms 9 (1988), 137–147].

The following economical ways to realize the multiplication of general
polynomials of degrees 2, 3, and 4 have been presented by H. Cohen and
A. K. Lenstra [see Math. Comp. 48 (1987), S1–S2]:

In each case the A and B matrices are identical.
59. [IEEE Trans. ASSP-28 (1980), 205–215.] Note that cyclic convolution
is polynomial multiplication mod un –1, and negacyclic convolution is
polynomial multiplication mod un + 1. Let us now change notation,
replacing n by 2n; we shall consider recursive algorithms for cyclic and
negacyclic convolution (z0, . . . , z2n−1) of (x0, . . . , x2n−1) with (y0, . . . ,
y2n−1). The algorithms are presented in unoptimized form, for brevity and
ease in exposition; readers who implement them will notice that many
things can be streamlined. For example, the final value of Z2m−1(w) in step
N5 will always be zero.
C1. [Test for simple case.] If n = 1, set

and terminate. Otherwise set m ← 2n−1.
C2. [Remainderize.] For 0 ≤ k < m, set (xk, xm+k) ← (xk + xm+k, xk –

xm+k) and (yk, ym+k) ← (yk +ym+k, yk –ym+k). (Now we have x(u)
mod (um−1) = x0 + ... + xm−1um–1 and x(u) mod (um + 1) = xm + ... +
x2m−1um−1; we will compute x(u)y(u) mod (um − 1) and x(u)y(u)
mod (um + 1), then we will combine the results by (59).)

C3. [Recurse.] Set (z0, . . . , zm−1) to the cyclic convolution of (x0, . . . ,
xm−1) with (y0, . . . , ym−1). Also set (zm, . . . , z2m−1) to the negacyclic
convolution of (xm, . . . , x2m−1) with (ym, . . . , y2m−1).

C4. [Unremainderize.] For 0 ≤ k < m, set (zk, zm+k) ← (zk + zm+k, zk –
zm+k). Now (z0, . . . , z2m−1) is the desired answer.

N1. [Test for simple case.] If n = 1, set t ← x0(y0 + y1), z0 ← t – (x0 +
x1)y1, z1 ← t+(x1–x0)y0, and terminate. Otherwise set m ← 2⌊n/2⌋ and
r ← 2⌈n/2⌉. (The following steps use 2n+1 auxiliary variables Xij for 0
≤ i < 2m and 0 ≤ j < r, to represent 2m polynomials Xi(w) = Xi0 +
Xi1w + ... + Xi(r−1)wr−1; similarly, there are 2n+1 auxiliary variables
Yij.)

N2. [Initialize auxiliary polynomials.] Set Xij ← X(i+m)j ← xmj+i, Yij ←
Y(i+m)j ← ymj+i, for 0 ≤ i < m and 0 ≤ j < r. (At this point we have
x(u) = X0(um) + uX1(um) + ... + um−1Xm−1(um), and a similar formula
holds for y(u). Our strategy will be to multiply these polynomials
modulo (umr + 1) = (u2n + 1), by operating modulo (wr + 1) on the
polynomials X(w) and Y (w), finding their cyclic convolution of
length 2m and thereby obtaining x(u)y(u) ≡ Z0(um) + uZ1(um) + ... +
u2m − 1Z2m−1(um).)

N3. [Transform.] (Now we will essentially do a fast Fourier transform
on the polynomials (X0, . . . , Xm−1, 0, . . . , 0) and (Y0, . . . , Ym−1, 0, . .
. , 0), using wr/m as a (2m)th root of unity. This is efficient, because
multiplication by a power of w is not really a multiplication at all.)

For j = ⌊n/2⌋–1, . . . , 1, 0 (in this order), do the following for all m
binary numbers s + t = (s⌊n/2⌋ . . . sj+10 . . . 0)2 + (0 . . . 0tj−1 . . . t0)2:
Replace (Xs+t(w), Xs+t+2j (w)) by the pair of polynomials (Xs+t(w) +
w(r/m)s′Xs+t+2j (w), Xs+t(w) – w(r/m)s′Xs+t+2j (w)), where s′ = 2j(sj+1 . .
. s⌊n/2⌋)2. (We are evaluating 4.3.3–(39), with K = 2m and ω = wr/m;
notice the bit-reversal in s′. The polynomial operation Xi(w) ← Xi(w)
+ wkXl(w) means, more precisely, that we set Xij ← Xij + Xl(j–k) for k
≤ j < r, and Xij ← Xij – Xl(j–k+r) for 0 ≤ j < k. A copy of Xl(w) can be
made without wasting much space.) Do the same transformation on
the Y’s.

N4. [Recurse.] For 0 ≤ i < 2m, set (Zi0, . . . , Zi(r−1)) to the negacyclic
convolution of (Xi0, . . . , Xi(r−1)) and (Yi0, . . . , Yi(r−1)).

N5. [Untransform.] For j = 0, 1, . . . , ⌊n/2⌋ (in this order), and for all m
choices of s and t as in steps N3, set (Zs+t(w), Zs+t+2j (w)) to

N6. [Repack.] (Now we have accomplished the goal stated at the end of
step N2, since it is easy to show that the transform of the Z’s is the
product of the transforms of the X’s and the Y’s.) Set zi ← Zi0 – Z(m+i)

(r−1) and zmj+i ← Zij + Z(m+i)(j−1) for 0 < j < r, for 0 ≤ i < m.
It is easy to verify that at most n extra bits of precision are needed for

the intermediate variables in this calculation; for example, if |xi| ≤ M for 0
≤ i < 2n at the beginning of the algorithm, then all of the x and X variables
will be bounded by 2nM throughout. All of the z and Z variables will be
bounded by (2nM)2, which is n more bits than required to hold the final
convolution.

Algorithm N performs An addition-subtractions, Dn halvings, and Mn
multiplications, where A1 = 5, D1 = 0, M1 = 3; for n > 1 we have An =
⌊n/2⌋2n+2 + 2⌊n/2⌋+1A⌈n/2⌉ + (⌊n/2⌋ + 1)2n+1 + 2n, Dn = 2⌊n/2⌋+1D⌈n/2⌉ +
(⌊n/2⌋ + 1)2n+1, and Mn = 2⌊n/2⌋+1M⌈n/2⌉. The solutions are An = 11 ·
2n−1+⌈lg n⌉ – 3 · 2n + 6 · 2nSn, Dn = 4 · 2n−1+⌈lg n⌉ – 2 · 2n + 2 · 2nSn, Mn =

3 · 2n−1+⌈lg n⌉; here Sn satisfies the recurrence S1 = 0, Sn = 2S⌈n/2⌉ + ⌊n/2⌋,
and it is not difficult to prove the inequalities n⌈lg n⌉ ≤ Sn ≤ Sn+1 ≤ n
lg n + n for all n ≥ 1. Algorithm C does approximately the same amount of
work as Algorithm N.
60. (a) In ∑1, for example, we can group all terms having a common value
of j and k into a single trilinear term; this gives ν2 trilinear terms when (j,
k) ∊ E×E, plus ν2 when (j, k) ∊ E×O and ν2 when (j, k) ∊ O×E. When

 we can also include in ∑1, free of charge. [In the case
n = 10, the method multiplies 10 × 10 matrices with 710 noncommutative
multiplications; this is almost as good as seven 5 × 5 multiplications by the
method of Makarov cited in the answer to exercise 12, although
Winograd’s scheme (35) uses only 600 when commutativity is allowed.
With a similar scheme, Pan showed for the first time that M(n) < n2.8 for
all large n, and this awakened great interest in the problem. See SICOMP
9 (1980), 321–342.]

(b) Here we simply let S be all the indices (i, j, k) of one problem,
the indices [k, i, j] of the other, and work with an (mn+sm) × (ns+mn) ×
(sm+ns) tensor. [When m = n = s = 10, the result is quite surprising: We
can multiply two separate 10 × 10 matrices with 1300 noncommutative
multiplications, while no scheme is known that would multiply each of
them with 650.]
61. (a) Replace ail(u) by uail(u). (b) Let ail(u) = ∑μ ailμuμ, etc., in a
polynomial realization of length r = rankd(tijk). Then

. [This result can be improved to
rank(tijk) ≤ (2d + 1) rankd(tijk) in an infinite field, because the trilinear
form ∑μ+ν+σ=d aμbνcσ corresponds to multiplication of polynomials modulo
ud+1, as pointed out by Bini and Pan. See Calcolo 17 (1980), 87–97.] (c,
d) This is clear from the realizations in exercise 48.

(e) Suppose we have realizations of t and rt′ such that
 and

. Then

62. The rank is 3, by the method of proof in Theorem W with .
The border rank cannot be 1, since we cannot have a1(u)b1(u)c1(u) ≡
a1(u)b2(u)c2(u) ≡ ud and a1(u)b2(u)c1(u) ≡ a1(u)b1(u)c2(u) ≡ 0 (modulo ud

+1). The border rank is 2 because of the realization .
The notion of border rank was introduced by Bini, Capovani, Lotti, and

Romani in Information Processing Letters 8 (1979), 234–235.
63. (a) Let the elements of T(m, n, s) and T(M, N, S) be denoted by t〈i,j′〉
〈j,k ′〉〈k,i′〉 and T〈I,J′〉〈J,K′〉〈K,I′〉, respectively. Each element T〈I,J ′〉

〈J ,K′〉〈K,I′〉 of the direct product, where I = 〈i, I〉, J = 〈j, J〉, and K
= 〈k, K〉, is equal to t〈i,j′〉〈j,k ′〉〈k,i′〉 × T〈I,J′〉〈J,K′〉〈K,I′〉 by
definition, so it is [I′ = I and J′ = J and K′ = K].

(b) Apply exercise 61(e) with .
(c) We have M(mns) ≤ r3, since T(mns, mns, mns) = T(m, n, s) ⊗ T(n,

s, m) ⊗ T(s, m, n). If M(n) ≤ R we have M(nh) ≤ Rh for all h, and it
follows that M(N) ≤ M(n⌈logn N⌉ ≤ R⌈logn N⌉ ≤ RNlog R/log n. [This result
appears in Pan’s paper of 1972.]

(d) We have Md(mns) ≤ r3 for some d, where Md(n) = rankd(T (n, n,
n)). If Md(n) ≤ R we have Mhd(nh) ≤ Rh for all h, and the stated formula
follows since by exercise 61(b). In an infinite field we
save a factor of log N. [This result is due to Bini and Schönhage, 1979.]
64. We have ∑k (fk(u)+ ∑j≠k gj,k(u)) = u2 ∑1≤i,j,k≤3 xijyjkzki+O(u3), when
fk(u) = (xk1 + u2xk2)(y2k + u2y1k)zkk + (xk1 + u2xk3)y3k((1 + u)zkk – u(z1k +
z2k + z3k)) – xk1(y2k + y3k)(zk1 + zk2 + zk3) and gjk(u) = (xk1 + u2xj3)(y3k +
uy1j)(zkj + uzjk) + (xk1 + u2xj2)(y2k – uy1j)zkj. [The best upper bound
known for rank (T (3, 3, 3)) is 23; see the answer to exercise 12. The
border rank of T(2, 2, 2) remains unknown.]
65. The polynomial in the hint is
. Let Xij and Yij be indeterminates for 1 ≤ i < m and 1 ≤ j < n; also set

. Thus with mn + 1
multiplications of polynomials in indeterminates we can compute xiyj for

each i and j and also . [SICOMP
10 (1981), 434–455. In this classic paper Schönhage also derived, among
other things, the results of exercises 64, 66, and 67(i).]
66. (a) Let ω = lim infn→∞ log M(n)/log n; we have ω ≥ 2 by Lemma T.
For all ε > 0, there is an N with M(N) < Nω+ε. The argument of exercise
63(c) now shows that log M(n)/log n < ω + 2ε for all sufficiently large n.

(b) This is an immediate consequence of exercise 63(d).
(c) Let , q = (mns)ω/3, Q = (MNS)ω/3. Given ε > 0, there is

an integer constant cε such that M(p) ≤ cε pω +ε for all positive integers p.
For every integer h > 0 we have
, and . Given h and k, let . Then

by exercise 63(b), and it follows from part (b) that

Since we have

Therefore (q + Q)h ≤ (h + 1)2εh/ (ω+ε)2ωcεrh for all h. And it follows that
we must have q + Q ≤ 2ε/(ω+ε)r for all ε > 0.

(d) Set m = n = 4 in exercise 65, and note that 160.85 + 90.85 > 17.
67. (a) The mn × mns2 matrix (t〈ij′〉(〈jk ′〉〈ki′〉)) has rank mn because it
is a permutation matrix when restricted to the mn rows for which k = k′ =
1.

(b) ((t ⊕ t′)i(jk)) is essentially (ti(jk)) ⊕ (t′i(jk)), plus n′s + sn′
additional columns of zeros. [Similarly we have ((t ⊗ t′)i(jk)) = (ti(jk)) ⊗
(t′i(jk)) for the direct product.]

(c) Let D be the diagonal matrix diag(d1, . . . , dr), so that ADBT = O.
We know by Lemma T that rank(A) = m and rank(B) = n; hence rank(AD) =

m and rank(DBT) = n. We can assume without loss of generality that the
first m columns of A are linearly independent. Since the columns of BT are
in the null space of AD, we may also assume that the last n columns of B
are linearly independent. Write A in the partitioned form (A1 A2 A3) where
A1 is m × m (and nonsingular), A2 is m × q, and A3 is m × n. Also partition
D so that AD = (A1D1 A2D2 A3D3). Then there is a q × r matrix W = (W1 I
O) such that ADWT = O, namely .Similarly, we
may write B = (B1 B2 B3), and we find V DBT = O when V = (O I V3) is the
q × r matrix with . Notice that UDVT = D2, so the
hint is established (more or less—after all, it was just a hint).

Now we let Ail(u) = ail for 1 ≤ i ≤ m, A(m+i)l(u) = uvil/dm+i; Bjl(u) = bjl

for 1 ≤ j ≤ n, B(n+j)l(u) = wjlu; Ckl(u) = u2ckl for 1 ≤ k ≤ s, C(s+1)l(u) = dl.
It follows that

.
[In this proof we did not need to assume that t is nondegenerate with
respect to C.]

(d) Consider the following realization of T(m, 1, n) with r = mn+1: ail

= [⌊l/n⌋ = i − 1], bjl = [l mod n = j], b〈ij〉l = [l = (i−1)n + j], if l ≤ mn;
air = 1, bjr = –1, c〈ij〉r = 0. This is improvable with dl = 1 for 1 ≤ l ≤ r.

(e) The idea is to find an improvable realization of T(m, n, s). Suppose
(A, B, C) is a realization of length r. Given arbitrary integers α1, . . . , αm,
β1, . . . , βs, extend A, B, and C by defining

If for l ≤ r and dl = –1 otherwise, we have

so this is improvable if d1 . . . dr ≠ 0. But d1 . . . dr is a polynomial in (α1, .
. . , αm, β1, . . . , βs), not identically zero, since we can assume without loss
of generality that C has no all-zero columns. Therefore some choice of α’s
and β’s will work.

(f) If M(n) = nω we have M(nh) = nhω, hence

Exercise 66(c) now implies that nhω + (nhω – 2n2h + nh)ω/3 ≤ nhω + nh for
all h. Therefore ω = 2; but this contradicts the lower bound 2n2 – 1 (see
the answer to exercise 12).

(g) Let f(u) and g(u) be polynomials such that the elements of V f(u)
and W g(u) are polynomials. Then we redefine

where f(u)g(u) = pue + O(ue+1). It follows that
 is equal to ud+e+2tijk + O(ud+e+3) if k ≤ s,

ud+e+2[i > m][j > n] if k = s + 1. [Note: The result of (e) therefore holds
over any field, if rank2 is replaced by rank, since we can choose the α’s
and β’s to be polynomials of the form 1 + O(u).]

(h) Let row p of C refer to the component T(1, 16, 1). The key point is
that is zero (not simply O(ud+1)) for all i and j
that remain after deletion; moreover, cpl(u) ≠ 0 for all l. These properties
are true in the constructions of parts (c) and (g), and they remain true when
we take direct products.

(i) The proof generalizes from binomials to multinomials in a
straightforward way.

(j) After part (h) we have 81ω/3 + 2(36ω/3) + 34ω/3 ≤ 100, so ω < 2.52.
Squaring once again gives rank(T (81, 1, 81) ⊕ 4T (27, 4, 27) ⊕ 2T (9, 34,
9) ⊕ 4T (9, 16, 9) ⊕ 4T (3, 136, 3) ⊕ T(1, 3334, 1)) ≤ 10000; this yields
ω < 2.4999. Success! Continued squaring leads to better and better bounds
that converge rapidly to 2.497723729083 If we had started with T(4,
1, 4)⊕T (1, 9, 1) instead of T(3, 1, 3)⊕T (1, 4, 1), the limiting bound
would have been 2.51096309

[Similar tricks yield ω < 2.496; see SICOMP 11 (1982), 472–492. The
best current bound, ω < 2.3727, is due to V. Vassilevska Williams, STOC
44 (2012), 887–898.]
68. T. M. Vari has shown that n − 1 multiplications are necessary, by
proving that n multiplications are necessary to compute

[Cornell Computer Science Report 120 (1972)]. C. Pandu Rangan showed
that if we compute the polynomial as L1R1 + ... + Ln−1Rn−1, where the L’s
and R’s are linear combinations of the x’s, at least n – 2 additions are
needed to form the L’s and R’s [J. Algorithms 4 (1983), 282–285]. But his
lower bound does not obviously apply to all polynomial chains.
69. Let yij = xij – [i = j], and apply the recursive construction (31) to the
matrix I + Y, using arithmetic on power series in the n2 variables yij but
ignoring all terms of total degree > n. Each entry h of the array is
represented as a sum h0 + h1 + ... + hn, where hk is the value of a
homogeneous polynomial of degree k. Then every addition step becomes n
+ 1 additions, and every multiplication step becomes ≈ n2 multiplications
and ≈ n2 additions. Furthermore, every division is by a quantity of the
form 1 + h1 + ... + hn, since all divisions in the recursive construction are
by 1 when the yij are entirely zero; therefore division is slightly easier than
multiplication (see Eq. 4.7–(3) when V0 = 1). Since we stop when reaching
a 2 × 2 determinant, we need not subtract 1 from yjj when j > n – 2. It turns
out that when redundant computations are suppressed, this method requires

 multiplications and
 additions, thus n5–O(n4) of each. A

similar method can be used to eliminate division in many other cases; see
Crelle 264 (1973), 184–202. (But the next exercise constructs an even
faster divisionless scheme for determinants.)
70. Set A = λ – x, B = –u, C = –v, and D = λI – Y in the hinted identity, then
take the determinant of both sides, using the fact that I/λ + Y /λ2 + Y2/λ3 + ...
is the inverse of D as a formal power series in 1/λ. We need to compute uY
kv only for 0 ≤ k ≤ n – 2, because we know that fX(λ) is a polynomial of
degree n; thus, only n3 + O(n2) multiplications and n3 + O(n2) additions are
needed to advance from degree n − 1 to degree n. Proceeding recursively,
we obtain the coefficients of fX from the elements of X after doing

 multiplications and addition-
subtractions.

If we only want to compute det X = (–1)nfX(0), we save
multiplicaand additions. This division-free method for determinant
evaluation is in fact quite economical when n has a moderate size; it beats
the obvious cofactor expansion scheme when n > 4.

If ω is the exponent of matrix multiplication in exercise 66, the same
approach leads to a division-free computation in O(nω+1+∊) steps, because
the vectors uYk for 0 ≤ k < n can be evaluated in O(M(n) log n) steps:
Take a matrix whose first 2l rows are uYk for 0 ≤ k < 2l and multiply it by
Y2l; then the first 2l rows of the product are uYk for 2l ≤ k < 2l+1. [See S. J.
Berkowitz, Inf. Processing Letters 18 (1984), 147–150.] Of course such
asymptotically “fast” matrix multiplication is strictly of theoretical
interest. E. Kaltofen has shown how to evaluate determinants with only

 additions, subtractions, and multiplications [Proc. Int.
Symp. Symb. Alg. Comp. 17 (1992), 342–349]; his method is interesting
even with M(n) = n3.
71. Suppose g1 = u1 ° v1, . . . , gr = ur ° vr, and f = α1g1 + ... + αrgr + p0,
where uk = βk1g1 + ... +βk(k−1)gk−1 +pk, vk = γk1g1 + ... +γk(k−1)gk−1 +qk,
each ° is “×” or “/”, and each pj or qj is a polynomial of degree ≤ 1 in x1, .
. . , xn. Compute auxiliary quantities wk, yk, zk for k = r, r − 1, . . . , 1 as
follows: wk = αk + β(k+1)kyk+1 + γ(k+1)kzk+1 + ... + βrkyr + γrkzr, and

Then , where ′ denotes the
derivative with respect to any of x1, . . . , xn. [W. Baur and V. Strassen,
Theoretical Comp. Sci. 22 (1983), 317–330. A related method had been
published by S. Linnainmaa, BIT 16 (1976), 146–160, who applied it to
analysis of rounding errors.] We save two chain multiplications if gr = ur ×
vr, since wr = αr. Repeating the construction gives all second partial
derivatives with at most 9m + 3d chain multiplications and 4d divisions.
72. There is an algorithm to compute the tensor rank over algebraically
closed fields like the complex numbers, since this is a special case of the
results of Alfred Tarski, A Decision Method for Elementary Algebra and
Geometry, 2nd edition (Berkeley, California: Univ. of California Press,

1951); but the known methods do not make this computation really feasible
except for very small tensors. Over the field of rational numbers, the
problem isn’t even known to be solvable in finite time.
73. In such a polynomial chain on N variables, the determinant of any N ×
N matrix for N of the linear forms known after l addition-subtraction steps
is at most 2l. And in the discrete Fourier transform, the matrix of the final N
= m1 . . . mn linear forms has determinant NN/2, since its square is N times a
permutation matrix by exercise 13. [JACM 20 (1973), 305–306.]
74. (a) If k = (k1, . . . , ks)T is a vector of relatively prime integers, so is
Uk, since any common divisor of the elements of Uk divides all elements
of k = U−1Uk. Therefore V Uk cannot have all integer components.

(b) Suppose there is a polynomial chain for V x with t multiplications.
If t = 0, the entries of V must all be integers, so s = 0. Otherwise let λi = α
× λk or λi = λj × λk be the first multiplication step. We can assume that λk =
n1x1 + ... + nsxs + β where n1, . . . , ns are integers, not all zero, and β is
constant. Find a unimodular matrix U such that (n1, . . . , ns)U = (0, . . . , 0,
d), where d = gcd(n1, . . . , ns). (The algorithm discussed before Eq. 4.5.2–
(14) implicitly defines such a U.) Construct a new polynomial chain with
inputs y1, . . . , ys−1 as follows: First calculate x = (x1, . . . , xs)T = U(y1, . . .
, ys−1, –β/d)T, then continue with the assumed polynomial chain for V x.
When step i of that chain is reached, we will have λk = (n1, . . . , ns)x + β =
0, so we can simply set λi = 0 instead of multiplying. After V x has been
evaluated, add the constant vector wβ/d to the result, where w is the
rightmost column of V U, and let W be the other s − 1 columns of V U. The
new polynomial chain has computed V x + wβ/d = V U(y1, . . . , ys−1, –β/d)T

+ wβ/d = W (y1, . . . , ys−1)T, with t − 1 multiplications. But the columns of
W are Z-independent, by part (a); hence t − 1 ≥ s − 1, by induction on s,
and we have t ≥ s.

(c) Let xj = 0 for the t – s values of j that aren’t in the set of Z-
independent columns. Any chain for V x then evaluates V′x′ for a matrix V′
to which part (b) applies.

(d) λ1 = x – y, λ2 = λ1 + λ1, λ3 = λ2 + x, λ4 = (1/6) × λ3, λ5 = λ4 + λ4, λ6
= λ5 + y (= x + y/3), λ7 = λ6 – λ1, λ8 = λ7 + λ4 (= x/2 + y). But {x/2 + y, x +
y/2} needs two multiplications, since the columns of are Z-
independent. [Journal of Information Processing 1 (1978), 125–129.]

Section 4.7
1. Find the first nonzero coefficient Vm, as in (4), and divide both U(z)

and V (z) by zm (shifting the coefficients m places to the left). The quotient
will be a power series if and only if U0 = ... = Um−1 = 0.
2. We have

.
Thus, we can start by replacing (Uj, Vj) by for j ≥ 1, then
set for n ≥ 0, finally replace
for j ≥ 0. Similar techniques are possible in connection with other
algorithms in this section.
3. Yes. When α = 0, it is easy to prove by induction that W1 = W2 = ... = 0.

When α = 1, we find Wn = Vn, by the cute identity

4. If W (z) = eV (z), then W′(z) = V′(z)W (z); we find W0 = eV0, and

If W (z) = ln V (z), the roles of V and W are reversed; hence when V0 = 1
the rule is W0 = 0 and .

[By exercise 6, the logarithm can be obtained to order n in O(n log n)
operations. R. P. Brent observes that exp(V (z)) can also be calculated
with this asymptotic speed by applying Newton’s method to f(x) = ln x – V
(z); therefore general exponentiation (1+V (z))α = exp(α ln(1+V (z))) is
O(n log n) too. Reference: Analytic Computational Complexity, edited
by J. F. Traub (New York: Academic Press, 1975), 172–176.]
5. We get the original series back. This can be used to test a reversion

algorithm.

6. φ(x) = x + x(1 – xV (z)); see Algorithm 4.3.3R. Thus after W0, . . . ,
WN−1 are known, the idea is to input VN, . . . , V2N−1, compute (W0 + ... +
WN−1zN–1) × (V0 + ... + V2N−1z2N−1) = 1 + R0zN + ... + RN−1z2N−1 + O(z2N),
and let WN + ... + W2N−1zN − 1 = –(W0 + ... + WN−1zN−1)(R0 + ... + RN−1zN−1)
+ O(zN).
[Numer. Math. 22 (1974), 341–348; this algorithm was, in essence, first
published by M. Sieveking, Computing 10 (1972), 153–156.] Note that the
total time for N coefficients is O(N log N) arithmetic operations if we use
“fast” polynomial multiplication (exercise 4.6.4–57).
7. when n = (m − 1)k + 1, otherwise 0. (See exercise

2.3.4.4–11.)
8. G1. Input G1 and V1; set n ← 1, U0 ← 1/V1; output W1 = G1U0.
G2. Increase n by 1. Terminate the algorithm if n > N; otherwise input

Vn and Gn.

G3. Set for k = 0, 1, . . . , n – 2 (in this
order); then set .

G4. Output and return to G2.
(The running time of the order N3 algorithm is hereby increased by only
order N2.)

Note: Algorithms T and N determine V[−1](U(z)); the algorithm in this
exercise determines G(V[−1](z)), which is somewhat different. Of course,
the results can all be obtained by a sequence of operations of reversion
and composition (exercise 11), but it is helpful to have more direct
algorithms for each case.
9. n = 1 n = 2 n = 3 n = 4 n = 5

10. Form y1/α = x(1 + a1x + a2x2 + ...)1/α = x(1 + c1x + c2x2 + ...) by means
of Eq. (9); then revert the latter series. (See the remarks following Eq.

1.2.11.3–(11).)
11. Set W0 ← U0, and set (Tk, Wk) ← (Vk, 0) for 1 ≤ k ≤ N. Then for n = 1,
2, . . . , N, do the following: Set Wj ← Wj + UnTj for n ≤ j ≤ N; and then set
Tj ← Tj–1V1 + ... + TnVj–n for j = N, N − 1, . . . , n + 1.

Here T(z) represents V (z)N. An online power series algorithm for this
problem, analogous to Algorithm T, could be constructed, but it would
require about N2/2 storage locations. There is also an online algorithm
that solves this exercise and needs only O(N) storage locations: We may
assume that V1 = 1, if Uk is replaced by and Vk is replaced by
Vk/V1 for all k. Then we may revert V (z) by Algorithm L, and use its
output as input to the algorithm of exercise 8 with G1 = U1, G2 = U2, etc.,
thus computing U(V[−1] [–1](z)) – U0. See also exercise 20.

Brent and Kung have constructed several algorithms that are
asymptotically faster. For example, we can evaluate U(x) for x = V (z) by
a slight variant of exercise 4.6.4–42(c), doing about 2 chain
multiplications of cost M(N) and about N parameter multiplications of
cost N, where M(N) is the number of operations needed to multiply power
series to order N; the total time is therefore O(NM(N) + N2) = O(N2).
A still faster method can be based on the identity U(V0(z) + zmV1(z)) =
U(V0(z)) + zmU′(V0(z))V1(z)+z2mU″(V0(z))V1(z)2/2!+..., extending to about
N/m terms, where we choose ; the first term U(V0(z)) is
evaluated in O(mN(log N)2) operations using a method somewhat like that
in exercise 4.6.4–43. Since we can go from U(k)(V0(z)) to U(k+1)(V0(z)) in
O(N log N) operations by differentiating and dividing by (z), the entire
procedure takes O(mN(log N)2+(N/m) N log N) = O(N log N)3/2

operations. [JACM 25 (1978), 581–595.]
When the polynomials have m-bit integer coefficients, this algorithm

involves roughly N3/2+∊ multiplications of (N lg m)-bit numbers, so the total
running time will be more than N5/2. An alternative approach with asymptotic
running time O(N2+∊) has been developed by P. Ritzmann [Theoretical Comp.
Sci. 44 (1986), 1–16]. Composition can be done much faster modulo a small
prime p (see exercise 26).

12. Polynomial division is trivial unless m ≥ n ≥ 1. Assuming the latter, the
equation u(x) = q(x)v(x)+r(x) is equivalent to U(z) = Q(z)V (z)+zm–n+1

R(z) where U(x) = xm u(x−1), V (x) = xn v(x−1), Q(x) = xm−n q(x−1), and
R(x) = xn−1 r(x−1) are the “reverse” polynomials of u, v, q, and r.

To find q(x) and r(x), compute the first m−n + 1 coefficients of the
power series U(z)/V (z) = W(z) + O(zm−n+1); then compute the power series
U(z) – V (z)W(z), which has the form zm−n+1 T(z) where T(z) = T0 + T1 z + ...
. Note that Tj = 0 for all j ≥ n; hence Q(z) = W(z) and R(z) = T(z) satisfy the
requirements.
13. Apply exercise 4.6.1–3 with u(z) = zN and v(z) = W0 + · · · + WN-1zN-1;
the desired approximations are the values of v3(z)/v2(z) obtained during the
course of the algorithm. Exercise 4.6.1–26 tells us that there are no further
possibilities with relatively prime numerator and denominator. If each Wi
is an integer, an all-integer extension of Algorithm 4.6.1C will have the
desired properties.

Notes: See the book History of Continued Fractions and Padé
Approximants by Claude Brezinski (Berlin: Springer, 1991) for further
information. The case N = 2n + 1 and deg(w1) = deg(w2) = n is of particular
interest, since it is equivalent to a so-called Toeplitz system; asymptotically
fast methods for Toeplitz systems are surveyed in Bini and Pan, Polynomial
and Matrix Computations 1 (Boston: Birkhäuser, 1994), §2.5. The method
of this exercise can be generalized to arbitrary rational interpolation of the
form W (z) ≡ p(z)/q(z) (modulo (z − z1) . . . (z − zN)), where the zi’s need
not be distinct; thus, we can specify the value of W (z) and some of its
derivatives at several points. See Richard P. Brent, Fred G. Gustavson, and
David Y. Y. Yun, J. Algorithms 1 (1980), 259–295.
14. If U (z) = z + Uk zk + · · · and V (z) = zk + Vk+1 zk+1 + · · ·, we find that
the difference V (U (z)) − U ′ (z)V (z) is ∑j ≥1 z2k+j−1 j(Uk Vk+j − Uk+j +
(polynomial involving only Uk, . . . , Uk+j−1, Vk+1, . . ., Vk+j−1)); hence V
(z) is unique if U(z) is given and U(z) is unique if V (z) and Uk are given.

The solution depends on two auxiliary algorithms, the first of which
solves the equation V (z + zk U (z)) = (1 + zk−1 W (z))V (z) + zk−1 S(z) +

O(zk−1+n) for V (z) = V0 + V1 z + · · · + Vn−1 zn−1, given U (z), W (z), S(z),
and n. If n = 1, let V0 = −S(0)/W (0); or let V0 be arbitrary when S(0) = W
(0) = 0. To go from n to 2n, let

and let satisfy

The second algorithm solves W (z) U (z) + zU ′ (z) = V (z) + O(zn) for U
(z) = U0 + U1 z+· · ·+Un−1 zn−1, given V (z), W (z), and n. If n = 1, let U0 = V
(0)/W (0), or let U0 be arbitrary in case V (0) = W (0) = 0. To go from n to
2n, let W (z) U (z) + zU ′ (z) = V (z) – zn R(z) + O(z2n), and let Û (z) = Un +
... + U2n−1 zn−1 be a solution to the equation (n + W(z)) Û (z) + zÛ′ (z) = R(z)
+ O(zn).

Resuming the notation of (27), the first algorithm can be used to solve
 to any desired accuracy, and we set

. To find P (z), suppose we have V (P (z)) = P ′ (z)V (z) +
O(z2k−1+n), an equation that holds for n = 1 when P (z) = z + αzk and α is
arbitrary. We can go from n to 2n by letting V (P (z)) = P ′ (z)V (z) + z2k−1+n

R(z) + O(z2k−1+2n) and replacing P (z) by , where the second
algorithm is used to find the polynomial (z) such that

.
15. The differential equation U ′ (z)/U (z)k = 1/zk implies that U (z)1−k =
z1−k + c for some constant c. So we find U[n] (z) = z/(1 + cnz1−k)1/(k−1).

A similar argument solves (27) for arbitrary V (z): If W ′ (z) = 1/V (z),
we have W (U[n] (z)) = W (z) + nc for some c.
16. We want to show that

. This follows since
.

Consequently we have
.

17. Equating coefficients of xlym, the convolution formula states that
, which is the same as [zn] V (z)l+m =

∑k ([zk]V (z)l)([zn−k] V (z)m), which is a special case of (2).
Notes: The name “poweroid” was introduced by J. F. Steffensen, who

was the first of many authors to study the striking properties of these
polynomials in general [Acta Mathematica 73 (1941), 333–366]. For a
review of the literature, and for further discussion of the topics in the next
several exercises, see D. E. Knuth, The Mathematica Journal 2 (1992), 67–
78. One of the results proved in that paper is the asymptotic formula

, if V1 = 1 and sV ′ (s)
= y and y = n/x is bounded as x → ∞ and n → ∞.
18. We have Vn (x) = ∑k xk n! [zn] V (z)k/k! = n! [zn] exV (z). Consequently
Vn (x)/x = (n − 1)! [zn−1] V′ (z) exV (z) when n > 0. We get the stated
identity by equating the coefficients of zn−1 in V′ (z) e(x+y)V (z) = V′ (z) exV (z)

eyV (z).
19. We have

by the multinomial theorem 1.2.6–(42). These coefficients, called partial
Bell polynomials [see Annals of Math. (2) 35 (1934), 258–277], arise also
in Arbogast’s formula, exercise 1.2.5–21, and we can associate the terms
with set partitions as explained in the answer to that exercise. The recurrence

shows how to calculate column k from columns 1 and k − 1; it is readily
interpreted with respect to partitions of {1, . . ., n}, since there are
ways to include the element n in a subset of size j. The first few rows of the
matrix are

20. [zn] W (z)k = ∑j ([zj] U(z)k)([zn] V (z)j); hence wnk = (n!/k!) ∑j
((k!/j!)ujk) × ((j!/n!)vnj). [E. Jabotinsky, Comptes Rendus Acad. Sci. 224
(Paris, 1947), 323–324.]
21. (a) If U(z) = αW (βz) we have

; in particular, if U(z) = V[−1](z)
= –W (–z) we have unk = (–1)n−kwnk. So ∑k unkvkm and ∑k vnkukm
correspond to the identity function z, by exercise 20.

(b) [Solution by Ira Gessel.] This identity is, in fact, equivalent to
Lagrange’s inversion formula: We have

, and the coefficient
of zn in V[−1](z)k is n−1 [tn−1] ktn+k−1/V (t)n by exercise 16. On the other
hand we have defined v(–k)(–n) to be ,
which equals (–1)n−k(n − 1) . . . (k + 1)k [zn−1] zn+k−1/V (z)n.
22. (a) If V (z) = U{α}(z) and W (z) = V{β}(z), we have W (z) = V (zW (z)β)
= U(zW (z)β V (zW (z)β)α) = U(zW (z)α+β). (Notice the contrast between
this law and the similar formulas U[1](z) = U(z), U[α][β](z) = U[αβ](z) that
apply to iteration.)

(b) B{2}(z) is the generating function for binary trees, 2.3.4.4–(12),
which is W (z)/z in the example z = t – t2 following Algorithm L.
Moreover, B{t}(z) is the generating function for t-ary trees, exercise
2.3.4.4–11.

(c) The hint is equivalent to zU{α}(z)α = W[−1](z), which is equivalent
to the formula zU{α}(z)α/U(zU{α}(z)α)α = z. Now Lagrange’s inversion
theorem (exercise 8) says that when x is a
positive integer. (Here W (z)−n is a Laurent series—a power series
divided by a power of z; we can use the notation [zm] V (z) for Laurent
series as well as for power series.) Therefore [zn] U{α}(z)x = [zn] (W[−1]

(z)/z)x/α = [zn+x/α] W[−1](z)x/α is equal to
 when x/α is

a positive integer. We have verified the result for infinitely many α; that is
sufficient, since the coefficients of U{α}(z)x are polynomials in α.

We’ve seen special cases of this result in exercises 1.2.6–25 and
2.3.4.4–29. One memorable consequence of the hint is the case α = –1:

(d) If U0 = 1 and Vn(x) is the poweroid for V (z) = ln U(z), we’ve just
proved that xVn(x + nα)/(x + nα) is the poweroid for ln U{α}(z). So we can
plug this poweroid into the former identities, changing y to y – αn in the
second formula.
23. (a) We have U = I + T where Tn is zero in rows ≤ n. Hence ln U = T –
 T2 + T3 – ... will have the property that exp

. Each entry of Uα is a
polynomial in α, and the relations of exercise 19 hold whenever α is a
positive integer; therefore Uα is a power matrix for all α, and its first
column defines U[α](z). (In particular, U−1 is a power matrix; this is
another way to revert U(z).)

(b) Since U∊ = I + ∊ ln U + O(∊2), we have

(c) , and we have

Also
(d) The identity follows from the fact that U commutes with ln U. It

determines ln−1 when n ≥ 4, because the coefficient of ln−1 on the left is
nu2, while the coefficient on the right is un(n−1) = u2. Similarly, if u2 =
... = uk−1 = 0 and uk ≠ 0, we have lk = uk and the recurrence for n ≥ 2k
determines lk+1, lk+2, . . . : The left side has the form

 and the right side has the form

. In general,
.

(e) We have U = ∑m (ln U)m/m!, and for fixed m the contribution to un
= un1 from the mth term is ∑lnmnm−1

 . . . ln2n1
ln1n0

 summed over n = nm > ...
> n1 > n0 = 1. Now apply the result of part (b). [See Trans. Amer. Math.
Soc. 108 (1963), 457–477.]
24. (a) By (21) and exercise 20, we have U = VDV−1 where V is the power
matrix of the Schröder function and D is the diagonal matrix diag(u, u2, u3,
. . .). So we may take ln U = V diag(ln u, 2 ln u, 3 ln u, . . .)V−1. (b) The
equation W VDV−1 = VDV−1W implies (V−1W V)D = D(V−1W V). The
diagonal entries of D are distinct, so V−1W V must be a diagonal matrix D′.
Thus W = VD′V−1, and W has the same Schröder function as U. It follows
that W1 ≠ 0 and W = VDαV−1, where α = (ln W1)/(ln U1).

25. We must have k = l because [zk+l−1] U(V (z)) = Uk+l−1 + Vk+l−1 + kUkVl.
To complete the proof it suffices to show that Uk = Vk and U(V (z)) = V
(U(z)) implies U(z) = V (z). Suppose l is minimal with Ul ≠ Vl, and let n =
k + l − 1. Then we have unk – vnk = (ul – vl); unj = vnj for all j > k; unl =

uk; and unj = 0 for l < j < n. Now the sum ∑j unjvj = un + unkvk + ... +
unlvl + vn must be equal to ∑j vnjuj; so we find (ul – vl)vk = vk(ul –
vl). But we have if and only if k = l.

[From this exercise and the previous one, we might suspect that U(V
(z)) = V (U(z)) only when one of U and V is an iterate of the other. But this
is not necessarily true when U1 and V1 are roots of unity. For example, if
V1 = –1 and U(z) = V[2](z), V is not an iterate of U[1/2], nor is U[1/2] an
iterate of V .]
26. Writing U(z) = U[0](z2) + zU[1](z2), we have U(V (z)) ≡ U[0](V1z2 +
V2z4 + ...) + V (z)U[1](V1z2 + V2z4 + ...) (modulo 2). The running time
satisfies T(N) = 2T (N/2) + C(N), where C(N) is essentially the time for
polynomial multiplication mod zN. We can make C(N) = O(N1+∊) by the
method of, say, exercise 4.6.4–59; see also the answer to exercise 4.6–5.

A similar method works mod p in time O(pN1+∊). [D. J. Bernstein, J.
Symbolic Computation 26 (1998), 339–341.]
27. From (W (qz) – W (z))V (z) = W (z)(V (qmz) – V (z)) we obtain the
recurrence . [J.
Difference Eqs. and Applics. 1 (1995), 57–60.]
28. Note first that δ(U(z)V (z)) = (δU(z))V (z) + U(z)(δV (z)), because
t(mn) = t(m) + t(n). Therefore δ(V (z)n) = nV (z)n−1δV (z) for all n ≥ 0, by
induction on n; and this is the identity we need to show that δeV (z) = ∑n≥0

δ(V (z)n/n!) = eV (z)δV (z). Replacing V (z) by ln V (z) in this equation
gives V (z) δ ln V (z) = δV (z); hence δ(V (z)α) = δeα ln V (z) = eα ln V (z) δ(α
ln V (z)) = αV (z)α–1 for all complex numbers α.

It follows that the desired recurrences are
(a) W1 = 1, Wn = Σd\n, d>1((α+1)t(d)/t(n)−1)VdWn/d;

(b) W1 = 1, Wn = Σd\n, d>1 (t(d)/t(n))VdWn/d;

(c) W1 = 0, Wn = Vn + Σd\n, d>1(t(d)/t(n)−1)VdWn/d.
[See H. W. Gould, AMM 81 (1974), 3–14. These formulas hold when t is any
function such that t(m) + t(n) = t(mn) and t(n) = 0 if and only if n = 1, but the
suggested t is simplest. The method discussed here works also for power
series in arbitrarily many variables; then t is the total degree of a term.]

“It is certainly an idea you have there,” said Poirot, with some
interest.

“Yes, yes, I play the part of the computer.
One feeds in the information—”

“And supposing you come up with all the wrong answers?”
said Mrs. Oliver.

“That would be impossible,” said Hercule Poirot.
“Computers do not do that sort of a thing.”

“They’re not supposed to,” said Mrs. Oliver,
“but you’d be surprised at the things that happen

sometimes.”

— AGATHA CHRISTIE, Hallowe’en Party (1969)

Appendix A. Tables of Numerical Quantities

Table 1 Quantities that are Frequently Used in Standard Subroutines and in
Analysis of Computer Programs (40 Decimal Places)

Table 2 Quantities that are Frequently Used in Standard Subroutines and in
Analysis of Computer Programs (45 Octal Places)

Several of the 40-digit values in Table 1 were computed on a desk
calculator by John W. Wrench, Jr., for the first edition of this book. When
computer software for such calculations became available during the 1970s,
all of his contributions proved to be correct. The 40-digit values of other
fundamental constants can be found in Eqs. 4.5.2–(60), 4.5.3–(26), 4.5.3–
(41), 4.5.4–(9), and the answers to exercises 4.5.4–8, 4.5.4–25, 4.6.4–58.

Table 3 Values of Harmonic Numbers, Bernoulli Numbers, and Fibonacci
Numbers, for Small Values of n

For any x, let . Then

and, in general, when 0 < p < q (see exercise 1.2.9–19),

Appendix B. Index to Notations

In the following formulas, letters that are not further qualified have the
following significance:

Appendix C. Index to Algorithms and Theorems

Algorithm 3.1K, 5.
Theorem 3.2.1.2A, 17–19.
Theorem 3.2.1.2B, 20.
Theorem 3.2.1.2C, 20–21.
Theorem 3.2.1.2D, 21.
Lemma 3.2.1.2P, 17–18.
Lemma 3.2.1.2Q, 18.
Lemma 3.2.1.2R, 19.
Algorithm 3.2.2A, 28.
Program 3.2.2A, 28.
Algorithm 3.2.2B, 34.
Program 3.2.2B, 34.
Algorithm 3.2.2M, 33.
Algorithm 3.2.2X, 557.
Algorithm 3.2.2Y, 557.
Algorithm 3.3.2C, 64–65.
Algorithm 3.3.2G, 62.
Algorithm 3.3.2P, 65–66.
Algorithm 3.3.2R, 563.
Algorithm 3.3.2S, 71.
Lemma 3.3.3B, 84–85.
Algorithm 3.3.3D, 573.
Theorem 3.3.3D, 87.
Theorem 3.3.3K, 89.
Theorem 3.3.3P, 80–81.
Lemma 3.3.4A, 99.
Theorem 3.3.4N, 113.
Algorithm 3.3.4S, 101–103.
Algorithm 3.3.4S′, 582.
Algorithm 3.4.1A, 134.

Algorithm 3.4.1B, 588–589.
Algorithm 3.4.1F, 129.
Algorithm 3.4.1G, 587.
Algorithm 3.4.1L, 126.
Algorithm 3.4.1M, 127–128.
Algorithm 3.4.1N, 587.
Algorithm 3.4.1P, 122.
Algorithm 3.4.1R, 130–131.
Algorithm 3.4.1S, 133.
Algorithm 3.4.2P, 145.
Algorithm 3.4.2R, 144.
Algorithm 3.4.2S, 142.
Definition 3.5A, 150.
Theorem 3.5A, 152–153.
Definition 3.5B, 151.
Theorem 3.5B, 153–154.
Definition 3.5C, 151.
Theorem 3.5C, 155–158.
Definition 3.5D, 151.
Definition 3.5E, 155.
Lemma 3.5E, 156.
Theorem 3.5F, 158.
Theorem 3.5G, 174.
Algorithm 3.5L, 173.
Theorem 3.5M, 166–167.
Corollary 3.5P, 154.
Definition 3.5P, 171.
Theorem 3.5P, 175.
Lemma 3.5P1, 171–172.
Lemma 3.5P2, 172.
Lemma 3.5P3, 172.
Lemma 3.5P4, 172.
Definition 3.5Q1, 168.

Definition 3.5Q2, 168.
Definition 3.5R1, 159.
Definition 3.5R2, 159.
Definition 3.5R3, 161.
Definition 3.5R4, 161.
Definition 3.5R5, 162.
Definition 3.5R6, 163.
Corollary 3.5S, 154.
Lemma 3.5T, 163.
Algorithm 3.5W, 164.
Theorem 3.5W, 164–165.
Algorithm 4.1H, 610.
Algorithm 4.1S, 609.
Algorithm 4.2.1A, 216–217.
Program 4.2.1A, 218–219.
Algorithm 4.2.1M, 220.
Program 4.2.1M, 220–221.
Algorithm 4.2.1N, 217.
Theorem 4.2.2A, 235.
Theorem 4.2.2B, 236.
Theorem 4.2.2C, 236.
Theorem 4.2.2D, 237.
Lemma 4.2.2T, 235.
Program 4.2.3A, 247–249.
Program 4.2.3D, 251–252.
Program 4.2.3M, 249–250.
Theorem 4.2.4F, 260–262.
Lemma 4.2.4Q, 258–259.
Algorithm 4.3.1A, 266.
Program 4.3.1A, 266–267.
Theorem 4.3.1A, 271.
Algorithm 4.3.1A′, 623.
Program 4.3.1A′, 623.

Algorithm 4.3.1B, 623.
Program 4.3.1B, 624.
Theorem 4.3.1B, 272.
Algorithm 4.3.1C, 623–624.
Algorithm 4.3.1D, 272–273.
Program 4.3.1D, 273–275, 626.
Algorithm 4.3.1M, 268.
Program 4.3.1M, 269–270.
Algorithm 4.3.1N, 282.
Algorithm 4.3.1Q, 625.
Algorithm 4.3.1S, 267.
Program 4.3.1S, 267–268.
Theorem 4.3.2C, 286.
Theorem 4.3.2S, 291.
Theorem 4.3.3A, 296.
Theorem 4.3.3B, 302.
Algorithm 4.3.3R, 312.
Algorithm 4.3.3T, 299–301.
Algorithm 4.4A, 636.
Algorithm 4.5.2A, 337.
Program 4.5.2A, 337.
Program 4.5.2A′, 373.
Algorithm 4.5.2B, 338.
Program 4.5.2B, 339–340.
Algorithm 4.5.2C, 341.
Theorem 4.5.2D, 342.
Algorithm 4.5.2E, 336.
Algorithm 4.5.2K, 356.
Algorithm 4.5.2L, 347.
Algorithm 4.5.2X, 342.
Algorithm 4.5.2Y, 646.
Theorem 4.5.3E, 368.
Theorem 4.5.3F, 360.

Algorithm 4.5.3L, 375.
Corollary 4.5.3L, 360.
Lemma 4.5.3M, 367.
Theorem 4.5.3W, 366.
Algorithm 4.5.4A, 380.
Theorem 4.5.4A, 396.
Algorithm 4.5.4B, 385–386.
Algorithm 4.5.4C, 387.
Algorithm 4.5.4D, 389.
Program 4.5.4D, 390.
Theorem 4.5.4D, 402.
Algorithm 4.5.4E, 397–398.
Algorithm 4.5.4F, 659–660.
Algorithm 4.5.4L, 667–668.
Theorem 4.5.4L, 409–411.
Algorithm 4.5.4P, 395.
Algorithm 4.5.4S, 658.
Algorithm 4.6.1C, 428–429.
Algorithm 4.6.1D, 421.
Algorithm 4.6.1E, 426–427.
Lemma 4.6.1G, 422–423.
Lemma 4.6.1H, 423.
Algorithm 4.6.1R, 425–426.
Algorithm 4.6.1S, 676.
Algorithm 4.6.1T, 677.
Algorithm 4.6.2B, 441–442.
Algorithm 4.6.2D, 447–448.
Algorithm 4.6.2F, 452.
Algorithm 4.6.2N, 444.
Algorithm 4.6.2S, 681–682.
Algorithm 4.6.3A, 462.
Corollary 4.6.3A, 468.
Program 4.6.3A, 691.

Theorem 4.6.3A, 467–468.
Theorem 4.6.3B, 468–469.
Theorem 4.6.3C, 469–470.
Theorem 4.6.3D, 470–471.
Corollary 4.6.3E, 472–473.
Theorem 4.6.3E, 471–472.
Theorem 4.6.3F, 476.
Theorem 4.6.3G, 479.
Theorem 4.6.3H, 475–476.
Lemma 4.6.3K, 474.
Lemma 4.6.3P, 471.
Algorithm 4.6.3T, 692.
Theorem 4.6.4A, 496.
Algorithm 4.6.4C, 713.
Theorem 4.6.4C, 496.
Algorithm 4.6.4D, 489.
Theorem 4.6.4E, 493–494.
Algorithm 4.6.4G, 698.
Algorithm 4.6.4H, 489.
Algorithm 4.6.4J, 698.
Theorem 4.6.4M, 495.
Algorithm 4.6.4N, 713–714.
Algorithm 4.6.4S, 489.
Lemma 4.6.4T, 508.
Theorem 4.6.4W, 513–514.
Algorithm 4.7G, 720.
Algorithm 4.7L, 527–528.
Algorithm 4.7N, 529.
Algorithm 4.7T, 528.

At any step, arbitrary combinations of algorithms and theorems can be
applied to solve a given problem.

— KARSTEN HOMANN and JACQUES CALMET (1995)

Index and Glossary

Seek and ye shall find.
— Matthew 7:7

When an index entry refers to a page containing a relevant exercise, see also
the answer to that exercise for further information. An answer page is not
indexed here unless it refers to a topic not included in the statement of the
exercise.
0-origin indexing, 444, 512.
0–1 matrices, 499.
0–1 polynomials, 497, 519, 707.
[0 . . 1) sequence, 151.
2-adic numbers, 213, 629.
10-adic numbers, 632.
1009, vi, 188, 413, 661.
69069, 75, 106, 108.
∞, representation of, 225, 244–245, 332.
∞-distributed sequence, 151–161, 177, 180–182.
γ (Euler’s constant), 359, 379, 726–727, 733.
π (circle ratio), 41, 151, 158, 161, 198, 200, 209, 279–280, 284, 358, 726–
727, 733.

as “random” example, 21, 25, 33, 47, 52, 89, 103, 106, 108, 184, 238,
243, 252, 324–325, 555, 593, 599, 665.

π (x) (prime count), 381–382, 416.
ρ (n) (ruler function), 540.
ϕ (golden ratio), 164, 283, 359, 360, 514, 652, 726–727, 733.

logarithm of, 283.
number system, 209.

φ (n) (totient function), 19–20, 289, 369, 376, 583, 646.
χ2 , 42, 56, see Chi-square.

A priori tests, 80.

Abacus, 196.
binary, 200.

Abel, Niels Henrik, binomial theorem, 58, 535.
Abramowitz, Milton, 44.
Absolute error, 240, 309, 312–313.
Absorption laws, 694.
Abuse of probability, 433.
Abuse of theory, 88.
ACC: Floating point accumulator, 218–219, 248–249.
Acceptance-rejection method, 125–126, 128–129, 134, 138, 139, 591.
Accuracy of floating point arithmetic, 222, 229–245, 253, 329, 438, 485.
Accuracy of random number generation, 27, 95, 105, 185.
Adaptation of coefficients, 490–494, 516–517.
Add-with-carry sequence, 23, 35, 72, 108, 547.
Addition, 194, 207, 210, 213, 265–267.

complex, 487.
continued fractions, 649.
double-precision, 247–249, 251.
floating point, 215–220, 227–228, 230–231, 235–238, 253–254, 602.
fractions, 330–331.
left to right, 281.
mixed-radix, 281.
mod m, 12, 15, 203, 287–288.
modular, 285–286, 293.
multiprecision, 266–267, 276–278, 281, 283.
polynomial, 418–420.
power series, 525.
sideways, 463, 466.

Addition chains, 465–485, 494, 519.
ascending, 467.
dual, 481, 485.
l0-, 479, 483, 485.
star, 467, 473–477, 480, 482.

Addition-subtraction chains, 484.
Additive random number generation, 27–29, 39–40, 186–188, 193.
Adleman, Leonard Max, 403, 405, 414, 417, 671.
Admissible numbers, 177.
Agrawal, Manindra (), 396.
Ahrens, Joachim Heinrich Lüdecke, 119, 129–130, 132–134, 136, 137, 140,
141, 588.
Ahrens, Wilhelm Ernst Martin Georg, 208.
Akushsky, Izrail Yakovlevich (), 292.
al-Bīrūnī, Abū al-Ray an Mu ammad ibn A mad (

), 461.
al-Kāshī, Jamshīd ibn Mas‘ūd (), 198, 326, 462.
al-Khwārizmī, Abū ‘Abd Allaīh Mu ammad ibn Mūsā (

), 197, 280.
al-Samaw’al (= as-Samaw’al), ibn Ya yā ibn Yahūda al-Maghribī (

), 198.
al-Uqlīdisī, Abū al- asan A mad ibn Ibrāhīm (

), 198, 280–281, 461.
Ala-Nissilä, Tapio, 75, 570.
Alanen, Jack David, 30.
Aldous, David John, 145.
Alekseyev, Valery Borisovich (), 699.
Alexeev, Boris Vasilievich (), 117.
Alexi, Werner, 669.
Alford, William Robert, 659.
Algebra, free associative, 437.
Algebraic dependence, 496, 518.
Algebraic functions, 533.
Algebraic integers, 396.
Algebraic number fields, 331, 333, 345, 403, 674.
Algebraic system: A set of elements together with operations defined on
them, see Field, Ring, Unique factorization domain.
ALGOL language, 279.

Algorithms: Precise rules for transforming specified inputs into specified
outputs in a finite number of steps.

analysis of, 7–9, 76, 140, 147, 276–278, 281, 301–302, 348–356, 360–
373, 377–378, 382–384, 399–400, 435, 445–447, 455–456, 530–532,
658, 714.
complexity of, 138, 178–179, 280, 294–318, 396, 401–402, 416, 453,
465–485, 494–498, 516–524, 720.
discovery of, 99.
historical development of, 335, 461–462.
proof of, 281–282, 336–337, 592.

Alias method, 120, 127, 139.
Allouche, Jean-Paul, 656.
ALPAK system, 419.
Alt, Helmut, 706.
American National Standards Institute, 226, 246, 600, 602.
AMM: American Mathematical Monthly, published by the Mathematical
Association of America since 1894.
Amplification of guesses, 172–174, 416–417.
Analysis of algorithms, 7–9, 76, 140, 147, 276–278, 281, 301–302, 348–
356, 360–373, 377–378, 382–384, 399–400, 435, 445–447, 455–456, 530–
532, 658, 714.

history, 360.
Analytical Engine, 189, 201.
Ananthanarayanan, Kasi (), 128.
AND (bitwise and), 140, 188, 322, 328–329, 389–390, 453, 671.
Anderson, Stanley Frederick, 312.
ANSI: The American National Standards Institute, 226, 246, 600, 602.
Antanairesis, 335–336, 378.
Apollonius of Perga (), 225.
Apparently random numbers, 3–4, 170–171.
Apparition, rank of, 410–411.
Approximate associative law, 232–233, 239–240, 244.
Approximate equality, 224, 233–235, 239, 242–243, 245.
Approximately linear density, 126.

Approximation, by rational functions, 438–439, 534.
by rational numbers, 331–332, 378–379, 617.

Arabic mathematics, 197, 280–281, 326, 461–462.
Arazi, Benjamin (), 396.
Arbitrary precision, 279, 283, 331, 416, see also Multiple-precision.
Arbogast, Louis François Antoine, 722.
Archibald, Raymond Clare, 201.
Arctangent, 313, 628.
Aristotle of Stagira, son of Nicomachus (

), 335.
Arithmetic, 194–537, see Addition, Comparison, Division, Doubling,
Exponentiation, Greatest common divisor, Halving, Multiplication,
Reciprocals, Square root, Subtraction.

complex, 205, 228, 283, 292, 307–310, 487, 501, 506, 519, 700, 706.
floating point, 214–264.
fractions, 330–333, 420, 526.
fundamental theorem of, 334, 422, 483.
mod m, 12–16, 185–186, 203, 284, 287–288.
modular, 284–294, 302–305, 450, 454, 499.
multiprecision, 265–318.
polynomial, 418–524.
power series, 525–537.
rational, 330–333, 420, 526.

Arithmetic chains, see Quolynomial chains.
Armengaud, Joël, 409.
Arney, James W., 385.
Arrival time, 132.
Arwin, Axel, 687.
Āryabhata I (), 343.
ASCII: The American Standard Code for Information Interchange, 417.
Ashenhurst, Robert Lovett, 240, 242, 327.
Associative law, 229–233, 242, 341, 418, 694.

approximate, 232–233, 239–240, 244.

Asymptotic values: Functions that express the limiting behavior approached
by numerical quantities, 59–60, 79, 263–264, 355, 372–373, 377–378, 415,
472, 525, 541–542, 659, 686, 722.
Atanasoff, John Vincent, 202.
Atkin, Arthur Oliver Lonsdale, 681.
Atrubin, Allan Joseph, 315.
Automata (plural of Automaton), 313–317, 329, 416.
Automorphic numbers, 293–294.
Avogadro di Quaregna e Cerreto, Lorenzo Romano Amedeo Carlo, number,
214, 227, 238, 240.
Axioms for floating point arithmetic, 230–231, 242–245.
Avanzi, Roberto Maria, 396.
b-ary number, 151.
b-ary sequence, 151–153, 177.
Babbage, Charles, 201.
Babenko, Konstantin Ivanovich (), 366,
376.
Babington-Smith, Bernard, 3, 74, 76.
Babylonian mathematics, 196, 225, 335.
Bach, Carl Eric, 395, 661, 663, 689.
Bachet, Claude Gaspard, sieur de Méziriac, 208.
Bag, 694.
Bailey, David Harold, 284, 634.
Baker, Kirby Alan, 316.
Balanced binary number system, 213.
Balanced decimal number system, 211.
Balanced mixed-radix number system, 103, 293, 631.
Balanced ternary number system, 207–208, 209, 227, 283, 353.
Ballantine, John Perry, 278.
Bareiss, Erwin Hans, 262, 292, 434.
Barlow, Jesse Louis, 262.
Barnard, Robert, 292.
Barnsley, Michael Fielding, 206.
Barton, David Elliott, 74, 566.

Barycentric coordinates, 567.
Base of representation, 195.

floating point, 214–215, 254, 263.
Baseball, 378.
Bauer, Friedrich Ludwig, 241–242, 327.
Baum, Ulrich, 701.
Baur, Walter, 718.
Bays, John Carter, 34.
Beauzamy, Bernard, 452, 461, 683, 684.
Beckenbach, Edwin Ford, 135.
Becker, Oskar Joachim, 359.
Béjian, Robert, 164.
Belaga, Edward Grigorievich (), 496.
Bell, Eric Temple, polynomials, 722.
Bell Telephone Laboratories Model V, 225.
Bellman, Richard Ernest, ix.
Ben-Or, Michael (), 669.
Bender, Edward Anton, 385.
Benford, Frank, 255.
Bentley, Jon Louis, 141.
Berger, Arno, 262.
Bergman, George Mark, 676.
Berkowitz, Stuart J., 718.
Berlekamp, Elwyn Ralph, 439, 449, 456, 681.

algorithm, 439–447.
Bernoulli, Jacques (= Jakob = James), 200.

numbers Bn, 355, 569.
numbers, table, 728.
sequences, 177.

Bernoulli, Nicolas (= Nikolaus), 449.
Bernstein, Daniel Julius, 396, 697, 724.
Berrizbeitia Aristeguieta, Pedro José de la Santísima Trinidad, 396.
Besicovitch, Abram Samoilovitch (), 178.

Beta distribution, 134–135.
Beyer, William Aaron, 115.
Bharati Krishna Tirthaji Maharaja, Jagadguru Swami Sri (

), 208.
Bhāskara I, Ācārya (), 343.
Bienaymé, Irénée Jules, 74.
Bilinear forms, 506–514, 520–524.
Billingsley, Patrick Paul, 384, 661.
Bin-packing problem, 585.
Binary abacus, 200.
Binary basis, 212.
Binary-coded decimal, 202, 322, 328–329.
Binary computer: A computer that manipulates numbers primarily in the
binary (radix 2) number system, 30–32, 201–202, 276, 328, 339, 389–390.
Binary-decimal conversion, 319–329.
Binary digit, 195, 200.
Binary gcd algorithms, 338–341, 348–356, 435.

compared to Euclid’s, 341.
extended, 356.

Binary method for exponentiation, 461–463, 466, 482, 696.
Binary number systems, 195, 198–206, 209–213, 419, 461, 483.
Binary point, 195.
Binary recurrences, 318, 466, 634, 692, 714.
Binary search, 324.
Binary search trees, 593.
Binary shift, 322, 339, 481, 637, 686.
Binary trees, 378, 527, 696, 723.
BINEG computer, 205.
Binet, Jacques Philippe Marie, 653.

identity:
,

564.
Bini, Dario Andrea, 500, 505, 515, 714, 715, 721.
Binomial coefficients, 416, 516, 622.

Binomial distribution, 136–138, 141, 401, 559.
tail of, 167.

Binomial number system, see Combinatorial number system.
Binomial theorem, 526, 534.
Birnbaum, Zygmunt Wilhelm, 57.
Birthday spacings, 34, 71–72, 78–79, 188.
BIT: Nordisk Tidskrift for Informations-Behandling, an international journal
published in Scandinavia since 1961.
Bit: “Binary digit”, either zero or unity, 195, 200.

random, 12, 30–32, 35–36, 38, 48, 119–120, 170–176.
Bitwise operations, 30–31, 140, 202, 328–329, 389–390, 459, 605.

and, 140, 188, 322, 328–329, 389–390, 453, 671.
exclusive or, 31, 32, 193, 419.
or, 140, 686, 695.
shifts, 322, 339, 481, 637, 686.

Björk, Johan Harry, 244.
Blachman, Nelson Merle, 205.
Black box, 455.
Bläser, Markus, 700.
Bleichenbacher, Daniel, 478.
Blinn, James Frederick, 630.
Blöte, Hendrik Willem Jan, 29.
Blouin, François Joseph Raymond Marcel, 582.
Bluestein, Leo Isaac, 634.
Blum, Bruce Ivan, 279.
Blum, Fred, 433, 518.
Blum, Lenore Carol, 36.
Blum, Manuel, 36, 174, 179.

integer, 174–176, 183, 416.
Bofinger, Eve, 563.
Bofinger, Victor John, 563.
Bohlender, Gerd, 242, 616.
Bojańczyk, Adam Wojciech, 646.

Bolker, Ethan David, 593.
Bombieri, Enrico, 683.

norm, 458, 684.
Boolean functions, 173–174.
Boolean operations, see Bitwise operations.
Boone, Steven Richard, 409.
Booth, Andrew Donald, 608.
Border rank, 522–523.
Borel, Émile Félix Édouard Justin, 177.
Borodin, Allan Bertram, 498, 505, 515, 707.
Borosh, Itzhak, 106–107, 117, 291, 584.
Borrow: A negative carry, 267, 273, 281, 545.
Borwein, Peter Benjamin, 284.
Bosma, Wiebren, 665.
Bouyer, Martine, 280.
Bowden, Joseph, 201.
Box, George Edward Pelham, 122.
Boyar, Joan, 599.
Boyd, David William, 691.
Bradley, Gordon Hoover, 343, 378.
Brakke, Kenneth Allen, 608.
Bramhall, Janet Natalie, 530.
Brauer, Alfred Theodor, 470, 478, 483, 690.
Bray, Thomas Arthur, 33, 128, 544.
Brent, Richard Peirce, 8, 28, 40, 130, 136, 139, 141, 187, 241, 279, 280,
313, 348, 352–353, 355, 356, 382, 386, 403, 501, 529–534, 539–540, 556,
590, 600, 643, 644, 646, 657, 658, 695, 719–721.
Brezinski, Claude, 357, 721.
Brillhart, John David, 29, 394, 396, 400, 660.
Brockett, Roger Ware, 712.
Brocot, Achille, 655.
Brontë, Emily Jane, 292.
Brooks, Frederick Phillips, Jr., 226.

Brouwer, Luitzen Egbertus Jan, 179.
Brown, David, see Spencer Brown.
Brown, George William, 135.
Brown, Mark Robbin, 712.
Brown, Robert, see Brownian motion.
Brown, William Stanley, 419, 428, 438, 454, 686.
Brownian motion, 559.
Bruijn, Nicolaas Govert de, 181, 212, 568, 653, 664, 686, 694.

cycle, 38–40.
Brute force, 642.
Bshouty, Nader Hanna (), 700.
Buchholz, Werner, 202, 226.
Bunch, James Raymond, 500.
Buneman, Oscar, 706.
Bunimovich, Leonid Abramovich (), 262.
Bürgisser, Peter, 515.
Burks, Arthur Walter, 202.
Burrus, Charles Sidney, 701.
Butler, James Preston, 77.
Butler, Michael Charles Richard, 442.

C language, 185–188, 193, 327, 556.
CACM: Communications of the ACM, a publication of the Association for
Computing Machinery since 1958.
Cahen, Eugène, 676.
Calculating prodigies, 279, 295.
Calmet, Jacques Francis, 736.
Cameron, Michael James, 409.
Camion, Paul Frédéric Roger, 449.
Campbell, Edward Fay, Jr., vii.
Campbell, Sullivan Graham, 226.
Cancellation error, 58, 245.

avoiding, 617.
Canonical signed bit representation, 611.

Cantor, David Geoffrey, 446, 448, 449, 455, 460, 672, 681.
Cantor, Georg Ferdinand Ludwig Philipp, 209.
Cantor, Moritz Benedikt, 655.
Capovani, Milvio, 500, 715.
Caramuel de Lobkowitz, Juan, 199–200.
Cards, playing, 2, 145, 147, 190.
Carissan, Eugène Olivier, 390.
Carling, Robert Laurence, 104.
Carlitz, Leonard, 84, 90.
Carmichael, Robert Daniel, numbers, 659, 662.
Carr, John Weber, III, 226, 241, 242.
Carroll, Lewis (= Dodgson, Charles Lutwidge), 435.
Carry: An amount propagated to the current digit position from the digits in
less significant positions, 205, 247, 266, 268, 273, 276–278, 281, 419, 470,
547.
Cassels, John William Scott, 109, 158.
Casting out nines, 289, 303, 324.
Castle, Clive Michael Anthony, 653.
Catalan, Eugène Charles, numbers, 723.
Cauchy, Augustin Louis, 208.

inequality, 97, 231.
matrices, 331.

CCITT: The International Telegraph and Telephone Consultative Committee
of the ITU (International Telecommunication Union), 405.
CDC 1604 computer, 291.
CDC 7600 computer, 280.
Ceiling function ⌈x ⌉, 81, 732.
Cellular automaton, see Linear iterative array.
Cerlienco, Luigi, 683.
Certificate of irreducibility, 460.
Certificate of primality, 413.
Cervantes Saavedra, Miguel de, 148.
Cesàro, Ernesto, 354, 622, 640.
Ceulen, Ludolph van, 198.

Chace, Arnold Buffum, 462.
Chain multiplications, 518, 519, 524.
Chain steps, 494.
Chains of primes, 415, 666.
Chaitin, Gregory John, 170, 178.
Chan, Tony Fan-Cheong (), 615.
Chappie, Milton Arthur, 530.
CHAR (convert to characters), 328.
Characteristic, 214, see Exponent part.
Characteristic polynomial, 499, 524.
Charles XII of Sweden, 200.
Chartres, Bruce Aylwin, 242.
Chebotarev, Nikolai Grigorievich (),
690.
Chebyshev (= Tschebyscheff), Pafnutii Lvovich (

), inequality,
183, 669.
Cheng, Qi (), 396.
Cheng, Russell Ch’uan Hsun (), 135.
Chesterton, Gilbert Keith, 417, 537.
Chi-square distribution, 44, 48, 60, 69, 135, 590.

table, 44.
Chi-square test, 42–47, 53–56, 58–60.
Childers, James Gregory, 671.
Ch’in Chiu-Shao (= Qín Jiŭsháo)(), 287, 486.
Chinese mathematics, 197–198, 287, 340–341, 486.
Chinese remainder algorithm, 21, 289–290, 293, 304–305, 505.
Chinese remainder theorem, 285–290, 389, 404, 584.

for polynomials, 440, 456, 509–510.
generalized, 292.

Chiò, Felice, 435.
Chirp transform, 634.
Chiu Chang Suan Shu (), 340.
Choice, random, 2, 119–121, 142.

Chor, Benny (), 669.
Christiansen, Hanne Delgas, 74.
Christie Mallowan, Agatha Mary Clarissa Miller, 725.
Chudnovsky, David Volfovich (), 280, 311,
533.
Chudnovsky, Gregory Volfovich(),
280, 311, 533.
Church, Alonzo, 178.
Cipolla, Michele, 682.
Clarkson, Roland Hunter, 409.
Classical algorithms, 265–284.
Clausen, Michael Hermann, 515, 701.
Clift, Neill Michael, 477–479, 485.
Clinger, William Douglas, 638.
CMath: Concrete Mathematics, a book by R. L. Graham, D. E. Knuth, and
O. Patashnik.
Cochran, William Gemmell, 55.
Cocke, John, 228.
Cocks, Clifford Christopher, 407.
Codes, linear, 711.
Codes for difficulty of exercises, ix–xi.
Cody, William James, Jr., 226.
Coefficients of a polynomial, 418.

adaptation of, 490–494, 516–517.
leading, 418, 451–452, 454.
size of, 420, 451, 457–458, 461.

Cohen, Daniel Isaac Aryeh, 622.
Cohen, Henri José, 345, 658, 687, 712.
Cohn, Paul Moritz, 436, 676.
Coincidence, 6, 8.
Collenne, Joseph Désiré, 201.
Collins, George Edwin, 278, 279, 373, 420, 428, 453, 454, 460, 677.
Collision test, 70–71, 74, 158.
Color values, 284.

Colson, John, 208.
Colton, Charles Caleb, vii.
Column addition, 281, 284.
Combination, random, 142–148.
Combination of random number generators, 33–36, 38, 39.
Combinations with repetitions, 664.
Combinatorial matrices, 116.
Combinatorial number system, 209.
Commutative law, 230, 333, 418, 500, 694, 696.
Commutative ring with identity, 418, 420, 425.
Comp. J.: The Computer Journal, a publication of the British Computer
Society since 1958.
Compagner, Aaldert, 29, 169.
Companion matrix, 512.
Comparison: Testing for <, =, or >.

continued fractions, 654.
floating point numbers, 233–235, 239, 242–243.
fractions, 332.
mixed-radix, 290.
modular, 290.
multiprecision, 281.

Complement notations for numbers, 15, 203–204, 210, 213, 228, 275–276.
Complete binary tree, 667.
Completely equidistributed sequence, 177.
Complex arithmetic, 205, 228, 283, 292, 307–310, 487, 501, 506, 519, 700,
706.
Complex numbers, 420, 497.

representation of, 205–206, 209–210, 292.
Complex radices, 205–206, 209–210.
Complexity of calculation, 138, 178–179, 280, 294–318, 396, 401–402, 416,
453, 465–485, 494–498, 516–524, 720.
Composition of power series, 533, 535–536, 720.
Computability, 162–163, 178.
Concave function, 125, 139, 245, 627.

Conditional expression, 730.
Congruential sequence, inversive, 32–33, 40.
Congruential sequence, linear, 10–26, 145–146, 184–186, 193.

choice of increment, 10–11, 17, 22, 89, 97, 185.
choice of modulus, 12–16, 23, 184.
choice of multiplier, 16–26, 88–89, 105–109, 184–185.
choice of seed, 17, 20, 143, 184.
period length, 16–23.
subsequence of, 11, 73.

Congruential sequence, quadratic, 26–27, 37.
Conjugate of a complex number, 700, 731.
Connection Machine, 538.
Content of a polynomial, 423.
Context-free grammar, 694.
Continuant polynomials, 357, 360, 374, 377, 379, 438, 647, 651, 655, 676.
Continued fractions, 356–359, 396–401.

infinite, 358–359, 374.
quadratic irrationalities, 358, 374–375, 397–401, 412, 415, 665.
regular, 346, 358–359, 368, 374–379, 412, 415, 665.
with polynomial quotients, 438–439, 498, 518.

Continuous binomial distribution, 588.
Continuous distribution functions, 49, 53, 57, 60, 121–136.
Continuous Poisson distribution, 588.
Convergents, 378, 397, 438–439, 617, 622.
Conversion of representations, 221, 228, 252–253, 265, 288–290, 293, 304–
305, see also Radix conversion.
Convex function, 125, 139, 245, 684.
Convolution, 305, 318, 525, 586.

cyclic, 294, 305–307, 510–512, 520, 521.
multidimensional, 710.
negacyclic, 521.
polynomials, see Poweroids.

Conway, John Horton, 109, 402, 623.

Cook, Stephen Arthur, 211, 297, 299, 312, 318, 672, 707.
Cooley, James William, 701.
Coolidge, Julian Lowell, 486.
Coonen, Jerome Toby, 226.
Cooper, Curtis Niles, 409.
Copeland, Arthur Herbert, 177.
Coppersmith, Don, 182, 183, 500, 501, 523, 671.
Cormack, Gordon Villy, 664.
Coroutine, 375.
Corput, Johannes Gualtherus van der, 163–164, 181.
Correlation coefficient, 72–73, 77, 132.
Cosine, 247, 490.
Cotes, Roger, 651.
Couffignal, Louis, 202.
Counting law, 694.
Coupon collector’s test, 63–65, 74, 76, 158, 180.
Couture, Raymond, 546, 582.
Covariance, 67.

matrix, 60, 69, 139.
Cover, Thomas Merrill, 571.
Coveyou, Robert Reginald, 26–27, 37, 88, 92, 114, 115, 553.
Cox, Albert George, 278.
Crandall, Richard Eugene, 403, 632.
Craps, 190.
Cray T94 computer, 409.
Cray X-MP computer, 108.
Creative writing, 190–193.
Crelle: Journal für die reine und angewandte Mathematik, an international
journal founded by A. L. Crelle in 1826.
Cryptography, 2, 193, 403–407, 415, 417, 505.
Cube root modulo m, 404, 415.
Cunningham, Allan Joseph Champneys, 666.
Cusick, Thomas William, 584.

Cut-and-riffle, 147.
Cycle in a random permutation, 384, 460.
Cycle in a sequence, 4, 10, 22, 37–40.

detection of, 7–8.
Cyclic convolution, 294, 305–307, 510–512, 520, 521.
Cyclotomic polynomials, 394, 451, 459, 510, 514.

Dahl, Ole-Johan, 148, 592.
Daniels, Henry Ellis, 568.
Dase, Johann Martin Zacharias, 279.
Datta, Bibhutibhusan () = Bidyāranya, Swami (),
343, 461.
Daudé, Hervé, 366.
Davenport, Harold, 648.
David, Florence Nightingale, 3, 566.
Davis, Chandler, 606.
Davis, Clive Selwyn, 651.
de Bruijn, Nicolaas Govert, 181, 212, 568, 653, 664, 686, 694.

cycle, 38–40.
de Finetti, Bruno, 566.
de Groote, Hans Friedrich, 708.
de Jong, Lieuwe Sytse, 515.
de Jonquières, Jean Philippe Ernest de Fauque, 465–466, 469, 477.
de La Vallée Poussin, Charles Jean Gustave Nicolas, 381.
de Lagny, Thomas Fantet, 279, 360.
de Mairan, Jean-Jacques d’Ortous, 537.
de Maupertuis, Pierre-Louis Moreau, 537.
de Moivre, Abraham, 537.
Debugging, 193, 221–223, 275, 331.
Decimal computer: A computer that manipulates numbers primarily in the
decimal (radix ten) number system, 21, 202–203.
Decimal digits, 195, 319.
Decimal fractions, history, 197–198, 326.
Decimal number system, 197–199, 210, 320–326, 374.

Decimal point, 195.
Decimation, 326, 328.
Decision, unbiased, 2, 119–121.
DECsystem 20 computer, 15.
Decuple-precision floating point, 283.
Dedekind, Julius Wilhelm Richard, 83, 687.

sums, generalized, 83–92, 106.
Definitely greater than, 224, 233–235, 239, 242–243.
Definitely less than, 224, 233–235, 239, 242–243.
Definition of randomness, 2, 149–183.
Dégot, Jérôme, 683.
Degree of a polynomial, 418, 420, 436.
Degrees of freedom, 44, 495, 517–518, 704.
Dekker, Theodorus Jozef, 242, 244, 253.
Deléglise, Marc, 667.
Dellac, Hippolyte, 465.
DeMillo, Richard Allan, 675.
Denneau, Monty Montague, 311.
Density function, 124–126, 139.

nearly linear, 126.
Dependent normal deviates, 132, 139.
Derandomization, 414.
Derflinger, Gerhard, 138.
Derivatives, 124, 439, 489, 524, 526, 537.
Descartes, René, 407.
Determinants, 356, 373, 432, 434, 498–500, 523–524.
Deviate: A random number.
Devroye, Luc Piet-Jan Arthur, 138.
Dewey, Melville (= Melvil) Louis Kossuth, notation for trees, 555.
Diaconis, Persi Warren, 145, 263, 264, 622.
Diamond, Harold George, 245.
Dice, 2, 7, 42–43, 45–46, 58, 120–121, 190.
Dickman, Karl Daniel, 382–383.

Dickman–Golomb constant, 661.
Dickson, Leonard Eugene, 287, 387, 646.
Dictionaries, 201–202.
Dieter, Ulrich Otto, 89, 91, 92, 101, 114, 116, 119, 129–130, 132, 134, 137,
573, 574, 588.
Differences, 297–298, 504, 516.
Differential equations, 526–527.
Differentiation, see Derivatives.
Diffie, Bailey Whitfield, 406.
Digit: One of the symbols used in positional notation; usually a decimal digit,
one of the symbols 0, 1, . . .,or 9.

binary, 195, 200.
decimal, 195, 319.
hexadecimal, 195, 210.
octal, 210.

Dilcher, Karl Heinrich, 403.
Dilogarithm, 621.
Diophantine equations, 343–345, 354, 417, 449, 648.
Diophantus of Alexandria (), see Diophantine
equations.
Direct product, 520, 522–523.
Direct sum, 520, 522–523.

conjecture, 708.
Directed graph, 480–481, 484–485.
Dirichlet, Johann Peter Gustav Lejeune, 342.

series, 536–537, 695.
Discrepancy, 39, 110–115.
Discrete distribution functions, 48, 120–121, 136–138.
Discrete Fourier transforms, 169, 305–311, 316–318, 501–503, 506, 512,
516, 520–521, 524, 595.
Discrete logarithms, 417.
Discriminant of a polynomial, 674, 686.
Distinct-degree factorization, 447–449, 459, 689.

Distribution: A specification of probabilities that govern the value of a
random variable, 2, 119, 121.

beta, 134–135.
binomial, 136–138, 141, 401, 559.
chi-square, 44, 48, 60, 69, 135, 590.
exponential, 133, 137, 589.
F-, 135.
of floating point numbers, 253–264.
gamma, 253–264.
geometric, 136, 137, 140, 585.
integer-valued, 136–141.
Kolmogorov–Smirnov, 57–60.
of leading digits, 254–264, 282, 404.
negative binomial, 140.
normal, 56, 122, 132, 139, 384, 565.
partial quotients of regular continued fractions, 362–369, 665.
Poisson, 55, 137–138, 140, 141, 538, 570.
of prime factors, 382–384, 413.
of prime numbers, 381–382, 405.
Student’s, 135.
t-, 135.
tail of binomial, 167.
tail of normal, 139.
uniform, 2, 10, 48, 61, 119, 121, 124, 263.
variance-ratio, 135.
wedge-shaped, 125–126.

Distribution functions, 48, 121, 140, 263, 362, 382–384.
continuous, 49, 53, 57, 60, 121–136.
discrete, 48, 120–121, 136–138.
empirical, 49.
mixture of, 123–124, 138.
polynomial, 138.
product of, 121.

Distributive laws, 231, 334, 418, 694.
Divide-and-correct, 270–275, 278, 282–284.
Divided differences, 504, 516.
Dividend: The quantity u while computing ⌊u/v ⌋ and u mod v, 270.
Division, 194, 265, 270–275, 278, 282–284, 311–313.

algebraic numbers, 333, 674.
avoiding, 523–524.
balanced ternary, 283.
by ten, 321, 328.
by zero, 220, 224, 241, 639.
complex, 228, 283, 706.
continued fractions, 649.
double-precision, 251–252, 278–279.
exact, 284.
floating point, 220–221, 230–231, 243.
fractions, 330.
long, 270–275, 278, 282–284.
mixed-radix, 209, 635.
mod m, 354, 445, 499.
multiprecision, 270–275, 278–279, 282–283, 311–313.
multiprecision by single-precision, 282.
polynomial, 420–439, 487, 534.
power series, 525–526, 533–534.
pseudo-, 425–426, 435–436.
quater-imaginary, 283.
short, 282.
string polynomials, 436–437.

Divisor: The quantity v while computing ⌊u/v⌋ and u mod v, 270.
Divisor: x is a divisor of y if y mod x = 0 and x > 0; it is a proper divisor if
it is a divisor such that 1 < x < y .

polynomial, 422.
Dixon, John Douglas, 372, 401–402, 412, 414, 415, 417.
Dixon, Wilfrid Joseph, 565.

Dobell, Alan Rodney, 17.
Dobkin, David Paul, 697, 712.
Dodgson, Charles Lutwidge, 435.
Donsker, Monroe David, 559.
Doob, Joseph Leo, 559.
Dorn, William Schroeder, 488.
Dot product, 36, 97, 173–174, 499–501.
Double-precision arithmetic, 246–253, 278–279, 295.
Doubling, 322, 462.

continued fraction, 375.
Doubling step, 467.
Downey, Peter James, 485.
Dragon curve, 606, 609, 655.
Dragon sequence, 655.
Dresden, Arnold, 196.
Drift, 237, 244.
Du Shiran (), 287.
Dual of an addition chain, 481, 484, 485.
Duality formula, 569.
Duality principle, 481, 485, 507, 535, 718.
Dubner, Harvey Allen, 664.
Duffield, Nicholas Geoffrey, 593.
Dumas, Philippe, 355.
Duncan, Robert Lee, 264.
Duodecimal number system, 199–200.
Dupré, Athanase, 653.
Durbin, James, 57, 568.
Durham, Stephen Daniel, 34.
Durstenfeld, Richard, 145.

e (base of natural logarithms), 12, 76, 359, 726–727, 733.
as “random” example, 21, 33, 47, 52, 108.

Earle, John Goodell, 312.
Eckhardt, Roger Charles, 189.

L’Ecuyer, Pierre, 108, 179, 546, 582, 584, 603.
Edelman, Alan Stuart, 280.
Edinburgh rainfall, 74.
EDVAC computer, 225–226.
Effective algorithms, 161–166, 169, 178.
Effective information, 179.
Egyptian mathematics, 335, 462.
Eichenauer-Herrmann, Jürgen, 32, 558, 559.
Eisenstein, Ferdinand Gotthold Max, 457.
Electrologica X8 computer, 222.
Electronic mail, 406.
Elementary symmetric functions, 682–683.
Elkies, Noam David, xi.
Ellipsoid, 105.

random point on, 141.
Elliptic curve method, 402, 671.
Elvenich, Hans-Michael, 409.
Empirical distribution functions, 49.
Empirical tests for randomness, 41, 61–80.
Encoding a permutation, 65–66, 77–78, 145.
Encoding secret messages, 193, 403–407, 415, 417.
Enflo, Per, 683.
Engineering Research Associates, 208.
Enhancing randomness, 26, 34.
ENIAC computer, 54, 280.
Entropy, 712.
Enumerating binary trees, 527, 696, 723.
Enumerating prime numbers, 382, 412, 416.
Equality, approximate, 224, 233–235, 239, 242–243, 245.

essential, 233–235, 239–240, 242–244.
Equidistributed sequence, 150, 163, 177, 179–183.
Equidistribution test, 61, 74, 75.
Equitable distribution, 181.

Equivalent addition chains, 480, 484.
Eratosthenes of Cyrene (), 412.
Erdős, Pál (= Paul), 181, 384, 471, 696.
ERH, see Extended Riemann hypothesis.
ERNIE machine, 3–4.
Error, absolute, 240, 309, 312–313.
Error, relative, 222, 229, 232, 253, 255.
Error estimation, 222, 229, 232, 253, 255, 309–310.
Espelid, Terje Oskar, 616.
Essential equality, 233–235, 239–240, 242–244.
Estes, Dennis Ray, 671.
Estrin, Gerald, 488.
Euclid (), 335–337.
Euclid’s algorithm, 86, 99, 102, 117, 184, 288, 290, 304, 334–337, 340, 579.

analysis of, 356–379.
compared to binary algorithm, 341.
extended, 342–343, 354, 379, 435–436, 534.
for polynomials, 424, 438–439.
for polynomials, extended, 437, 458.
for string polynomials, 426–428.
generalized to the hilt, 426–428.
multiprecision, 345–348, 373.
original form, 335–336.

Eudoxus of Cnidus, son of Æschinus ().
Euler, Leonhard (), xi, 357, 375, 377,
392, 407, 526, 649–651, 653, 655.

constant γ, 359, 379, 726–727, 733.
theorem, 20, 286, 548.
totient function φ (n), 19–20, 289, 369, 376, 583, 646.

Eulerian numbers, 284.
Evaluation: Computing the value.

of determinants, 498–500, 523–524.
of mean and standard deviation, 232, 244.

of monomials, 485, 697.
of polynomials, 485–524.
of powers, 461–485.

Eve, James, 493, 517.
Eventually periodic sequence, 7, 22, 375, 385.
Exact division, 439.
Excess q exponent, 214–215, 227, 246.
Exclusive or, 31, 32, 193, 419.
Exercises, notes on, ix–xi.
Exhaustive search, 103.
Exponent overflow, 217, 221, 227, 231, 241, 243, 249.
Exponent part of a floating point number, 214–215, 246, 263, 283.
Exponent underflow, 217, 221–222, 227, 231, 241, 249.
Exponential deviates, generating, 132–133, 137.
Exponential distribution, 133, 137, 589.
Exponential function, 313, 490, 533, 537.
Exponential sums, 84–85, 110–115, 181, 305, 382, 501.
Exponentiation: Raising to a power, 461–485.

multiprecision, 463.
of polynomials, 463–464.
of power series, 526, 537, 719.

Extended arithmetic, 244–245, 639.
Extended Euclidean algorithm, 342–343, 354, 379, 435–436, 534.

for polynomials, 437, 458.
Extended Riemann Hypothesis, 395–396, 671.

F-distribution, 135.
Factor: A quantity being multiplied.
Factor method of exponentiation, 463, 465, 482, 485.
Factorial number system, 66, 209.
Factorial powers, 297, 515, 534, 643, 731.
Factorials, 416, 622.
Factorization: Discovering factors.

of integers, 13–14, 175, 379–394, 396–403, 412–417.

of polynomials, 439–461, 514.
of polynomials mod p, 439–449, 455–456.
of polynomials over the integers, 449–453.
of polynomials over the rationals, 459.
optimistic estimates of running time, 176.
uniqueness of, 436.

FADD (floating add), 223–224, 227–228, 238, 253, 516.
Fagin, Barry Steven, 403, 632.
Fallacious reasoning, 26, 74, 88, 95–96, 222.
Falling powers, 297, 731.
Fan, Chung Teh (), 143.
Fast Fourier transform, 73, 306–310, 318, 502, 505, 512, 516, 521, 706,
710, 713–714.

history of, 701.
Fateman, Richard J, 463.
Faure, Henri, 164.
FCMP (floating compare), 223, 244.
FDIV (floating divide), 223.
Feijen, Wilhelmus (= Wim) Hendricus Johannes, 636.
Ferguson, Donald Fraser, 280.
Fermat, Pierre de, 386–388, 391, 407, 579.

factorization method, 386–391, 412.
numbers, 14, 386, 397, 403.
theorems, 391, 413, 440, 579, 680.

Ferranti Mark I computer, 3, 192.
Ferrenberg, Alan Milton, 188.
FFT, 516, see Fast Fourier transform.
Fibonacci, Leonardo, of Pisa (= Leonardo filio Bonacii Pisano), 197, 208,
280.

generator, 27, 34, 36, 37, 47, 52, 54, 92.
number system, 209.
numbers Fn : Elements of the Fibonacci sequence, 731.
numbers, table of, 728.

sequence, 27, 37, 213, 264, 360, 468, 483, 660, 666.
sequence, lagged, 27–29, 35, 40, 72, 75, 79–80, 146, 186–188, 193.

Field: An algebraic system admitting addition, subtraction, multiplication,
and division, 213, 331, 420, 422, 506, 525.

finite, 29–30, 449, 457, 554–555, 702.
Fike, Charles Theodore, 490.
Finck, Pierre Joseph Étienne, 360.
Findley, Josh Ryan, 409.
Fine, Nathan Jacob, 90.
Finetti, Bruno de, 566.
Finite fields, 29–30, 449, 457, 554–555, 702.
Finite Fourier transform, see Discrete Fourier transform.
Finite sequences, random, 167–170, 178.
Fischer, Michael John, 634.
Fischer, Patrick Carl, 241.
Fischlin, Roger, 669.
Fisher, Ronald Aylmer, 145.
Fishman, George Samuel, 108.
FIX (convert to fixed point), 224.
Fix-to-float conversion, 221, 223–224.
Fixed point arithmetic, 214, 225–226, 308–310, 532.
Fixed slash arithmetic, 331–333, 379.
Flajolet, Philippe Patrick Michel, 355, 366, 449, 541, 644.
Flammenkamp, Achim, 478, 483, 693.
Flat distribution, see Uniform distribution.
Flehinger, Betty Jeanne, 262.
Float-to-fix conversion, 224–225, 228.
Floating binary numbers, 214, 225, 227, 254, 263.
Floating decimal numbers, 214, 226, 254–264.
Floating hexadecimal numbers, 254, 263.
Floating point arithmetic, 36, 188, 193, 196, 214–264, 292.

accuracy of, 222, 229–245, 253, 329, 438, 485.
addition, 215–220, 227–228, 230–231, 235–238, 253–254, 602.

addition, exact, 236.
axioms, 230–231, 242–245.
comparison, 233–235, 239, 242–243.
decuple-precision, 283.
division, 220–221, 230–231, 243.
double-precision, 246–253, 278–279.
hardware, 223–226.
intervals, 228, 240–242, 244–245, 333, 613.
mod, 228, 243, 244.
multiplication, 220, 230–231, 243, 263–264.
multiplication, exact, 244.
operators of MIX, 215, 223–225, 516.
quadruple-precision, 253.
reciprocal, 243, 245, 263.
single-precision, 214–228.
subtraction, 216, 230–231, 235–238, 245, 253, 556, 602.
summation, 232, 244.
triple-precision, 252.
unnormalized, 238–240, 244, 327.

Floating point numbers, 196, 214–215, 222, 228, 246.
radix-b, excess-q, 214–215.
statistical distribution, 253–264.
two’s complement, 228.

Floating point radix conversion, 326–329.
Floating point trigonometric subroutines, 245, 247, 490.
Floating slash arithmetic, 331, 333.
Floor function ⌊x⌋, 81, 732.
FLOT (convert to floating point), 223.
Floyd, Robert W, 7, 148, 280, 361, 505, 540.
Fluhrer, Scott, 542.
FMUL (floating multiply), 223, 516.
Foata, Dominique Cyprien, 9.

FOCS: Proceedings of the IEEE Symposia on Foundations of Computer
Science (1975–), formerly called the Symposia on Switching Circuit Theory
and Logic Design (1960–1965), Symposia on Switching and Automata
Theory (1966–1974).
Forsythe, George Elmer, 4, 128.
FORTRAN language, 188, 193, 279, 600, 602.
Fourier, Jean Baptiste Joseph, 278.

division method, 278.
series, 90, 487.
transform, discrete, 169, 305–311, 316–318, 501–503, 506, 512, 516,
520–521, 524, 595.

Fowler, Thomas, 208.
Fractals, 206.
Fraction overflow, 217, 254, 262, 264.
Fraction part of a floating point number, 214–215, 246, 263.

distribution of, 254–264.
Fractions: Numbers in [0 . . 1), 36.

conversion, 319–328.
decimal, history, 197–198, 326.
exponentiation, 483.
random, see Uniform deviates.
terminating, 328.

Fractions: Rational numbers, 330–333, 420, 526.
Fraenkel, Aviezri S (), 290, 291, 292, 630.
Franel, Jérome, 258.
Franklin, Joel Nick, 149, 158, 159, 177, 180, 182, 577.
Franta, William Ray, 60.
Fredricksen, Harold Marvin, 557.
Free associative algebra, 437.
Frequency function, see Density function.
Frequency test, 61, 74, 75.
Friedland, Paul, 613.
Frieze, Alan Michael, 599.
Fritz, Kurt von, 335.

Frobenius, Ferdinand Georg, 539, 681, 689.
automorphism, 689.

Frye, Roger Edward, 538.
FSUB (floating subtract), 223, 253.
Fuchs, Aimé, 9.
Fundamental theorem of arithmetic, 334, 422, 483.
Fuss, Paul Heinrich von (), 392, 651.

Gage, Paul Vincent, 409.
Galambos, János, 661.
Galois, Évariste, 449, 457.

fields, see Finite fields.
groups, 679, 681, 689, 690.

Gambling systems, 161.
Gamma distribution, 133–134, 140.
Gamma function, incomplete, 56, 59, 133.
Ganz, Jürg Werner, 707.
Gap test, 62–63, 74–76, 136, 158, 180.
Gardner, Martin, 41, 200, 280, 592.
Garner, Harvey Louis, 280, 290, 292.
Gathen, Joachim Paul Rudolf von zur, 449, 611, 673, 687.
Gauß (= Gauss), Johann Friderich Carl (= Carl Friedrich), 20, 101, 363,
417, 422, 449, 578, 679, 685, 688, 701.

integers, 292, 345, 579.
lemma about polynomials, 422–423, 682.

Gay, John, 1.
gcd: Greatest common divisor.
Gebhardt, Friedrich, 34.
Geiger, Hans, counter, 7.
Geiringer, Hilda, von Mises, 76.
Generalized Dedekind sums, 83–92, 106.
Generalized Riemann hypothesis, 396.
Generating functions, 140, 147, 213, 261, 276–278, 525, 562–563, 679–680,
686, 695.

Generation of uniform deviates, 10–40, 184–189, 193.
Genuys, François, 280.
Geometric distribution, 136, 137, 140, 585.
Geometric mean, 283.
Geometric series, 84, 307, 519, 700.
Gerhardt, Carl Immanuel, 200.
Gerke, Friedrich Clemens, 653.
Gessel, Ira Martin, 723.
Gibb, Allan, 242.
Gilbert, William John, 607.
Gill, Stanley, 226.
Gimeno Fortea, Pedro, 187.
GIMPS project, 409.
Gioia, Anthony Alfred, 469.
Girard, Albert, 424.
Givens, James Wallace, Jr., 94.
Glaser, Anton, 201.
Globally nonrandom behavior, 51–52, 80.
Goertzel, Gerald, 487.
Goffinet, Daniel, 607.
Goldbach, Christian, 392, 651.
Goldberg, David Marc, 226.
Golden ratio, 164, 283, 359, 360, 514, 652, 726–727, 733.
Goldreich, Oded (), 179, 598, 669.
Goldschmidt, Robert Elliott, 312.
Goldstein, Daniel John, 593.
Goldstine, Herman Heine, 202, 278, 327.
Goldwasser, Shafrira, 598.
Golomb, Solomon Wolf, 147, 661, 711.
Golub, Gene Howard, 562.
Gonzalez, Teofilo, 60.
Good, Irving John, 183.
Goodman, Allan Sheldon, 108.

Gosper, Ralph William, Jr., 101, 107, 117, 355, 375, 378, 540, 649.
Gosset, William Sealy (= Student), t-distribution, 135.
Goulard, Achille, 477.
Gould, Henry Wadsworth, 725.
Gourdon, Xavier Richard, 355, 449, 667.
Goyal, Girish Kumar (), 625.
Gradual underflow, 222.
Gräffe, Carl Heinrich, 683.
Graham, Ronald Lewis, 484, 608, 741.
Gram, Jørgen Pedersen, 674.
Gram–Schmidt orthogonalization process, 101, 674.
Granville, Andrew James, 396, 659.
Graph, 480–481, 485.
Graphics, 284.
Gray, Frank, binary code, 209, 568, 699.
Gray, Herbert Lee Roy, 242.
Gray levels, multiplication of, 284.
Great Internet Mersenne Prime Search, 409.
Greater than, definitely, 224, 233–235, 239, 242–243.
Greatest common divisor, 330–356, 483.

binary algorithms for, 338–341, 348–356, 435.
Euclidean algorithm for, see Euclid’s algorithm.
multiprecision, 345–348, 354, 355, 379, 656.
of n numbers, 341, 378.
of polynomials, 424–439, 460, 453–455.
within a unique factorization domain, 424.

Greatest common right divisor, 437–438.
Greedy algorithm, 293.
Greek mathematics, 196–197, 225, 335–337, 359.
Green, Bert Franklin, Jr., 27.
Greenberger, Martin, 17, 88, 551.
Greene, Daniel Hill, 659, 686, 697.
Greenwood, Joseph Arthur, 33.

Greenwood, Robert Ewing, 74.
Gregory, Robert Todd, 657.
GRH: The ERH for algebraic numbers, 396.
Groote, Hans Friedrich de, 708.
Grosswald, Emil, 90.
Grotefeld, Andreas Friedrich Wilhelm, 656.
Groups, 701.

Galois, 679, 681, 689, 690.
Grube, Andreas, 582.
Grünwald, Vittorio, 204, 205.
Guaranteed randomness, 35–36, 170–176.
Guard digits, 227.
Gudenberg, see Wolff von Gudenberg.
Guessing, amplified, 172–174, 416–417.
Guilloud, Jean, 280.
Gustavson, Fred Gehrung, 721.
Guy, Michael John Thirian, 623.
Guy, Richard Kenneth, 402, 413.

Haber, Seymour, 164.
Habicht, Walter, 435.
Hadamard, Jacques Salomon, 382, 432.

inequality, 432, 436, 499.
transform, 173, 502.

Hafner, James Lee, 661.
Hajjar, Mansour (), 29.
Hajratwala, Nayan (), 409.
HAKMEM, 540, 649.
Halberstam, Heini, 664.
Halewyn, Christopher Neil van, 403.
Halliwell-Phillipps, James Orchard, 316.
Halton, John Henry, 164.
Halving, 328, 338, 339, 462.

continued fraction, 375.

modular, 293.
Hamblin, Charles Leonard, 420.
Hamlet, Prince of Denmark, v.
Hammersley, John Michael, 189.
Hamming, Richard Wesley, 255, 263.
Handscomb, David Christopher, 189.
Handy identities, 628–629.
Hansen, Eldon Robert, 617.
Hansen, Walter, 473, 475, 476, 479, 483.
Hanson, Richard Joseph, 615.
Haralambous, Yannis (), 764.
Hard-core bit, 179.
Hardware: Computer circuitry.

algorithms suitable for, 228, 244 (exercise 17), 280, 312, 313–316, 322,
327–329, 338, 356, 461, 695.

Hardy, Godfrey Harold, 382, 384, 653.
Harmonic numbers Hn, 731.

fractional, 362, 729.
table of, 728–729.

Harmonic probability, 264.
Harmonic sums, 355.
Harriot, Thomas, 199.
Harris, Bernard, 541.
Harris, Vincent Crockett, 341, 355.
Harrison, Charles, Jr., 242.
Hashing, 70, 148.
Hassler, Hannes, 699.
Håstad, Johan Torkel, 179, 417, 514, 599.
Haynes, Charles Edmund, Jr., 108.
hcf, see Greatest common divisor.
Hebb, Kevin Ralph, 477.
Heideman, Michael Thomas, 701.
Heilbronn, Hans Arnold, 372, 377.

Heindel, Lee Edward, 677.
Hellman, Martin Edward, 406.
Henrici, Peter Karl Eugen, 332, 505.
Hensel, Kurt Wilhelm Sebastian, 213, 685.

lemma, 38, 451, 454–455, 458, 685–686.
Hensley, Douglas Austin, 366, 373.
Heringa, Jouke Reyn, 29.
Hermelink, Heinrich, 208.
Hermite, Charles, 115, 579.
Herrmann, Hans Jürgen, 29.
Hershberger, John Edward, 366.
Herzog, Thomas Nelson, 178, 594, 598.
Hexadecimal digits, 195, 210.
Hexadecimal number system, 201–202, 204, 210, 324, 639.

floating point, 254, 263.
nomenclature for, 201.

Higham, Nicholas John, 242.
Hilferty, Margaret Mary, 134.
Hill, Ian David, 544.
Hill, Theodore Preston, 262.
himult, 15, 584.
Hindu mathematics, 197, 208, 209, 281, 287, 343, 387, 461, 648.
HITACHI SR2201 computer, 280.
Hitchcock, Frank Lauren, 506.
Hlawka, Edmund, 117.
HLT (halt), 222.
Hobby, John Douglas, 764.
Hoffmann, Immanuel Carl Volkmar, 279.
Hofstadter, Douglas Richard, 330.
Holte, John Myrom, 629.
Homann, Karsten, 736.
Homogeneous polynomial, 437, 458, 698.
Hopcroft, John Edward, 500, 507, 699.

Hörmann, Wolfgang, 138.
Hörner, Horst Helmut, 118.
Horner, William George, 486.

rule for polynomial evaluation, 486–489, 498, 504, 515, 517, 519.
Horowitz, Ellis, 505.
Howard, John Vernon, 178.
Howell, Thomas David, 708.
Hoyle, Edmond, rules, 147.
Huff, Darrell Burton, 42.
Hull, Thomas Edward, 17.
Hurwitz, Adolf, 345, 375, 376, 649.
Huygens (= Huyghens), Christiaan, 655.
Hyde, John Porter, 419.
Hyperbolic tangent, 375.
Hyperplanes, 96, 97, 116.

IBM 704 computer, 280.
IBM 7090 computer, 280.
IBM System/360 computers, 396–397, 614.
IBM System/370 computers, 15.
Ibn Ezra (= Ben Ezra), Abraham ben Meir (), also
known as Abū Is a Ibrāhim al-Maījid (), 197.
Idempotent, 539, 694.
Identity element, 418.
IEEE standard floating point, 226, 246, 602.
Ikebe, Yasuhiko (), 252.
Ill-conditioned matrix, 292.
Images, digitized, 284.
Imaginary radix, 205–206, 209–210, 283.
Impagliazzo, Russell Graham, 179.
Improving randomness, 26, 34.
IMSL: The International Mathematics and Statistics Library, 108.
in situ transformation, 700.
Inclusion and exclusion principle, 354, 563, 610, 640, 678, 699.

Incomplete gamma function, 56, 59, 133.
Increment in a linear congruential sequence, 10–11, 17, 22, 89, 97, 185.
Independence, algebraic, 496, 518.
Independence, linear, 443–444, 508, 659–660.
Independence of random numbers, 2, 43, 46, 55, 59, 66, 95, 240, 559, 562.
Index modulo p, 417.
Indian mathematics, 197, 208, 209, 281, 287, 343, 387, 461, 648.
Induced functions, 535.
Induction, mathematical, 336.

on the course of computation, 266, 269, 337.
Inductive assertions, 281–282.
Infinite continued fractions, 358–359, 374.
Infinity, representation of, 225, 244–245, 332.
Inner product, 97, 499–501, 520.
Integer, random,

among all positive integers, 257, 264, 342, 354.
in a bounded set, 119–121, 138, 185–186.

Integer solution to equations, 343–345, 354, 417, 449, 648.
Integer-valued distributions, 136–141.
Integrated circuit module, 313.
Integration, 153–154, 259.
Interesting point, 642.
Internet, iv, x.
Interpolation, 297, 365, 503–505, 509, 516, 700, 721.
Interpretive routines, 226.
Interval arithmetic, 228, 240–242, 244–245, 333, 613.
Inverse Fourier transform, 307, 316, 516, 633.
Inverse function, 121, see also Reversion of power series.
Inverse matrix, 98, 331, 500, 524.
Inverse modulo 2e,213, 629.
Inverse modulo m, 26, 354, 445, 456, 646.
Inversive congruential sequence, 32–33, 40.
Irrational numbers: Real numbers that are not rational, 181, 359.

multiples of, mod 1, 164, 379, 622.
transcendental, 378.

Irrational radix, 209.
Irrationality, quadratic, 358, 374–375, 397–401, 412, 415, 665.
Irreducible polynomial, 422, 435, 450, 456–457, 460.
Ishibashi, Yoshihiro (), 291.
Islamic mathematics, 197, 280–281, 326, 461–462.
Iteration of power series, 530–536, 723.
Iterative n-source, 172.
Iverson, Kenneth Eugene, 226.
Jabotinsky, Eri, 533, 536, 723.
JACM: Journal of the ACM, a publication of the Association for Computing
Machinery since 1954.
Jacobi, Carl Gustav Jacob, 662.

symbol, 413–414, 415, 655, 662, 668.
JAE (jump A even), 339, 481.
Jaeschke, Gerhard Paul Werner, 666.
Jager, Hendrik, 665.
Ja’Ja’ (= JaJa), Joseph Farid(), 514.
Janssens, Frank, 107, 114.
Jansson, Birger, 540, 553.
JAO (jump A odd), 339, 612.
Japanese mathematics, 648.
Jayadeva, (), 648.
Jebelean, Tudor, 629.
Jefferson, Thomas, 229.
Jensen, Geraldine Afton, 466.
Jensen, Johan Ludvig William Valdemar, 683.
Jevons, William Stanley, 388.
Jiuzhang Suanshu (), 340.
Jöhnk, Max Detlev, 134.
Johnson, Don Herrick, 701.
Johnson, Jeremy Russell, 625.

Johnson, Samuel, 229.
Jokes, 3, 417.
Jones, Hugh, 200, 326.
Jones, Terence Gordon, 143.
Jong, Lieuwe Sytse de, 515.
Jonquières, Jean Philippe Ernest de Fauque de, 465–466, 469, 477.
Jordaine, Joshua, 199.
Judd, John Stephen, 394.
Jurkat, Wolfgang Bernhard, 699.
Justeson, John Stephen, 196.
JXE (jump X even), 339.
JX0 (jump X odd), 219, 339.

k-distributed sequence, 151–155, 168, 177, 179–182.
Kac, Mark, 384.
Kahan, William Morton, 222, 226, 227, 241–245, 617.

summation formula, 615.
Kaib, Michael Andreas, 578.
Kaltofen, Erich Leo, 345, 449, 455, 672, 718.
Kaminski, Michael, 712.
Kanada, Yasumasa (), 280.
Kankaala, Kari Veli Antero, 75, 570.
Kannan, Ravindran (), 599.
Kanner, Herbert, 327.
Karatsuba, Anatolii Alekseevich (), 295,
318, 420, 663.
Karlsruhe, University of, 242.
Katái, Imre, 607.
Katz, Victor Joseph, 198.
Kayal, Neeraj (), 396.
Keir, Roy Alex, 237, 638.
Keller, Wilfrid, 664, 666.
Kempner, Aubrey John, 204, 378.
Kendall, Maurice George, 3, 74, 76.
Kermack, William Ogilvy, 74.
Kerr, Leslie Robert, 699.
Kesner, Oliver, 226.
Khinchin, Alexander Yakovlevich (), 356,
652.
Killingbeck, Lynn Carl, 103, 107.
Kinderman, Albert John, 130–131, 135.
Klarner, David Anthony, 213.
Klem, Laura, 27.
Knop, Robert Edward, 136.
Knopfmacher, Arnold, 345, 686.
Knopfmacher, John Peter Louis, 345.

Knopp, Konrad Hermann Theodor, 364.
Knorr, Wilbur Richard, 335.
Knott, Cargill Gilston, 627.
Knuth, Donald Ervin (), ii, iv, vii, 2, 4, 30, 89, 138, 145, 159, 189,
196, 205, 226, 242, 316, 335, 373, 378, 384, 435, 491, 584, 595, 599, 606,
636, 659, 661, 686, 694, 697, 722, 741, 764.
Knuth, Jennifer Sierra (), xiv.
Knuth, John Martin (), xiv.
Kohavi, Zvi (), 498.
Koksma, Jurjen Ferdinand, 161.
Kolmogorov, Andrei Nikolaevich (), 56,
169, 178, 183.
Kolmogorov—Smirnov distribution, 57–60.

table, 51.
Kolmogorov—Smirnov test, 48–60.
Kondo, Shigeru (), 280.
Kontorovich, Alex Vladimir (),
584.
Koons, Florence, 327.
Kornerup, Peter, 332–333, 629, 657.
Korobov, Nikolai Mikhailovich (), 114,
159, 177.
Kovács, Béla, 607.
Kraïtchik, Maurice Borisovitch (, Meep), 396, 407.
Krandick, Werner, 625, 629.
Krishnamurthy, Edayathumangalam Venkataraman (

), 278, 279.
Kronecker, Leopold, 450, 678, 688, 730.
Kruskal, Martin David, 542.
KS test, see Kolmogorov—Smirnov test.
Kuczma, Marek, 533.
Kuipers, Lauwerens, 114, 177.
Kulisch, Ulrich Walter Heinz, 242, 245.
Kung, Hsiang Tsung (), 356, 529–530, 533, 720.

Kurita, Yoshiharu(), 29, 572, 604.
Kurowski, Scott James, 409.
Ku aka (), 287, 343.
Kuz’min, Rodion Osievich (), 363.
l0-chain, 479, 483, 485.
L3 algorithm, 118, 417, 453.
La Touche, Maria Price, 194, 230.
La Vallée Poussin, Charles Jean Gustave Nicolas de, 381.
Laderman, Julian David, 700.
Lagarias, Jeffrey Clark, 416, 599, 667.
Lagged Fibonacci sequences, 27–29, 35, 40, 72, 75, 79–80, 146, 186–188,
193.
Lagny, Thomas Fantet de, 279, 360.
Lagrange (= de la Grange), Joseph Louis, Comte, 375, 378, 456, 503, 527,
533, 549, 649, 653, 655.

interpolation formula, 503–505.
inversion formula, 527–528, 533–534, 723.

Lags, 28.
Lake, George Thomas, 327.
Lakshman, Yagati Narayana (), 455.
Lalanne, Léon Louis Chretien, 208.
Lalescu, Gheorghe Liviu, 186.
Lamé, Gabriel, 360.
Landau, Edmund Georg Hermann, 621, 683.
Laplace (= de la Place), Pierre Simon, Marquis de, 363.
Lapko, Olga Georgievna (), 764.
Large prime numbers, 407–412, 549–550, 663–664.
Las Vegas algorithms: Computational methods that use random numbers and
always produce the correct answer if they terminate, 447–449, 459, 681–
682.
Lattice of points, 97.
Lattice reduction, see Short vectors.
Laughlin, Harry Hamilton, 279.

Laurent, Paul Mathieu Hermann, series, 723.
Lauwerier, Hendrik Adolf, 561.
Lavaux, Michel, 107.
Lavington, Simon Hugh, 3.
Lawrence, Frederick William, 390.
lcm: Least common multiple.
Leading coefficient, 418, 451–452, 454.
Leading digit, 195, 239.
Leading zeros, 222, 238–240, 327.
Least common left multiple, 437–438.
Least common multiple, 18, 23, 292, 334, 337, 353, 411, 483, 641.
Least remainder algorithm, 376.
Least significant digit, 195.
Lebesgue, Henri Leon, measure, 160, 166–167, 178, 367.
Lebesgue (= Le Besgue), Victor Amédée, 341, 662.
L’Ecuyer, Pierre, 108, 179, 546, 582, 584, 603.
Leeb, Hannes, 604.
Leeuwen, Jan van, 477, 515, 706.
Left multiple, least common, 437–438.
Legendre (= Le Gendre), Adrien Marie, 326–327, 381, 396, 449.

symbol, 414.
Léger, Émile, 360.
Léger, Roger, 587.
Lehman, Russell Sherman, 387, 405.
Lehmer, Derrick Henry, 10–11, 47, 54, 149, 278, 345–346, 382, 390, 391,
394, 396, 409, 413, 414, 484, 655, 660, 667, 686.
Lehmer, Derrick Norman, 278, 661.
Lehmer, Emma Markovna Trotskaia, 391.
Lehn, Jürgen, 32, 558.
Leibniz, Gottfried Wilhelm, Freiherr von, 200.
Lempel, Abraham, 556, 712.
Lenstra, Arjen Klaas, 118, 403, 417, 453, 712.
Lenstra, Hendrik Willem, Jr., 118, 396, 402–403, 416, 417, 453, 656.

Leonardo Pisano, see Fibonacci.
Leong, Benton Lau (), 485.
Leslie, John, 208.
Less than, definitely, 224, 233–235, 239, 242–243.
Leva, Joseph Leon, 132.
Levene, Howard, 74.
LeVeque, William Judson, 648.
Levin, Leonid Anatolievich (), 36, 170, 179.
Levine, Kenneth Allan, 104.
Lévy, Paul, 363.
Levy, Silvio Vieira Ferreira, vii.
Lewis, John Gregg, 615.
Lewis, Peter Adrian Walter, 108, 701.
Lewis, Theodore Gyle, 32.
Lexicographic order, 207, 624.
li: Logarithmic integral function.
Li, Ming (), 179.
Li Yan (), 287.
Lickteig, Thomas Michael, 706.
Lindholm, James H., 79.
Linear congruential sequence, 10–26, 145–146, 184–186, 193.

choice of increment, 10–11, 17, 22, 89, 97, 185.
choice of modulus, 12–16, 23, 184.
choice of multiplier, 16–26, 88–89, 105–109, 184–185.
choice of seed, 17, 20, 143, 184.
period length, 16–23.
subsequence of, 11, 73.

Linear equations, 291–292.
integer solution to, 343–345, 354.

Linear factors mod p, 455.
Linear iterative array, 313–317, 328.
Linear lists, 279, 281, 283.
Linear operators, 363–366, 376.

Linear probing, 592.
Linear recurrences, 29–32, 409–411, 695.

mod m, 37–40.
Linearly independent vectors, 443–444, 508, 659–660.
Linked memory, 279, 281, 283, 419.
Linking automaton, 311.
Linnainmaa, Seppo Ilmari, 242, 244, 718.
Liouville, Joseph, 378.
Lipton, Richard Jay, 497, 675, 697.
Liquid measure, 199.
Little Fermat computer, 311.
Littlewood, John Edensor, 382.
LLL algorithm, 118, 417, 453.
Local arithmetic, 200.
Locally nonrandom behavior, 46, 51–52, 152, 168.
Lochs, Gustav, 372–373.
Loewenthal, Dan (), 291.
Logarithm, 279, 313.

discrete, 417.
of a matrix, 536.
of a power series, 533, 537.
of a uniform deviate, 133.
of φ, 283.

Logarithmic integral, 381–382, 414, 663.
Logarithmic law of leading digits, 254–264, 282, 404.
Logarithmic sums, 628–629.
Logical operations, see Boolean operations.
Löh, Günter, 666.
lomult, 15.
Long division, 270–275, 278–279.
Loos, Rüdiger Georg Konrad, 435, 674.
Lotti, Grazia, 500, 715.
Lovász, László, 118, 417, 453.

Lovelace, Augusta Ada Byron King, Countess of, 189.
Loveland, Donald William, 178, 179, 183.
Lubiw, Anna, 656.
Lubkin, Samuel, 327.
Luby, Michael George, 179.
Lucas, François Édouard Anatole, 391, 407, 409, 413, 414.

numbers Ln, 695.
Lukes, Richard Francis, 390.
Lund, Carsten, 593.
Luscher, Martin, 35, 72, 109, 188, 550, 556, 571.
Luther, Herbert Adesla, 278.
m-ary method of exponention, 464, 466, 470–471, 481–482.
Ma, Keju (), 673.
Machine language versus higher-level languages, 16, 185.
MacLaren, Malcolm Donald, 33, 47, 128, 551, 585.
MacMahon, Percy Alexander, 609.
MacMillan, Donald Bashford, 226.
MacPherson, Robert Duncan, 114.
MacSorley, Olin Lowe, 280.
Maeder, Roman Erich, 627, 635.
Mahler, Kurt, 180.

measure, 683.
Maiorana, James Anthony, 557.
Mairan, Jean-Jacques d’Ortous de, 537.
Makarov, Oleg Mikhailovich (), 700, 714.
Mallows, Colin Lingwood, 74.
Manasse, Mark Steven, 403.
Manchester University Computer, 192.
Mandelbrot, Benoît Baruch, 606.
Mangoldt, Hans Carl Friedrich von, 663.

function, 371, 376.
MANIAC III computer, 242.
Mansour, Yishay (), 316.

Mantel, Willem, 552.
Mantissa, 214, see Fraction part.
Marczyński, Romuald Władysław, 205.
Mariage, Aimé, 201.
Mark I computer (Ferranti), 3.
Mark II Calculator (Harvard), 225.
Marsaglia, George, 3, 23, 29, 33, 40, 47, 62, 71, 72, 75, 78, 108, 114–115,
119, 122, 123, 128, 133–135, 179, 544, 546–547, 549, 551, 565, 588.
Martin, Monroe Harnish, 32, 38, 40.
Martin-Löf, Per Erik Rutger, 169–170, 178.
Masking, 322, 328–329, 389–390, 671.
Math. Comp.: Mathematics of Computation (1960–), a publication of the
American Mathematical Society since 1965; founded by the National
Research Council of the National Academy of Sciences under the original
title Mathematical Tables and Other Aids to Computation (1943-1959).
Mathematical aesthetics, 289.
Matias, Yossi (), 121.
Matrix: A rectangular array, 486.

characteristic polynomial, 499, 524.
determinant, 356, 373, 432, 434, 498–500, 523–524.
greatest common right divisor, 438.
inverse, 98, 331, 500, 524.
multiplication, 499–501, 506–507, 516, 520–523, 699.
null space, 443–444, 456, 659–660, 681.
permanent, 499, 515–516.
rank, 443–444, 506, 508, 520.
semidefinite, 586.
singular, 98, 116, 513, 520.
triangularization, 444, 659–660, 677.

Matrix (Bush), Irving Joshua, 41, 280.
Matsumoto, Makoto (), 29, 572, 604.
Matthew, Saint (), 735.
Matula, David William, 210, 211, 329, 332–333, 379.
Mauchly, John William, 27.

Maupertuis, Pierre-Louis Moreau de, 537.
Maximum of random deviates, 122.
Maximum-of-t test, 52, 54, 59, 70, 75, 77, 122, 158, 180.
Maya Indians, 196.
Mayer, Dieter Heinz-Jörg, 366.
Maze, Gérard, 645.
McCarthy, Daniel Patrick, 696.
McClellan, Michael Terence, 292.
McCracken, Daniel Delbert, 226.
McCurley, Kevin Snow, 661, 671.
McEliece, Robert James, 687.
McKendrick, Anderson Gray, 74.
Mean, evaluation of, 232, 244.
Measure, units of, 198–199, 201, 209, 255, 326, 327.
Measure theory, 160, 166–167, 178, 367.
Mediant rounding, 331–332, 379.
Meissel, Daniel Friedrich Ernst, 667.
Mellin, Robert Hjalmar, transforms, 355, 644.
Mendelsohn, Nathan Saul, 211.
Méndes France, Michel, 649, 656.
Mental arithmetic, 279, 295.
Merit, figure of, 105.
Mersenne, Marin, 391, 407.

multiplication, 294.
numbers, 14, 409.
primes, 185, 409, 412, 413.

Mertens, Franz Carl Joseph, 641, 659.
constant, 659.

METHFONT, iv, vi, 764.
METHPOST, vii, 764.
Metrology, 201.
Metropolis, Nicholas Constantine(), 4,
189, 240, 242, 327.

Metze, Gernot, 280.
Meyer, Albert Ronald da Silva, 634.
Micali, Silvio, 179, 598.
Michigan, University of, 242, 617.
Middle-square method, 3–4, 7–8, 27, 36, 75.
Midpoint, 244.
Mignotte, Maurice, 450, 683.
Mihăilescu, Preda-Mihai, 396.
Mikami, Yoshio (), 340, 486, 648.
Mikusiński, Jan, 378.
Miller, Gary Lee, 395–396.
Miller, James (= Jimmy) Milton, 108.
Miller, Jeffrey Charles Percy, 695.
Miller, Kenneth William, 108.
Miller, Victor Saul, 416.
Miller, Webb Colby, 485.
Milne-Thompson, Louis Melville, 505.
Minimizing a quadratic form, 98–101, 105, 115–118.
Minimum polynomial, 711.
Minkowski, Hermann, 579.
Minus zero, 202, 244–245, 249, 268, 274.
MIP-years, 176, 405.
Miranker, Willard Lee, 242.
Mises, Richard, Edler von, 149, 177, 494.
Mitchell, Gerard Joseph Francis Xavier, 27, 32.
MIX computer, vi, 209.

binary version, 202–204, 339, 389–390, 481.
floating point attachment, 215, 223–225, 516.

Mixed congruential method, 11, see Linear congruential sequence.
Mixed-radix number systems, 66, 199, 208–211, 290, 293, 505.

addition and subtraction, 209, 281.
balanced, 103, 293, 631.
comparison, 290.

counting by 1s, 103.
multiplication and division, 209.
radix conversion, 327.

Mixture of distribution functions, 123–124, 138.
Möbius, August Ferdinand, function, 354, 376, 456, 459.

inversion formula, 456, 652.
mod, 228, 421, 544, 734.
mod m arithmetic,

addition, 12, 15, 203, 287–288.
division, 354, 445, 499; see also Inverse modulo m.
halving, 293.
multiplication, 12–16, 284, 287–288, 294, 318, 663.
on polynomial coefficients, 418–420.
square root, 406–407, 415, 456–457, 681–682.
subtraction, 15, 186, 203, 287–288.

Model V computer, 225.
Modular arithmetic, 284–294, 302–305, 450, 454, 499.

complex, 292.
Modular method for polynomial gcd, 453, 460.
Modulus in a linear congruential sequence, 10–16, 23, 184.
Moenck, Robert Thomas, 449, 505.
Moews, David John, 593.
Moivre, Abraham de, 537.
Møller, Ole, 242.
Monahan, John Francis, 130, 131, 135.
Monic polynomial, 418, 420, 421, 425, 435, 452, 457, 518.
Monier, Louis Marcel Gino, 414, 662.
Monkey tests, 75.
Monomials, evaluation of, 485, 697.
Monotonicity, 230, 243.
Monte Carlo, 2, 29, 55, 114, 185, 189.
Monte Carlo method: Any computational method that uses random numbers
(possibly not producing a correct answer); see also Las Vegas algorithms,

Randomized algorithms.
Montgomery, Hugh Lowell, 683.
Montgomery, Peter Lawrence, 284, 322.

multiplication mod m, 284, 386, 396.
Moore, Donald Philip, 27, 32.
Moore, Louis Robert, III, 108.
Moore, Ramon Edgar, 242.
Moore School of Electrical Engineering, 208, 225.
Morain, François, 390.
Morgenstern, Jacques, 524.
Morley, Frank Vigor, 199.
Morris, Robert, 613.
Morrison, Michael Allan, 396, 400, 660.
Morse, Harrison Reed, III, 192.
Morse, Samuel Finley Breese, code, 377.
Moses, Joel, 454–455.
Most significant digit, 195.
Motzkin, Theodor (= Theodore) Samuel (), 378, 490,
494, 495, 497, 518, 519, 705.
Muddle-square method, 36, 174–176, 179.
Muller, Mervin Edgar, 122, 143.
Multinomial coefficients, 539.
Multinomial theorem, 722.
Multiple-precision arithmetic, 58, 202, 265–318, 419, 486.

addition, 266–267, 276–278, 281, 283.
comparison, 281.
division, 270–275, 278–279, 282–283, 311–313.
greatest common divisor, 345–348, 354, 355, 379, 656.
multiplication, 268–270, 283, 294–318.
radix conversion, 326, 328.
subtraction, 267–268, 276, 281, 283.

Multiple-precision constants, 352, 362, 366, 384, 659, 663, 712, 726–728.
Multiples, 422.

Multiples of an irrational number mod 1, 164, 379, 622.
Multiplication, 194, 207–208, 265, 294, 462.

complex, 205, 307–310, 487, 506, 519, 706.
double-precision, 249–250, 252, 295.
fast (asymptotically), 294–318.
floating point, 220, 230–231, 243, 263–264.
fractions, 282, 330.
matrix, 499–501, 506–507, 516, 520–523, 699.
Mersenne, 294.
mixed-radix, 209.
mod m, 12–16, 284, 287–288, 294, 318, 663.
mod u (x), 446.
modular, 285–286, 302–305.
multiprecision, 268–270, 283, 294–318.
multiprecision by single-precision, 281.
polynomial, 418–420, 508, 512, 521, 712, 713.
power series, 525.
two’s complement, 608.

Multiplicative congruential method, 11, 19–23, 185–186.
Multiplier in a linear congruential sequence, 10–11, 16–26, 88–89, 105–109,
184–185.
Multiply-and-add algorithm, 268, 313.
Multiprecision: Multiple-precision or Arbitrary precision.
Multiprimality: Total number of prime factors, 384.
Multisets, 170, 473, 483.

operations on, 483, 694–695.
terminological discussion, 694.

Multivariate polynomials, 418–419, 422, 455, 518.
chains, 497–498, 514.
factors, 458.
noncommutative, 436.
roots of, 436.

Munro, James Ian, 515, 706.

Musical notation, 198.
Musinski, Jean Elisabeth Abramson, 507.
Musser, David Rea, 278, 453, 455.

N-source, 170.
Nadler, Morton, 627.
Nance, Richard Earle, 189.
Nandi, Salil Kumar(), 278.
NaNs, 245, 246, 639.
Napier, John, Laird of Merchiston, 194, 200.
Nārāya a Pa ita, son of N si ha(), 387.
Native American mathematics, 196.
Needham, Noel Joseph Terence Montgomery (), 287.
Negabinary number system, 204–205, 209–210, 212, 328.
Negacyclic convolution, 521.
Negadecimal number system, 204, 210.
Negative binomial distribution, 140.
Negative digits, 207–213, 696.
Negative numbers, representation of, 202–205, 275–276.
Negative radices, 204–205, 209–210, 212, 328.
Neighborhood of a floating point number, 234.
Neugebauer, Otto Eduard, 196, 225.
Neumann, John von (= Margittai Neumann János), 1, 3–4, 26, 36, 119, 125,
128, 138, 140, 202, 226, 278, 327.
Newcomb, Simon, 255.
Newman, Donald Joseph, 697.
Newton, Isaac, 449, 486, 698, 701.

interpolation formula, 503–505, 516.
method for rootfinding, 278–279, 312, 486, 529, 629, 719.

Ni, Wen-Chun (), 121.
Nicomachus of Gerasa (), 659.
Niederreiter, Harald Günther, 106–107, 109, 113–115, 117, 161, 177, 584.
Nijenhuis, Albert, 146.
Nine Chapters on Arithmetic, 340.

Nines, casting out, 289, 303, 324.
Nines’ complement notation, 203, 210.
Nisan, Noam (), 316.
Niven, Ivan Morton, 155–156.
Nonary (radix 9) number system, 200, 637.
Noncommutative multiplication, 436–438, 500, 507, 672, 684.
Nonconstructive proofs, 286, 289, 583.
Nonnegative: Zero or positive.
Nonsingular matrix: A matrix with nonzero determinant, 98, 116, 513, 520.
Norm of a polynomial, 457–458.
Normal deviates: Random numbers with the normal distribution, 122–132,
142.

dependent, 132, 139.
direct generation, 141.
square of, 134.

Normal distribution, 56, 122, 384, 565.
tail of, 139.
variations, 132, 139.

Normal evaluation schemes, 506, 709–710.
Normal numbers, 177.
Normalization of divisors, 272–273, 282–283.
Normalization of floating point numbers, 215–217, 227–228, 238, 248–249,
254, 616.
Normand, Jean-Marie, 29.
Norton, Graham Hilton, 373, 673.
Norton, Karl Kenneth, 383.
Norton, Victor Thane, Jr., 607.
Notations, index to, 730–734.
Nowak, Martin R., 409.
Nozaki, Akihiro (), 524.
NP-complete problems, 499, 514, 585, 698.
Null space of a matrix, 443–444, 456, 659–660, 681.
Number field sieve, 403, 671.

Number fields, 331, 333, 345, 403, 674.
Number sentences, 605.
Number system: A language for representing numbers.

balanced binary, 213.
balanced decimal, 211.
balanced mixed-radix, 103, 293, 631.
balanced ternary, 207–208, 209, 227, 283, 353.
binary (radix 2), 195, 198–206, 209–213, 419, 461, 483.
combinatorial, 209.
complex, 205–206, 209–210, 292.
decimal (= denary, radix ten), 197–199, 210, 320–326, 374.
duodecimal (radix twelve), 199–200.
factorial, 66, 209.
Fibonacci, 209.
floating point, 196, 214–215, 222, 228, 246.
hexadecimal (radix sixteen), 201–202, 204, 210, 324, 639.
mixed-radix, 66, 199, 208–211, 290, 293, 505.
modular, 284–285.
negabinary (radix —2), 204–205, 209–210, 212, 328.
negadecimal, 204, 210.
nonary (radix 9), 200, 637.
octal (= octonary = octonal, radix 8), 194, 200–202, 210, 228, 323–325,
328, 481, 727.
p-adic, 213, 605, 632, 685.
phi, 209.
positional, 151, 166–167, 177, 195–213, 319–329.
primitive tribal, 195, 198.
quater-imaginary (radix 2i), 205, 209–210, 283.
quaternary (radix 4), 195, 200.
quinary (radix 5), 195, 200, 213.
rational, 330, 420.
regular continued fraction, 346, 358–359, 368, 374–379, 412, 415, 665.
reversing binary, 212.

revolving binary, 212.
senary (radix 6), 200.
senidenary (= hexadecimal), 202.
septenary (radix 7), 200.
sexagesimal (radix sixty), 196–200, 225, 326.
slash, 331–333, 379.
ternary (radix 3), 195, 200, 204, 213, 328.
vigesimal (radix twenty), 196.

Numerical instability, 245, 292, 485, 489, 490.
Nunes (= Nuñez Salaciense = Nonius), Pedro, 424.
Nussbaumer, Henri Jean, 521, 710.
Nystrom, John William, 201.

Octal (radix 8) number system, 194, 200–202, 210, 228, 323–325, 328, 481,
727.
Octavation, 326.
Odd-even method, 128–130, 139.
Odlyzko, Andrew Michael, 416, 541, 608, 667, 671.
OFLO, 218.
Oldham, Jeffrey David, vii.
Oliver, Ariadne, 725.
Oliveira e Silva, Tomás António Mendes, 386, 667.
Olivos Aravena, Jorge Augusto Octavio, 485, 698.
One-way function, 172, 179.
Ones’ complement notation, 12, 203–204, 275–276, 279, 288, 544.
Online algorithms, 318, 525–526, 720.
Operands: Quantities that are operated on, such as u and v in the calculation
of u + v.
Ophelia, daughter of Polonius, v.
Optimum methods of computation, see Complexity.
OR (bitwise or), 140, 686, 695.
Order of a modulo m, 20–23, 391–392.
Order of an element in a field, 457.
Order of magnitude zero, 239.

Order statistics, 135.
Ordered hash table, 592.
Organ-pipe order, 378.
Oriented binary tree, 692.
Oriented tree, 9, 464–465, 481–482.
Ostrowski, Alexander Markus, 494.
Oughtred, William, 225, 326.
Overflow, 12–13, 252, 267, 293, 332, 543, 639.

exponent, 217, 221, 227, 231, 241, 243, 249.
fraction, 217, 254, 262, 264.
rounding, 217, 220, 222, 224, 227–228.

Overstreet, Claude Lee, Jr., 189.
Owen, John, 1.
Owings, James Claggett, Jr., 178.
Ozawa, Kazufumi () 615.

p-adic numbers, 213, 605, 632, 685.
Packing, 109.
Padé, Henri Eugene, 357, 534.
Padegs, Andris, 226.
Pairwise independence, 183, 668–669.
Palindromes, 415.
Palmer, John Franklin, 222.
Pan, Victor Yakovlevich (), 490, 492, 497, 500,
505, 507, 515, 517, 519, 521, 677, 699, 703, 705, 706, 714, 715, 721.
Panario Rodriguez, Daniel Nelson, 449.
Pandu Rangan, Chandrasekaran(), 717.
Papadimitriou, Christos Harilaos(), 697.
Pappus of Alexandria (), 225.
Paradox, 257.
Parallel computation, 286, 317, 488, 503.
Parameter multiplications, 518, 524.
Parameter step, 494, 518.
Pardo, see Trabb Pardo.

Park, Stephen Kent, 108.
Parlett, Beresford Neill, 194.
Parry, William, 209.
Partial derivatives, 524.
Partial fraction expansion, 85, 510, 685.
Partial ordering, 694.
Partial quotients, 87, 106, 117, 346, 359, 367–369, 379, 656.

distribution of, 362–369, 665.
Partition test, 63–64, 74, 158.
Partitions of a set, 64, 722.
Partitions of an integer, 79, 146.
Pascal, Blaise, 199.
Pascal-SC language, 242.
Patashnik, Oren, 741.
Paterson, Michael Stewart, 519, 634, 707.
Patience, 190.
Patterson, Cameron Douglas, 390.
Paul, Nicholas John, 128.
Pawlak, Zdzisław, 205, 627.
Payne, William Harris, 32.
Paz, Azaria (), 498.
Peano, Giuseppe, 201.
Pearson, Karl, 55, 56.
Peirce, Charles Santiago Sanders, 538.
Pemantle, Robin Alexander, 542.
Penk, Michael Alexander, 646.
Penney, Walter Francis, 206.
Pentium computer chip, 280, 409.
Percentage points, 44, 46, 51, 70–71, 383.
Percival, Colin Andrew, 632.
Perfect numbers, 407.
Perfect squares, 387–388.
Period in a sequence, 7–9.

length of, 4, 16–23, 37–40, 95.
Periodic continued fraction, 375, 415.
Permanent, 499, 515–516.
Permutation: An ordered arrangement of a set.

mapped to integers, 65–66, 77–78, 145.
random, 145–148, 384, 460, 679.

Permutation test, 65–66, 77–78, 80–81, 91, 154.
Perron, Oskar, 356, 460, 690.
Persian mathematics, 197, 326, 462.
Pervushin, Ivan Mikheevich (), 407.
Peth , Attila, 607.
Petkovšek, Marko, 608.
Petr, Karel, 442.
Pfeiffer, John Edward, 192.
Phalen, Harold Romaine, 200.
Phi (φ), 164, 209, 283, 359, 360, 514, 652, 726–727, 733.
Phillips, Ernest William, 201–202.
Pi (π), 41, 151, 158, 161, 198, 200, 209, 279–280, 284, 358, 726–727, 733.

as “random” example, 21, 25, 33, 47, 52, 89, 103, 106, 108, 184, 238,
243, 252, 324–325, 555, 593, 599, 665.

Picutti, Ettore, 412.
Pigeonhole principle, 286.
Pi gala, Ācārya(), 461.
Pipeline, 283.
Pippenger, Nicholas John, 481, 697.
Piras, Francesco, 683.
Pitfalls of random number generation, 6, 29, 88, 188–189.
Pitteway, Michael Lloyd Victor, 653.
Places, 265.
Planck, Karl Ernst Ludwig Marx (= Max), constant, 214, 227, 238, 240.
Plauger, Phillip James, 327.
Playwriting, 190–192.
Plouffe, Simon, 284.

PM system, 420.
Pocklington, Henry Cabourn, 414, 681.
Pointer machine, 311, 317, 634.
Poirot, Hercule, 725.
Poisson, Siméon Denis, distribution, 55, 137–138, 140, 141, 538, 570.
Poker test, 63–64, 74, 158.
Polar coordinates, 56, 59, 123.
Polar method, 122–123, 125, 135.
Pollard, John Michael, 306, 385–386, 402–403, 413, 417, 658, 711.
Pólya, György (= George), 65, 569.
Polynomial, 418–420, 486.

addition, 418–420.
arithmetic modulo m, 37–40, 419–420, 464.
degree of, 418, 420, 436.
derivative of, 439, 489, 524, 537.
discriminant of, 674, 686.
distribution function, 138.
division, 420–439, 487, 534.
evaluation, 485–524.
factorization, 439–461, 514.
greatest common divisor, 424–439, 460, 453–455.
interpolation, 297, 365, 503–505, 509, 516, 700, 721.
irreducible, 422, 435, 450, 456–457, 460.
leading coefficient, 418, 451–452, 454.
monic, 418, 420, 421, 425, 435, 452, 457, 518.
multiplication, 418–420, 508, 512, 521, 712, 713.
multivariate, 418–419, 422, 455, 518.
norms, 457–458.
over a field, 420–425, 435, 439–449, 455–459.
over a unique factorization domain, 421–439, 449–461.
primitive, 422, 436.
primitive modulo p, 30–32, 422.
primitive part, 423–425.

random, 435, 448, 455, 459.
remainder sequence, 427–429, 438, 455, 721.
resultant, 433, 674, 690.
reverse of, 435, 452, 673, 721.
roots of, 23, 434, 436, 483, 493.
sparse, 455, 672.
squarefree, 439, 456, 459.
string, 436–438.
subtraction, 418–420.

Polynomial chains, 494–498, 517–524.
Pomerance, Carl, 396, 402, 659.
Poorten, Alfred Jacobus van der, 656.
Pope, Alexander, 88.
Pope, David Alexander, 278.
Popper, Karl Raimund, 178.
Portable random number generators, 185–188, 193.
Porter, John William, 372.
Positional representation of numbers, 151, 166–167, 177, 195–213, 319–
329.
Positive definite quadratic form, 98, 115.
Positive operator, 365.
Positive semidefinite matrix, 586.
Potency, 24–26, 36, 47, 52, 73, 83, 87–88, 92, 105, 184.
Power matrix, 534–536.
Power series: A sum of the form ∑k ≥0 akzk, see Generating functions.

manipulation of, 525–537.
Power tree, 464, 481.
Poweroids, 534–536, 722.
Powers, Donald (= Don) Michael, 312.
Powers, evaluation of, 461–485.

multiprecision, 463.
polynomial, 463–464.
power series, 526, 537, 719.

Powers, Ralph Ernest, 396, 407.
pp: Primitive part, 423–425.
Pr: Probability, 150, 152, 168, 179–180, 257, 264, 472, 734.
Pratt, Vaughan Ronald, 356, 413.
Precision: The number of digits in a representation.

double, 246–253, 278–279, 295.
multiple, 58, 202, 265–318, 419, 486.
quadruple, 253, 295.
single: fitting in one computer word, 215.
unlimited, 279, 283, 331, 416, see also Multiple-precision.

Preconditioning, see Adaptation.
Prediction tests, 171, 183.
Preston, Richard McCann, 280.
Primality testing, 380, 391–396, 409–414, 549.
Prime chains, 415, 666.
Prime numbers: Integers greater than unity having no proper divisors, 380.

distribution of, 381–382, 405.
enumeration of, 381–382, 416.
factorization into, 334.
largest known, 407–412.
Mersenne, 185, 409, 412, 413.
size of mth, 665.
useful, 291, 405, 407–408, 549–550, 711.
useless, 415.
verifying primality of, 380, 391–396, 409–414, 549.

Primes in a unique factorization domain, 421–422.
Primitive element modulo m,20–23.
Primitive notations for numbers, 195, 198.
Primitive part of a polynomial, 423–425.
Primitive polynomial, 422, 436.
Primitive polynomial modulo p,30–32, 422.
Primitive recursive function, 166.

Primitive root: A primitive element in a finite field, 20–23, 185, 391, 417,
456, 457.
Priority sampling, 148.
Pritchard, Paul Andrew, 631.
Probabilistic algorithms, see Randomized algorithms.
Probability: Ratio of occurrence, 150, 177, 257.

abuse of, 433.
over the integers, 150, 152, 257, 264, 472.

Probert, Robert Lorne, 699.
Programming languages, 16, 185, 222.
Pronouncing hexadecimal numbers, 201.
Proof of algorithms, 281–282, 336–337, 592.
Proofs, constructive versus nonconstructive, 286, 289, 583, 630.
Proper factor of v: A factor that is neither a unit nor a unit multiple of v.
Proth, François Toussaint, 663.
Proulx, René, 179.
Pseudo-division of polynomials, 425–426, 435–436.
Pseudorandom sequences, 4, 170–176, 179.
Ptolemy, Claudius (), 197.
Public key cryptography, 406.
Purdom, Paul Walton, Jr., 541.
Pyke, Ronald, 566.

q-series, 536.
Quadratic congruences, solving, 417.
Quadratic congruential sequences, 26–27, 37.
Quadratic forms, 98, 521.

minimizing, over the integers, 98–101, 105, 115–118.
Quadratic irrationalities, continued fractions for, 358, 374–375, 397–401,
412, 415, 665.
Quadratic reciprocity law, 393, 411, 414, 663.
Quadratic residues, 415, 697.
Quadratic sieve method, 402.
Quadruple-precision arithmetic, 253, 295.

Quandalle, Philippe, 710.
Quasirandom numbers, 4, 189.
Quater-imaginary number system, 205, 209–210, 283.
Quaternary number system, 195, 200.
Quick, Jonathan Horatio, 77, 147.
Quinary number system, 195, 200, 213.
Quolynomial chains, 498, 524, 704–705.
Quotient: ⌊u /v ⌋, 265, see Division.

of polynomials, 420–421, 425–426, 534.
partial, 87, 106, 117, 346, 359, 362–369, 379, 656, 665.
trial, 270–272, 278, 282.

Rabin, Michael Oser (), 175, 396, 406, 413, 415, 448, 449,
707.
Rabinowitz, Philip, 279.
Rackoff, Charles Weill, 179.
Rademacher, Hans, 90, 91.
Radioactive decay, 7, 132, 137.
Radix: Base of positional notation, 195.

complex, 205–206, 209–210.
irrational, 209.
mixed, 66, 199, 208–211, 290, 293, 505.
negative, 204–205, 209–210, 212, 328.

Radix conversion, 200, 204, 205, 207, 210, 319–329, 486, 489.
floating point, 326–329.
multiprecision, 326, 328.

Radix point, 10, 185, 195, 204, 209, 214, 319.
Raimi, Ralph Alexis, 257, 262.
Raleigh (= Ralegh), Walter, 199.
Rall, Louis Baker, 240, 242.
Ramage, John Gerow, 135.
Ramanujan Iyengar, Srinivasa (), 662.
Ramaswami, Vammi (), 383.
Ramshaw, Lyle Harold, 164, 181.

ran_array, 186–188, 193.
RAND Corporation, 3.
Randell, Brian, 202, 225.
Random bits, 12, 30–32, 35–36, 38, 48, 119–120, 170–176.
Random combinations, 142–148.
Random directions, 135–136.
Random fractions, 10, see Uniform deviates.
Random functions, 4–9, 385.
Random integers,

among all positive integers, 257, 264, 342, 354.
in a bounded set, 2–3, 6–7, 119–121, 138, 162–163, 185–186.

Random mappings, 4–9, 385, 657–658.
Random number generators, 1–193.

for nonuniform deviates, 119–148.
for uniform deviates, 10–40, 184–189, 193.
machines, 3, 404.
summary, 184–193.
tables, 3.
testing, 41–118.
using, 1–2, 119–148, 664, see also Randomized algorithms.

Random permutations, 145–148, 384, 460, 679.
of a random combination, 148.

Random point, in a circle, 123.
in a sphere, 136.
on an ellipsoid, 141.
on a sphere, 135.

Random polynomials, 435, 448, 455, 459.
Random random number generators, 6–9, 26.
Random real numbers, 255, 263.
Random samples, 142–148.
Random sequences, meaning of, 2, 149–183.

finite, 167–176, 178–179, 183.
Random walk test, 34, 79.

Randomized algorithms: Algorithms that use random numbers and usually
produce a correct answer, 1–2, 171, 395–396, 401–402, 413–417, 436, 447–
449, 453, 459, 669, 688.
Randomness, guaranteed, 35–36, 170–176.
RANDU, 26, 107, 188, 551.
Rangan, see Pandu Rangan.
Range arithmetic, 228, 240–242, 244–245, 333, 613.
Rank, of apparition, 410–411.

of a matrix, 443–444, 506, 508, 520.
of a tensor, 506, 508, 514, 520–524.

RANLUX, 109.
Rap music, 3.
Rapoport, Anatol, 541.
Ratio method, 130–132, 133, 140.
Rational arithmetic, 69, 330–333, 427–428, 526.
Rational function approximation, 438–439, 534.
Rational functions, 420, 498, 518.

approximation and interpolation, 438–439, 505, 534.
Rational numbers, 330, 420, 459.

approximation by, 331–332, 378–379, 617.
mod m, 379.
polynomials over, 428, 459.
positional representation of, 16, 211, 213, 328.

Rational reconstruction, 379.
Real numbers, 420.
Real time, 286.
Realization of a tensor, 507.
Reciprocal differences, 505.
Reciprocals, 278–279, 312–313, 421.

floating point, 243, 245, 263.
mod 2e, 213, 629.
mod m, 26, 213, 354, 445, 456, 646.
power series, 537.

Reciprocity laws, 84, 90, 393, 414.
Recorde, Robert, xi, 280–281.
Rectangle-wedge-tail method, 123–128, 139.
Rectangular distribution, see Uniform distribution.
Recurrence relations, 10, 26–33, 37–40, 260–261, 295, 301–302, 313, 318,
351, 362, 386, 409–411, 442, 525, 634, 687, 695, 714.
Recursive processes, 253, 295, 299–303, 318, 419, 500, 531, 689, 713.
Reeds, James Alexander, III, 599.
Rees, David, 39, 169.
Registers, 491.
Regular continued fractions, 346, 358–359, 368, 374–379, 412, 415, 665.
Rehkopf, Donald Caspar, 41.
Reiser, John Fredrick, 28, 39, 242.
Reitwiesner, George Walter, 213, 280.
Rejection method, 125–126, 128–129, 134, 138, 139, 591.
Relative error, 222, 229, 232, 253, 255.
Relatively prime: Having no common prime factors, 11, 19, 286, 330, 332,
342, 354.

polynomials, 422, 436, 454.
Remainder: Dividend minus quotient times divisor, 265, 272–273, 420–421,
425–426, 437, 534, see also mod.
Replicative law, 90.
Representation of numbers, see Number systems.
Representation of trees, 482.
Representation of ∞, 225, 244–245, 332.
Reservoir sampling, 143–144, 147, 148.
Residue arithmetic, 284–294, 302–305, 450, 454, 499.
Result set, 494, 517.
Resultant of polynomials, 433, 674, 690.
Revah, Ludmila, 706.
Reverse of a polynomial, 435, 452, 673, 721.
Reversing binary number system, 212.
Reversion of power series, 527–530, 533–536.
Revolving binary number system, 212.

Rezucha, Ivan, 143.
Rhind papyrus, 462.
Rho method for factoring, 384–386, 393–394, 413.
Riccati, Jacopo Francesco, equation, 650.
Rieger, Georg Johann, 653.
Riemann, Georg Friedrich Bernhard, 83, 382, 414.

hypothesis, 382, 663.
hypothesis, generalized 395–396, 671.
integration, 153–154, 259.

Riffle shuffles, 145, 147.
Right divisor, greatest common, 437–438.
Ring with identity, commutative, 418.
Riordan, John, 542.
Rising powers, 534, 731.
Ritzmann, Peter, 721.
Rivat, Joël, 667.
Rivest, Ronald Linn, 403, 405, 707.
Robber, 190–192.
Robbins, David Peter, 593.
Robinson, Donald Wilford, 554.
Robinson, Julia Bowman, 666.
Robinson, Raphael Mitchel, 664, 711.
Roepstorff, Gert, 366.
Rolletschek, Heinrich Franz, 9, 345.
Roman numerals, 195, 209.
Romani, Francesco, 500, 715.
Roof, Raymond Bradley, 115.
Roots of a polynomial, 23, 434, 483, 493.

multivariate, 436.
Roots of unity, 84, 531–532, 700; see also Cyclotomic polynomials,
Exponential sums.
Rosińska, Izabela Grażyna, 198.
Ross, Douglas Taylor, 192.

Rotenberg, Aubey, 11, 47.
Rothe, Heinrich August, 535.
Rouché, Eugène, theorem, 690.
Roulette, 2, 10, 55.
Round to even, 237, 241, 245.
Round to odd, 237.
Rounding, 102, 207, 217, 222, 223, 230–231, 236–237.

mediant, 331–332, 379.
Rounding errors, 232, 242, 698, 718.
Rounding overflow, 217, 220, 222, 224, 227–228.
Rozier, Charles Preston, 324.
RSA box, 404, 406.
RSA encryption, 403–407, 415, 629, 669.
Rudolff, Christof, 198.
Ruler function ρ (n), 540.
Run test, 63, 66–69, 74–77, 158, 180.
Runs above (or below) the mean, 63.
Runs in a permutation, 66, 74, 76.
Russian peasant method, 462.
Ruzsa, Imre Zoltán, 213.
Ryser, Herbert John, 515, 699.

$N, 170.
Saarinen, Jukka Pentti Päiviö, 75.
Sachau, Karl Eduard, 461.
Saddle point method, 568.
Sahni, Sartaj Kumar, 60.
Saidan, Ahmad Salim (), 198, 461.
Salamin, Eugene, 283.
Salfi, Robert, 145.
Samelson, Klaus, 241–242, 327.
Samet, Paul Alexander, 321.
Sampling (without replacement), 1, 142–148.

Sands, Arthur David, 610.
Saunders, Benjamin David, 455.
Savage, John Edmund, 707.
Sawtooth function ((x)), 81–82, 90–91.
Saxe, James Benjamin, 141.
Saxena, Nitin (), 396.
Scarborough, James Blaine, 241.
Schatte, Peter, 262, 622.
Schelling, Hermann von, 65.
Schmid, Larry Philip, 73.
Schmidt, Erhard, 101, 674.
Schmidt, Wolfgang M, 183.
Schnorr, Claus-Peter, 118, 179, 414, 417, 497, 578, 664, 669.
Scholz, Arnold, 478.
Scholz–Brauer conjecture, 478–479, 485.
Schönemann, Theodor, 457, 685.
Schönhage, Arnold, 292, 302–303, 305, 306, 311, 317, 328, 470, 484, 500,
522, 629, 638, 656, 672, 696, 715.
Schönhage–Strassen algorithm, 306–311, 317.
Schooling, William, 627.
Schreyer, Helmut, 202.
Schröder, Friedrich Wilhelm Karl Ernst, 531.

function, 531–532, 724.
Schroeppel, Richard Crabtree, 399, 400, 671.
Schubert, Friedrich Theodor von, 450.
Schwartz, Jacob Theodore, 674, 675.
Schwarz (= Švarc), Štefan, 442.
Schwenter, Daniel, 654.
Secrest, Don, 279, 327.
Secret keys, 193, 403–407, 415, 417, 505.
Secure communications, 2, 403–407, 415.
Sedgewick, Robert, 540.
Seed (starting value), 143, 146, 170, 187–188, 193, 550, 590.

in a linear congruential sequence, 10, 17, 20, 184.
Seidenberg, Abraham, 198.
Selection sampling, 142–143, 146.
Selenius, Clas-Olof, 648.
Self-reproducing numbers, 6, 293–294, 540.
Selfridge, John Lewis, 394, 396, 412, 665.
Semi-online algorithm, 529.
Semigroup, 539.
Seneschal, David, 589.
Septenary (radix 7) number system, 200.
Serial correlation coefficient, 77.
Serial correlation test, 72–74, 91, 83, 154, 182.
Serial test, 39, 60, 62, 74, 75, 78, 95, 106, 109–115, 158.
Seroussi Blusztein, Gadiel (), 712.
Serret, Joseph Alfred, 374, 449, 579.
Sethi, Ravi, 485.
SETUN computer, 208.
Sexagesimal number system, 196–200, 225, 326.
Seysen, Martin, 118.
Shafer, Michael William, 409.
Shakespeare (= Shakspere), William, v.
Shallit, Jeffrey Outlaw, 360, 378, 380, 390, 395–396, 645, 646, 656, 663,
689.
Shamir, Adi (), 403, 405, 416, 505, 599, 669.
Shand, Mark Alexander, 629.
Shanks, Daniel Charles, 280, 379, 681–682.
Shanks, William, 279–280.
Shannon, Claude Elwood, Jr., 211.
Shaw, Mary Margaret, 489, 498, 515.
Shen, Kangshen (), 287.
Sheriff, 190–192.
Shibata, Akihiko (), 280.
Shift operators of MIX, 339.

Shift register recurrences, 27–32, 36–40, 186–188, 193.
Shift-symmetric N-source, 172, 183.
Shirley, John William, 199.
Shokrollahi, Mohammad Amin(), 515.
Short vectors, 98–101, 118.
Shoup, Victor John, 449, 687.
Shub, Michael Ira, 36.
Shuffled digits, 141.
Shuffling a sequence, 33–36, 38, 39.
Shuffling cards, 145–147.
Shukla, Kripa Shankar(), 208, 648.
Sibuya, Masaaki (), 133.
SICOMP: SIAM Journal on Computing, published by the Society for
Industrial and Applied Mathematics since 1972.
Sideways addition, 463, 466.
Sierpiński, Wacław Franciszek, 666.
Sieve methods, 389–391, 402–403, 412.
Sieve () of Eratosthenes, 412, 416, 667.
Sieveking, Malte, 720.
Signatures, digital, 406.
Signed magnitude representation, 202–203, 209–210, 247, 266.
Significant digits, 195, 229, 238.
Sikdar, Kripasindhu (), 327.
Silverman, Joseph Hillel, 402.
Simplex, recursively subdivided, 567.
Simulation, 1.
Sinclair, Alistair, 699.
Sine, 490.
Singh, Avadhesh Narayan (), 343, 461.
Singh, Parmanand (), 387.
Sink vertex, 480.
SKRZAT 1 computer, 205.
Slash arithmetic, 331–333, 379.

SLB (shift left rAX binary), 339, 340.
Slide rule, 225.
Sloane, Neil James Alexander, 109.
Slowinski, David Allen, 409.
Small step, 467.
Smirnov, Nikolai Vasilievich (), 57.
Smith, David Eugene, 197, 198.
Smith, David Michael, 275, 279.
Smith, Edson McIntyre, 409.
Smith, Henry John Stephen, 646.
Smith, James Everett Keith, 27.
Smith, Robert LeRoy, 228.
Sobol, Ilya Meerovich (), 541.
SODA: Proceedings of the ACM-SIAM Symposia on Discrete Algorithms,
inaugurated in 1990.
Soden, Walter, 323.
Solitaire, 190.
Solomonoff, Ray Joseph, 178.
Solovay, Robert Martin, 396, 414.
Sorenson, Jonathan Paul, 646.
Sorted uniform deviates, 57, 71, 135, 137, 141.
Source vertex, 480.
Sowey, Eric Richard, 189.
Space-filling curves, 495.
Spacings, 71, 78–79, 181.
Sparse polynomials, 455, 672.
Specht, Wilhelm, 683.
Species of measure zero, 179.
Spectral test, 30, 35, 93–118, 169, 184.

algorithm for, 101–104.
examples, 105–109.
generalized, 108, 117.

Spence, Gordon McDonald, 409.

Spencer Brown, David John, 695.
Sphere, n-dimensional, 56.

random point in, 136.
random point on, 135.
volume of, 105.

Spherical coordinates, 59.
SQRT box, 175, 406–407, 415.
Square root, 122, 213, 283, 374–375, 397–398, 483.

modulo m, 406–407, 415.
modulo p, 456–457, 681–682.
of power series, 526, 537.
of uniform deviate, 122.

Squarefree factorization, 460.
Squarefree polynomials, 439, 456, 459.
Squares, sum of two, 579–580.
Squeamish ossifrage, 417.
Squeeze method, 125–126, 147.
SRB (shift right rAX binary), 339, 340, 481.
Stability of polynomial evaluation, 485, 489, 490.
Stack: Linear list with last-in-first-out growth pattern, 299–301.
Stahnke, Wayne Lee, 31.
Standard deviation, evaluation of, 232, 244.
Stanley, Richard Peter, 594.
Star chains, 467, 473–477, 480, 482.
Star step, 467.
Stark, Richard Harlan, 226.
Starting value in a linear congruential sequence, 10, 17, 20, 184.
Statistical tests, 171.
see Testing. Steele, Guy Lewis, Jr., 635–636, 638.
Ştefănescu, Doru, 450.
Steffensen, Johan Frederik, 722.
Stegun, Irene Anne, 44.
Stein, Josef, 338.

Stein, Marvin Leonard, 278.
Stern, Moritz Abraham, 654.
Stern—Brocot tree, 378, 656.
Stevin, Simon, 198, 424.
Stibitz, George Roberto, 202, 225.
Stillingfleet, Edward, 537.
Stirling, James, 537.

approximation, 59.
numbers, 64–65, 298, 534–535, 542, 680, 732.

STOC: Proceedings of the ACM Symposia on Theory of Computing,
inaugurated in 1969.
Stockmeyer, Larry Joseph, 519, 634, 707.
Stoneham, Richard George, 115.
Stoppard, Tom (= Straussler, Tomas), 61.
Storage modification machines, 311.
Strachey, Christopher, 192.
Straight-line program, 494.
Strassen, Volker, 306, 311, 317, 396, 414, 497, 500, 507, 521, 523, 656, 708,
718.
Straus, Ernst Gabor, 378, 485.
Strindmo, Odd Magnar, 409.
String polynomials, 436–438.
Stringent tests, 75.
Stroud, Arthur Howard, 279, 327.
Struve, Wassilij Wassiliewitsch (), 462.
Student (= William Sealy Gosset), t-distribution, 135.
Sturm, Jacques Charles François, 434, 438, 674.
Subbarao, Mathukumalli Venkata(), 469.
Subexponential (nice) functions, 694.
Subnormal floating point numbers, 246.
Subresultant algorithm, 428–436, 438, 455.
Subsequence rules, 161–162, 168–169, 177–178, 182.
Subsequence tests, 73, 158.

Subsequences, 40, 193.
Subset FORTRAN language, 600.
Subtract-and-shift cycle, 338, 348.
Subtract-with-borrow sequence, 23, 35, 72, 75, 108, 193, 546.
Subtraction, 194, 207, 213, 265, 267–268, 281.

complex, 487.
continued fractions, 649.
double-precision, 247–249.
floating point, 216, 230–231, 235–238, 245, 253, 556, 602.
fractions, 330–331.
mod m, 15, 186, 203, 287–288.
modular, 285–286.
multiprecision, 267–268, 276, 281, 283.
polynomial, 418–420.
power series, 525.

Subtractive random number generator, 39–40, 186–188, 193.
Sugunamma, Mantri (), 469.
Sukhatme, Pandurang Vasudeo (), 568.
Sum of periodic sequences, mod m,35, 38, 78, 108.
Summation by parts, 643.
Sun Tsŭ (= Sūnzŭ, Master Sun) (), 280, 287.
Sun SPARC station, 764.
Suokonautio, Vilho, 279.
Svoboda, Antonin, 282, 292.
Swarztrauber, Paul Noble, 634.
Swedenborg, Emanuel, 200.
Sweeney, Dura Warren, 253, 379.
Swinnerton-Dyer, Henry Peter Francis, 681.
Sýkora, Ondrej, 700.
Sylvester, James Joseph, matrix, 433, 436, 674.
Szabó, Jozsef, 607.
Szabó, Nicholas Sigismund, 291, 292.
Szekeres, Gyorgy (= George), 570.

Szymanski, Thomas Gregory, 540.

t-ary trees, 723.
abarī, Mohammed ben Ayyūb (), 208.

Tables of fundamental constants, 358–359, 726–729.
Tabulating polynomial values, 488, 515.
Tague, Berkley Arnold, 419.
Tail of a floating point number, 235.
Tail of the binomial distribution, 167.
Tail of the normal distribution, 139.
Takahashi, Daisuke (), 280.
Takahasi, Hidetosi (), 291.
Tamura, Yoshiaki (), 280.
Tanaka, Richard Isamu (), 292.
Tangent, 376.
tanh, 375.
Tannery, Jules, 241.
Taranto, Donald Howard, 327, 635.
Tarski (Tajtelbaum), Alfred, 718.
Tate, John Torrence, Jr., 402.
Tate, Stephen Ralph, 309.
Taussky Todd, Olga, 35, 106.
Tausworthe, Robert Clem, 31.
Taylor, Alfred Bower, 201.
Taylor, Brook, theorem, 489.
Taylor, William Johnson, 504.
Television script, 190–192.
Ten’s complement notation, 203, 210.
Tensors, 506–514, 520–524.
Term: A quantity being added
Terminating fractions, 328.
Ternary number system, 195, 200, 204, 213, 328.

balanced, 207–208, 209, 227, 283, 353.
Testing for randomness, 41–118.

a priori tests, 80.
chi-square test, 42–47, 53–56, 58–60.
collision test, 70–71, 74, 158.
coupon collector’s test, 63–65, 74, 76, 158, 180.
empirical tests, 41, 61–80.
equidistribution test, 61, 74, 75.
frequency test, 61, 74, 75.
gap test, 62–63, 74–76, 136, 158, 180.
Kolmogorov—Smirnov test, 48–60.
maximum-of-t test, 52, 54, 59, 70, 75, 77, 122, 158, 180.
partition test, 63–64, 74, 158.
permutation test, 65–66, 77–78, 80–81, 91, 154.
run test, 63, 66–69, 74–77, 158, 180.
serial correlation test, 72–74, 91, 83, 154, 182.
serial test, 39, 60, 62, 74, 75, 78, 95, 106, 109–115, 158.
spectral test, 30, 35, 93–118, 169, 184.
subsequence tests, 73, 158.
theoretical tests, 41–42, 80–93.
torture test, 79.

TEX, iv, vi, 764.
Tezuka, Shu (), 164, 189, 546, 584.
Thacher, Henry Clarke, Jr., 529.
Theoretical tests for randomness, 41–42, 80–93.
Thiele, Thorvald Nicolai, 505.
Thompson, John Eric Sidney, 196.
Thomson, William Ettrick, 3, 11, 22.
Thorup, Mikkel, 593.
Thurber, Edward Gerrish, 466, 470, 477, 478.
Tichy, Robert Franz, 161.
Tienari, Martti Johannes, 279.
Tingey, Fred Hollis, 57.
Tippett, Leonard Henry Caleb, 3.
Tiwari, Prasoon (), 316.

Tobey, Robert George, 677.
Tocher, Keith Douglas, 588.
Todd, John, 35.
Todd, Olga Taussky, 35, 106.
Toeplitz, Otto, system, 721.
Tonal System, 201.
Tonelli, Alberto, 682.
Toolkit philosophy, 487.
Toom, Andrei Leonovich (TOOM,), 296, 299, 306.
Toom-Cook algorithm, 299–302, 316–317, 672.
Topological sorting, 480.
Topuzoglu, Alev, 558.
Torelli, Gabriele, 535.
Torres y Quevedo, Leonardo de, 225.
Torture test, 79.
Totient function φ(n), 19–20, 289, 369, 376, 583, 646.
Touchy-feely mathematics, 466, 477.
Trabb Pardo, Luis Isidoro, 661.
Trace of a field element, 687.
Trager, Barry Marshall, 455, 689.
Trailing digit, 195.
Transcendental numbers, 378.
Transitive permutation groups, 679.
Transpose of a tensor, 507, 512–513.
Transpositions, 147.
Traub, Joseph Frederick, 138, 348, 428, 489, 498, 505, 515, 531–534, 719.
Trees: Branching information structures, 413.

binary, 378, 527, 696, 723.
complete binary, 667.
enumeration of, 527, 696, 723.
oriented, 9, 464–465, 481–482.
t-ary, 723.

Trevisan, Vilmar, 452, 461.

Trial quotients, 270–272, 278, 282.
Triangularization of matrices, 444, 659–660, 677.
Tries, 687.
Trigonometric functions, 279, 313, 490.
Trilinear representation of tensors, 521–522.
Trinomials, 32, 40, 572.
Triple-precision floating point, 252.
Trits, 207.
Truncation: Suppression of trailing digits, 207, 237–238, 309.
Tsang, Wai Wan (), 72.
Tsu Ch’ung-Chih (= Zŭ Chōngzhī) (), 198.
Tsuji, Masatsugu (), 264.
Tukey, John Wilder, 701.
Turán, Pál (= Paul), 372, 649.
Turing, Alan Mathison, 3, 599.

machines, 169, 499, 634.
Twindragon fractal, 206, 210, 606.
Two squares, sum of, 579–580.
Two’s complement notation, 15, 188, 203–204, 228, 275–276, 608.
Twos’ complement notation, 204.
Tydeman, Frederick John, 638.

Ulam, Stanisław Marcin, 138, 140, 189.
Ullman, Jeffrey David, 694.
Ullrich, Christian, 242.
Ulp, 232–233.
Underflow, exponent, 217, 221–222, 227, 231, 241, 249.

gradual, 222.
Ungar, Peter, 706.
Uniform deviates: Random numbers with the uniform distribution, 138.

generating, 10–40, 184–189, 193.
logarithm of, 133.
sorted, 57, 71, 135, 137, 141.
square root of, 122.

Uniform distribution, 2, 10, 48, 61, 119, 121, 124, 263.
Unimodular matrix, 524.
Unique factorization domain, 421–424, 436.
Units in a unique factorization domain, 421–422, 435.
Unity: The number one, 336.

roots of, 84, 531–532, 700; see also Cyclotomic polynomials,
Exponential sums.

Unlimited precision, 279, 283, 331, 416, see also Multiple-precision
Unnormalized floating point arithmetic, 238–240, 244, 327.
Unusual correspondence, 9.
Useful primes, 291, 405, 407–408, 549–550, 711.
Uspensky, James Victor, 278.

Vahlen, Karl Theodor, 653.
Valach, Miroslav, 292.
Valiant, Leslie Gabriel, 499.
Vallee, Brigitte, 352, 355, 366, 644, 645.
Vallee Poussin, Charles Jean Gustave Nicolas de la, 381.
Valtat, Raymond, 202.
van Ceulen, Ludolph, 198.
van de Wiele, Jean-Paul, 497, 707.
van der Corput, Johannes Gualtherus, 163–164, 181.
van der Poorten, Alfred Jacobus, 656.
van der Waerden, Bartel Leendert, 196, 433, 518, 690.
van Halewyn, Christopher Neil, 403.
van Leeuwen, Jan, 477, 515, 706.
Van Loan, Charles Francis, 562, 701.
van Wijngaarden, Adriaan, 242.
Vari, Thomas Michael, 717.
Variables, 418, 486.
Variance, unbiased estimate of, 232.
Variance-ratio distribution, 135.
Vassilevska Williams, Virginia Panayotova (

), 717.

Vattulainen, Ilpo Tapio, 75, 570.
Vaughan, Robert Charles, 451.
Velthuis, Frans Jozef, 764.
Veltkamp, Gerhard Willem, 616.
Vertex cover, 485.
Vetter, Herbert Dieter Ekkehart, 629, 656.
Viéte, François, 198.
Ville, Jean André, 597.
Vitányi, Pál Mihály (= Paul Michael) Béla, 179.
Vitter, Jeffrey Scott (), 121, 146.
Vogel, Otto Hermann Kurt, 341.
Voltaire, de (= Arouet, François Marie), 200.
Volume of sphere, 105.
von Fritz, Kurt, 335.
von Mangoldt, Hans Carl Friedrich, 663. function, 371, 376.
von Mises, Richard, Edler, 149, 177, 494.
von Neumann, John (= Margittai Neumann János), 1, 3–4, 26, 36, 119, 125,
128, 138, 140, 202, 226, 278, 327.
von Schelling, Hermann, 65.
von Schubert, Friedrich Theodor, 450.
von zur Gathen, Joachim Paul Rudolf, 449, 611, 673, 687.
Vowels, Robin Anthony, 637.
Vuillemin, Jean Etienne, 629, 649.

Wadel, Louis Burnett, 205.
Wadey, Walter Geoffrey, 226, 242.
Waerden, Bartel Leendert van der, 196, 433, 518, 690.
Waiting time, 119, 136.
Wakulicz, Andrzej, 205, 627.
Wald, Abraham (= Ábrahám), 163, 177–178.
sequence, 164–165.
Wales, Francis Herbert, 194, 202.
Walfisz, Arnold, 382.
Walker, Alastair John, 120, 127, 139.

Wall, Donald Dines, 553.
Wall, Hubert Stanley, 356.
Wallace, Christopher Stewart, 132, 141, 316, 590.
Wallis, John, 199, 655.
Walsh, Joseph Leonard, 502.
Wang, Paul Shyh-Horng (), 452, 455, 460–461, 657, 689.
Ward, Morgan, 554.
Waring, Edward, 503.
Warlimont, Richard Clemens, 686.
Watanabe, Masatoshi (), 764.
Waterman, Alan Gaisford, 40, 106–107, 116, 144, 554, 596.
Wattel, Evert, 466.
Weather, 74.
Wedge-shaped distributions, 125–126.
Weigel, Erhard, 199.
Weighing problem, 208.
Weights and measures, 198–199, 201, 209, 255, 326, 327.
Weinberger, Peter Jay, 415, 678.
Welch, Peter Dunbar, 701.
Welford, Barry Payne, 232.
Weyl, Claus Hugo Hermann, 181, 379, 382, 596.
Wheeler, David John, 226.
White, Jon L (= Lyle), 635–636, 638.
White sequence, 182.
Whiteside, Derek Thomas, 486, 701.
Whitworth, William Allen, 566, 568.
Wichmann, Brian Anderson, 544.
Wiedijk, Frederik, 665.
Wiele, Jean-Paul van de, 497, 707.
Wijngaarden, Adriaan van, 242.
Wilf, Herbert Saul, 146.
Wilkes, Maurice Vincent, 201, 226.
Wilkinson, James Hardy, 241, 499.

Williams, Hugh Cowie, 380, 390, 394, 401, 412, 415, 661, 664.
Williams, John Hayden, 541.
Williams, Virginia Panayotova Vassilevska(

), 717.
Williamson, Dorothy, 115.
Wilson, Edwin Bidwell, 134.
Winograd, Shmuel, 280, 316, 500, 501, 507, 509, 512–514, 520, 523, 705–
707, 710, 712, 714.
Wirsing, Eduard, 363, 366, 376.
WM1 (word size minus one), 252, 267, 613.
Wolf, Thomas Howard, 192.
Wolff von Gudenberg, Jürgen Freiherr, 242.
Wolfowitz, Jacob, 69, 74.
Woltman, George Frederick, 409.
Wood, William Wayne, 115.
Word length: Logarithm of word size. Word size, 12–16, 265, 276.
Wrench, John William, Jr., 280, 379, 627, 728.
Wright, Edward Maitland, 384, 653.
Wunderlich, Charles Marvin, 390, 394, 399–400.
Wynn, Peter, 356, 613.
Wynn-Williams, Charles Eryl, 202.
XOR (bitwise exclusive-or), 31, 32, 193, 419.

Yagati, see Lakshman
Yaglom, Akiva Moiseevich (), 622.
Yaglom, Isaak Moiseevich (), 622.
Yao, Andrew Chi-Chih (), 138, 170, 179, 316, 378, 484, 485, 540.
Yao, Frances Foong Chu (), 484.
Yates, Frank, 145, 173, 501–502.
Yee, Alexander Jih-Hing (), 280.
Yohe, James Michael, 612.
Young, Jeffery Stagg, 664.
Younis, Saed Ghalib (), 311.
Yuditsky, Davit Islam Gireevich (), 292.

Yun, David Yuan-Yee (), 454–455, 460, 686, 688, 689, 721.
Yuriev, Sergei Petrovich (), 366.

Z-independent vectors, 524.
Zacher, Hans-Joachim, 200.
Zaman, Arif (), 72, 75, 546, 547, 549.
Zantema, Hantsje, 696.
Zaremba, Stanisław Krystyn, 108, 115, 117, 332, 584.
Zaring, Wilson Miles, 653.
Zassenhaus, Hans Julius, 446, 448, 449, 455, 456, 681, 685.
Zeilberger, Doron (), 536, 683.
Zero, 196, 336.

leading, 222, 238–240, 327.
minus, 202, 244–245, 249, 268, 274.
order of magnitude, 239.
polynomial, 418.

Zero divisors, 671.
Zeta function, 362, 382, 414, 644.
Zhang, Linbo (), 764.
Ziegler Hunts, Julian James, 617.
Zierler, Neal, 29.
Zippel, Richard Eliot, 455, 675.
Zuckerman, Herbert Samuel, 155–156.
Zuse, Konrad, 202, 225, 227.
Zvonkin, Alexander Kalmanovich (),
170.

THIS BOOK was composed on a Sun SPARCstation with Computer Modern
typefaces, using the TEX and METHFONT software as described in the
author’s books Computers & Typesetting (Reading, Mass.: Addison-Wesley,
1986), Volumes A–E The illustrations were produced with John Hobby’s
METHPOST system. Some names in the index were typeset with additional
fonts developed by Yannis Haralambous (Greek, Hebrew, Arabic), Olga G.
Lapko (Cyrillic), Frans J. Velthuis (Devanagari), Masatoshi Watanabe
(Japanese), and Linbo Zhang (Chinese).

	About This eBook
	Title Page
	Copyright Page
	Preface
	Preface to the Third Edition

	Notes on the Exercises
	Contents
	Chapter Three. Random Numbers
	3.1. Introduction
	3.2. Generating Uniform Random Numbers
	3.3. Statistical Tests
	3.4. Other Types of Random Quantities
	*3.5. What Is a Random Sequence?
	3.6. Summary

	Chapter Four. Arithmetic
	4.1. Positional Number Systems
	4.2. Floating Point Arithmetic
	4.3. Multiple-Precision Arithmetic
	4.4. Radix Conversion
	4.5. Rational Arithmetic
	4.6. Polynomial Arithmetic
	*4.7. Manipulation of Power Series

	Answers to Exercises
	Notes on the Exercises
	Section 3.1
	Section 3.5
	Section 3.6
	Section 4.1
	Section 4.4
	Section 4.6
	Section 4.7

	Appendix A. Tables of Numerical Quantities
	Appendix B. Index to Notations
	Appendix C. Index to Algorithms and Theorems
	Index and Glossary

